
  

  

Abstract— In this paper, a novel hybrid Pigeon Inspired 
Optimization (PIO) and quantum theory is proposed for solving 
continuous optimization problem. Which is called Bloch 
Quantum-behaved Pigeon-Inspired Optimization (BQPIO for 
abbreviation). Quantum theory is adopted to increase the local 
search capacity as well as the randomness of the position. As a 
consequence, the improved BQPIO can avoid the premature 
convergence problem and find the optimal value correctly when 
solving multimodal problems. An empirical study was carried 
out to evaluate the performance of the proposed algorithm, 
which is compared with Particle Swarm Optimization (PSO), 
basic PIO, and Quantum-behaved Particle Swarm Optimization 
(QPSO). The comparative results demonstrate that our 
proposed BQPIO approach is more feasible and effective in 
solving complex continuous optimization problems compared 
with other swarm algorithm. 

I. INTRODUCTION 

Many optimization problems can be solved by 
population-based swarm intelligence algorithms. The key 
issue of these meta-heuristic swarm intelligence algorithms 
are exploration and exploitation as it makes few or no 
assumptions about the problem being optimized and can 
search very large spaces of candidate solutions [1, 2]. 

Quantum-behaved Particle Swarm Optimization (QPSO) 
is a modified Particle Swarm Optimization (PSO) which 
introduce the quantum theory [3]. This algorithm can evade 
the shortcomings which the standard PSO has. In spite of that, 
QPSO still have some problems in feasibility and 
effectiveness to solve some complicated multimodal function. 
Pigeon-Inspired Optimization (PIO), a population-based 
swarm intelligence algorithm, is a novel swarm intelligence 
optimization technique proposed by H. B. Duan in 2014 [4]. It 
is an effective algorithm, but it will become undependable 
especially when the population size of the pigeon swarm is 
small, which I will show in the Section V. To resolve these 
shortcomings, a new swarm intelligence algorithm with a 
Bloch Sphere encoding mechanism will be proposed in this 
paper, which name is Bloch Quantum-behaved 
Pigeon-Inspired Optimization (BQPIO). 
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The remainder of the paper is organized as follows. The 
next section introduces the main process of PIO. Section III 
presents the basic mathematical model of BQPIO, and Section 
IV specifies the detailed implementation procedure of BQPIO. 
Subsequently, a series of comparison experiments on several 
benchmark optimization problems are conducted, and the 
comparative results together with the analysis will be given in 
Section V. Our concluding remarks and directions for future 
research are contained in final section. 

II. PIGEON-INSPIRED OPTIMIZATION 
The homing pigeon has an inborn homing ability to find its 

way home over extremely long distances by using three 
homing tools: magnetic field, sun and landmarks. Scientists 
have found that on the top of pigeon's beak, massive iron 
particles was found which points to the north just as artificial 
compass. Which helps pigeon to determine its way home. 
Guilford and his colleagues argue that homing pigeons in 
different parts of the journey may use different navigation 
tools. As pigeons start their journey, they may be more 
dependent on compass-like tools. Whilst in the latter part of 
their journey, they switch to using landmarks tools when they 
need to reassess their route [5]. 

Inspired by the above homing behaviors of pigeons, a 
novel bio-inspired swarm intelligence optimizer which is 
named PIO has been invented in 2014 [4]. In order to idealize 
some of the homing characteristics of pigeons, two operators 
are designed by using some rules, map and compass operator 
model is presented based on magnetic field and sun, while 
landmark operator model is designed based on landmarks. 

1) Map and Compass Operator 
In the Map and Compass Operator, computer-generated 

pigeons are used. The position and the velocity of pigeon i 
can be defined as Xi and Vi, which will update in each iteration 
in a d-dimension search space. And the new position Xi and 
velocity Vi of pigeon i at the t-th iteration can be obtained with 
(1) and (2) [4]: 
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where R is the map and compass factor. rand is a random 
number (generally is a number between 0 and 1). Pg  is the 
global best position of the first t iteration, which can be 
calculated by comparing all the positions among the whole 
swarm. 

2) Landmark Operator 
In the Landmark Operator, we assume the pigeons are still 

distant from the destination, and obviously they are 
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unfamiliar to the landmarks. All pigeons are ranked according 
their fitness values. Then half of the number of pigeons (Np/2) 
is decreased according to (3). 
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We then find the center pigeon from the left pigeons at the 
t-th iteration, whose position (Xc)  is the desirable destination. 
This can be described by (4). And the new position of other 
pigeons can be calculated by (5). 
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where fitness( ) is considered the fitness value of the each 

pigeon in the swarm. We can choose 
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for the minimum optimization problems. 

III. BLOCH QUANTUM-BEHAVED PIGEON-INSPIRED 
OPTIMIZATION 

BQPIO is an algorithm combined standard PIO algorithm 
and a Bloch Sphere encoding mechanism. In this algorithm, 
every single particle have quantum behavior. 

