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Abstract Formation flight for unmanned aerial vehi-
cles (UAVs) is a rather complicated global optimum
problem. In the global optimum problem, the com-
plex relationship between the controller parameters and
the performance index, and the different kinds of con-
strains under complex combat field environment are
taken into account. Brain storm optimization (BSO) is a
brand-new swarm intelligence optimization algorithm
inspired by a human being’s behavior of brainstorming.
In this paper, in allusion to the drawbacks that the basic
BSO algorithm traps into local optimum easily and has
a slow convergent speed, some novel designs are pro-
posed to enhance the performance of the optimization
algorithm. The modified BSO is applied to solve the
optimization problem based on the nonlinear Receding
horizon control (RHC) mode of UAVs to seek the RHC
control parameters for UAV formation flight. Series of
comparative experimental results are presented to show
the feasibility, validity, and superiority of our proposed
method.
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1 Introduction

Unmanned aerial vehicles (UAVs) are attracting the
interest of many researchers all over the world [1]. This
popularity may be attributed to deep studies in theoret-
ical analysis [2,3] and potential use in many applica-
tions such as search and rescue missions, surveillance,
law enforcement, inspection, mapping, and aerial cin-
ematography.

Compared with a single UAV, formation of the UAVs
can leverage the capabilities of the team to have more
effective performance in missions such as cooperative
simultaneous localization and mapping (SLAM), cov-
erage and recognizance, and security patrol [4]. Hence,
recent years have seen an increasing interest in the study
of UAV formation control from both theoretical and
experimental points of view [5–7].

In the literature, many methods have been applied to
the formation keeping control. Zhang and Liu [8] com-
bined Kalman filter with PID controller to design UAV
formation flight control system. Xie et al. [9] proposed
two nonlinear robust formation control algorithms to
solve the problem of designing nonlinear robust forma-
tion controllers on a team of UAV using off-the-shelf
autopilots. Paul et al. [10] presented a solution for for-
mation flight and formation reconfiguration of UAVs.
It is based on a virtual leader approach and combined
with an extended local potential field. However, these
approaches all have their own strength and weakness,
and are more suitable for some applications and less
for others [11].
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In this paper, we adopt the RHC approach to solve
the formation control problem for fixed-wing UAVs.
RHC is an optimization-based control method orig-
inating in process industry in the early 1970s [12].
Recently, RHC is utilized to achieve formation fight
and other cooperative tasks. The main thought of RHC
is online receding/moving optimization, which is based
on the simple idea of repetitive solution of an opti-
mal control problem and state updating after the first
input of the optimal command sequence. It breaks the
global control problem into several local optimization
problems of smaller sizes, and thus can decrease the
computing complexity and computational expense sig-
nificantly. In the formation control problem, RHC is an
effective method of solving constrained optimization
with the following advantages [13]:

(1) Different control objectives can be achieved by
changing appropriate terms in the cost function
(e.g., formation keeping, formation joining, and
flying) [14];

(2) The RHC strategy can adapt to the change of the
conditions (e.g., topography, threat source, and
internal instructions);

(3) The RHC control has ability to deal with control
input constraints and system state constraints, such
as the flight state constraints of UAVs.

The selection of the RHC control parameters is a very
tough problem in the formation control, on account
of the existence of strong coupling among the inputs,
and the nonexistence of mapping relationship between
the performance index and the controller parameters
[15]. Some researchers try to use intelligent algorithms
to solve this problem, for instance, particle swarm
optimization (PSO) [16], artificial bee colony (ABC)
algorithm, differential evolution (DE) [17], and so on.
Unfortunately, as the complexity of optimization prob-
lem, these intelligent algorithms become slightly pro-
hibitive under the block on local optimum and dissat-
isfactory convergence rate.

A novel brainstorm optimization algorithm named
brain storm optimization (BSO) was first introduced
by Shi in [18] in recent years, which was inspired
by the human brain storming process other than the
optimization algorithms inspired by collective behav-
ior of insects like ants, bee, etc. BSO generally uses
the grouping, replacing, and creating operators to pro-
duce ideas as many as possible to approach the problem
global optimum generation by generation [19].

In this paper, owning to its better performance of
global exploration than others, the thoughts of BSO
are applied to the control field to optimize the RHC
control parameters in UAV formation control problem,
to minimize the value of the cost function. Some modi-
fied designs taking aim at the problem of local optimum
and slow convergence rate are proposed to enhance the
conventional BSO performance.

The rest of the paper is organized as follows. Sec-
tion 2 proposes the formation control scheme based on
RHC, covering the selection of UAV model, the design
of the cost function, and the overview of RHC for-
mation controller. Section 3 focuses on three aspects
of the specific improvement measures in the modified
BSO. Simulation validations, together with compari-
son against the basic BSO and PSO, are presented in
Sect. 4, and our concluding remarks are drawn in Sect.
5.