A. Quantum Evolutionary Theory 
The probability amplitudes of quantum bit encode the 

position of particles while the quantum rotation gates perform 
the changing of the position which achieve particles searching 
[3, 6, 7], and the quantum bit chromosome can be decreased 
according to (6) as a string of m quantum bits:  
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where 122 =+ ii βα , i=1,...,m. m represents the quantity of 
quantum bits as well as the string length of the quantum bit 
individual. 2

iα  represents the chance that the quantum bit 

will be found in the ‘0’ state. On the contrary, 2
iβ  shows the 

chance that the quantum bit will be found in the ‘1’ state. The 
linear superposition of all possible solutions can be  
represented by   quantum bit chromosome and the diversity of 
it is better than the classic one, then we bring a random 
number between [0, 1] to get a classical chromosome and 

compare it with 
2

iα , if it is bigger, this bit in the classical 
chromosome is 1, otherwise 0 [7-10]. 

 

Figure 1.  Polar plot of the rotation gate for quantum bit chromosome 

The typical mutation operation is completely random 
without any directions, and the speed of convergence is 
slowed down. However, the quantum bit representation can be 
regarded as a mutation operator [3, 8, 11]. Directed by the 
current best individual, quantum mutation is completed 
through the quantum rotation gate, and [ ]Tii βα  can be updated 
by 

�
�

�
�
�

�
�
�

�
�
�

�
=

�
�
�

�

�
�
�

�

i

i

ii

ii

i

i

β
α

θθ
θθ

β
α

sinsin
sincos

'

'

     (7) 

The polar plot of the rotation gate for quantum bit 
chromosome can be described as Fig. 1 above. The θI can be 
determined by quantum chromosome and classical 
chromosome. Which is showed in a table of [9]. 

B. Bloch Quantum-behaved Pigeon-Inspired Optimization 
In order to improve search ability and optimization 

efficiency and to avoid premature convergence for PIO, a 
novel algorithm called BQPIO is proposed for continuous 
space optimization. The classical quantum bits in the Hilbert 
space’s unit circle have only one variable. So the quantum 
properties of it are greatly weakened. To solve this problem, 
PIO is evolved by combining with a Bloch Sphere encoding 
mechanism. 

As shown in Fig. 2, a point P is able to fix by the angle of 
θ and ϕ in a situation of 3D Bloch sphere .Every quantum bit 
has a corresponding point in the Bloch Sphere, hence the 
particles positions can be directly performed in the Bloch 
Sphere coordinates. Assuming that Pigeoni is the i-th pigeon 
among the swarm. Then the Bloch Sphere encoding process is 
described as follows [7]: 
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where ϕij= 2� rand, θij= � rand, rand is a random number 
between [0,1] i = 1, 2, …, Np;  j =1, 2… d; Np is the 
population size of the swarm and d is the space dimension. 
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Figure 2.  Quantum bit Bloch Sphere 

Just like PIO, this algorithm consists of two operators: 
map and compass operator and landmark operator. 

In map and compass operation, the pigeon’s position and 
velocity can be updated according to (9) to (15): 
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where mbest(t) is the average value of the optimal position of 
each pigeon at the t-th iteration. For each individual pigeon 
(pigeon i for example), the optimal position of the t-th 
iteration can be denoted with Pi(t) [12]. 

We set a 3D mutation operator to show the ability of 
quantum non-gate in the Hilbert space’s unit circle to the 
Bloch Sphere [7, 10]. The mutation operator satisfies the 
following matrix (10): 
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And the 3D mutation operator we discussed above can be 
described as (11). 
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Then a new pigeon population was produced.  

           )())1(1()()1()1( tPtftPtftPP gigi ×+−+×+=+         (12) 

max
minmaxmax )()(

t
tt ×−−= ωωωω         (13) 

If          5.0)1( ≥+tf    

Then 

)1(
1ln)()1()1()1()1(
+

×−+×+++=+
tf

tXtmttPPtX ibestgii ω

(14) 

Else 

)1(
1ln)()1()1()1()1(
+

×−+×+−+=+
tu

tXtmttPPtX ibestgii ω

(15) 

where Pi (t) is the personal best solution found so far by an 
individual pigeon while Pg (t) represent the current global 
best position of the first t iteration, which can be calculated by 
comparing all the positions among the whole swarm. For a 
single pigeon, the random position between the optimal 
position of itself and the global best position is PiPg (t). f(t+1) 
and u(t+1) are factors of random variables drawn with 
uniform probability from [0,1], redrawn for each pigeon in 
every iteration [13]. ω is the constriction factor which can 
decreases linearly from ωmax to ωmin, slowing the pigeons as 
the algorithm is carrying on, so that finer exploration is 
achieved. In the initial stage, a bigger ω  stimulate the search, 
while in the later period, a smaller ω contribute to the ability 
of exploitation, so that we can have a high convergence rate 
[14]. 

Then we operate the Landmark Operator. The Landmark 
Operator is just the same as the Landmark Operaor of PIO, 
half of the number of pigeons is decreased according to (3). 
We then find the center pigeon of the left pigeons according 
to (4), the evolution equation can be described as (5). 

Finally, we can get the best solution parameters and the 
best cost value. 

IV. IMPLEMENTATION PROCEDURE OF BQPIO 

The detailed implementation procedure of BQPIO for 
optimization can be described as follows: 

Step 1: Initialize parameters of BQPIO algorithm, such as 
solution space dimension D, the population size Np, the map 
and compass factor R, and the number of iteration t1  and t2, 
where the t1 is considered the iterations of the map and 
compass operator, and t2 will be the total iterations of the 
whole algorithm. 

Step 2: Set each single pigeon with a randomized velocity 
and position. Then we can calculate the fitness value fitness ( ) 
of the each pigeon in the swarm. 

Step 3: For each individual pigeon, if the particle’s 
current position is better than its own-memory optimal 
position Pi, then replace the latter with current position. 
Compare the fitness value of all pigeons, if the current global 
optimal position is superior to the optimal global position Pg 
ever searched, then replace the latter with the current global 
optimal position.  

Step 4: Operate the map and compass operator. Firstly, 
we update the velocity and position of every pigeon according 
to (9) to (15). Then we compare all the pigeons’ fitness value 
and update the new global best position Pg. 

Step 5: If  t  >  t1, stop the map and compass operator and 
turn to step 6. If not, go to Step 4.  

Step 6: Operate the landmark operator. Rank all pigeons 
according their fitness values, and wave half of pigeons whose 
fitness value are lower by using (3). We then find the center 
pigeon of the left pigeons according to (4), which is 
considered the desirable destination. All pigeons will fly to the 
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destination by adjusting their flying direction according to (5). 
Next, we can get the best solution parameters and the best cost 
value. 

Step 7: If  t  > t2, stop the landmark operator, and output 
the results. Otherwise, go to Step 6. 

V. RESULT FROM BENCHMARK SIMULATIONS 
In order to investigate the feasibility and effectiveness of 

the proposed BQPIO, a series of experiments are conducted on 
several benchmark function problems: Shubert Function, 
Rosenbrock Function, Rastrigin Function and Schaffer 
Function.  

Shubert Function (f1) is a complex function of two 
dimensions, which have 760 extreme points, achieve the 
minimum at -1.42513 0.80032 , and can be expressed as 
follows.  
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Rosenbrock Function (f2) is a non-convex function used 
as a performance test problem, the global minimum, whose 
value is 0, is inside a long, narrow, parabolic shaped flat 
valley. To converge to the global minimum, however, is 
difficult. The function is defined by (17).  
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Rastrigin Function (f3) is a non-linear function with 
multiple peak values. It is quite a difficult problem to find the 
least value of this function, just because the huge searching 
space and a mass of local minima. This function can be 
defined as: 
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Schaffer Function (f4) is a two-dimensional complex 
function, achieve the minimum 0 at 0 0 .  
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The test results and the comparative evolutionary curves 
of the four functions are showed as TABLE 1, Fig. 3 to Fig. 6. 

For the PIO and BQPIO, we set that solution space 
dimension D is 20, the population size Np=20, the map and 
compass factor R=0.2, and the number of iteration t1 =150, 
t2=200. 

For the PSO, we set that C1=C2=1.4962, ω=0.9, D=20, 
Np=20. 
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Figure 3.  Comparative evolutionary curves of f1 
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Figure 4.  Comparative evolutionary curves of f2 
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Figure 5.  Comparative evolutionary curves of f3 
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TABLE I. THE TEST RESULTS

N p =100 N p =20 N p =100 N p =20 N p =100 N p =20 N p =100 N p =20

Mean value -186.4318 -186.3972 -186.5501 -186.4439 -186.7309 -165.018 -186.7309 -186.7309
Worst value -186.337 -186.094 -186.409 -186.3785 -186.7309 -52.0504 -186.7309 -186.7309
Mean value 7.49E-04 1.12E-02 0 3.35E-03 0.36804 1.23383 0 0
Worst value 1.30E-03 4.73E-02 1.95E-04 1.22E-02 3.4814 5.3395 0 0
Mean value 0 1.80E-03 0 0 0 0.1145 0 0
Worst value 6.14E-04 5.00E-03 1.08E-04 7.17E-04 0 0.995 0 0
Mean value 0 0 0 0 0 7.93E-02 0 0
Worst value 1.48E-04 3.69E-04 0 4.76E-03 0 0.1047 0 0
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Figure 6.  Comparative evolutionary curves of f4 

VI. CONCLUSION 
With the development of technology and the broadening of 

the scope of engineering problems, the scale and complexity 
of the problem is increasing. As a result, optimization results 
of traditional algorithms have many limitations, and the 
effectiveness of improvements for a definite algorithm is very 
limited. In this work, we presented a novel hybrid PIO and 
quantum theory for solving continuous optimization 
problems, which called Bloch Quantum-behaved 
Pigeon-Inspired Optimization, BQPIO for short reference. 
Comparative experimental results verified the feasibility and 
effectiveness of our proposed approach. Our future work will 
apply our proposed BQPIO model to solve the complicated 
issues of unmanned aerial vehichles [15], and which is a 
challenging issue for bio-inspired computation. 
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