2 UAV formation control problem based on RHC

2.1 Principle of RHC

RHC, which has the advantage of online processing
constraints on control input and output, describes the
control problem as a constrained optimization prob-
lem of finite time [13]. In a sampling time, by seek-
ing to minimize the estimated objective over a fixed
time interval, subject to the estimated dynamics and
constraints, the optimal control input sequence in esti-
mated time domain can be obtained; the first item in
the sequence is chosen as the RHC input, while the rest
items discarded;

then, the system states change under the action of
the control inputs; at the next time step, the process is
repeated, with updated estimates of the current state and
future quantities; these repeated, and the system record-
ing horizon control is implemented. General architec-
ture of RHC is shown in Fig. 1a.

2.2 UAV model

2.2.1 Kinematic and dynamic models

In this paper, point-mass aircraft model [20] is used
to describe the motion of formation flying UAVs. The
related variables are defined with respect to the inertial
coordinate frame (x̂, ŷ, ĥ) and are shown in Fig. 2.
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Fig. 1 Process of RHC

Fig. 2 UAV model
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In what follows, the model assumes that the air-
craft thrust is directed along the velocity vector, and
that the aircraft always performs coordinated maneu-
vers. It is also assumed that the Earth is flat, and the
fuel expenditure is negligible (i.e., the center of mass
is time-invariant). Under these assumptions, the UAV
equations of motion can be described by the following
equations:

ẋi = Vgi cos γi cos χi

ẏi = Vgi cos γi sin χi

ḣi = Vgi sin γi

(1)

where i = 1, . . . , n is the index of multiple UAVs and
n is the number of UAVs. For UAV i, xi is the down-
range displacement, yi is the cross-range displacement,
hi is the altitude, Vgi is the ground speed, γi is the
flight-path angle, and χi is the heading angle. The UAV
dynamics are given by the following equations:

V̇gi = Thi −Dgi
mi

− ga sin γi

γ̇i = ga
Vgi

(ngi cos φbi − cos γi )

χ̇i = L f i sin φbi
mi Vgi cos γi

(2)

where Thi is the engine thrust,Dgi is the drag, mi is the
mass,ga is the acceleration due to gravity, L f i is the
vehicle lift, and φbi is the banking angle. The control
variables in the UAVs are the g-load ngi = L f i/(gami )

controlled by the elevator, the banking angle φbi con-
trolled by the combination of rudder and ailerons,
and the engine thrust Thi controlled by the throttle.
Throughout the formation control process, the con-
trol variables will be constrained to remain within their
respective limits.

The reduced UAV models can be recast in a matrix
form:

Ẋ = AX + BU (3)

with X = [x1, . . . , xn], U = [u1, . . . , un], ui =
[Thi , ngi , φbi ]T , xi = [xi , yi , hi , Vgi , γi , χi ]T , i =1,

. . . , n, whereX ∈ R6×n and U ∈ R3×n are, respec-
tively, the aggregate states and aggregate control inputs
of all UAVs.

2.2.2 Estimated model

Under the assumption of bounds on control variables
and flight speed [13], the above-mentioned UAV model
(3) can be also expressed as the following equations:

xk+1 = Axk + Buk (4)

Estimated value for the system states can be obtained
by iterating Eq. (4):

xk+i |k = Ai xk|k +
i−1∑

j=0

Ai−1− j Buk+ j |k,

i = 1, 2, . . . , N (5)

where xk+i |k is the estimated state over the time interval
k + I at time k. When i = 0, xk|k = xk is the current
state estimate apparently. In order to facilitate the study,
the estimated states and respective control inputs over
the time interval k + 1, . . . , k + N at time k can be
recast in a vector form:

x̃ = (
xk+1|k, xk+2|k, . . . , xk+N |k

)T
,

ũ = (
uk|k, uk+1|k, . . . , uk+N−1|k

)T
.

Thus, an expression only using current state xk and
control input u can be obtained.

x̃ = Hx xk + Huũ (6)

with Hx = (
A, A2, . . . , AN

)T
and

Hu =

⎡

⎢⎢⎢⎢⎣

B 0 · · · 0

AB B · · · ...
...

... B
AN−1 B AN−2 B · · · AB

⎤

⎥⎥⎥⎥⎦
.

2.3 Cost function design

The target of formation control is to maintain the rela-
tionship among unmanned machines in a fixed position
shape, meanwhile to make the required control input
smaller; therefore, the cost terms of system states and
inputs should be included in the cost function [13].
The cost function needs to be designed in current time
domain in order to coordinate RHC with optimal solu-
tion over a fixed time interval from current time. Choose
2-norm as the basic item of cost function; assume that
the length of fixed time interval is N , and then the cost
function of follower RHC controllers is the following
equation:

ĴQ P =
N−1∑

i=0

((xk+i+1|k − xref,k+i+1)
T Q(xk+i+1|k

−xref,k+i+1) + (uk+i |k − uref,k+i )
T

R(uk+i |k −uref,k+i )) (7)

123

Author's personal copy



Receding horizon control for multiple UAV formation flight

where xref,k+i+1 is the expected state of system,uref,k+i

is expected control input, and uk+i |k is the estimated
control input in future time k + I at current time k.

The weighting matrixes P and Q are positive matrix.
That is to say that P = PT > 0 and Q = QT > 0.
In order to get smaller control, set the desired control
input to be zero. Substituting Eq. (6) in Eq. (7), we can
obtain the following equations:

�

JQ P = x̃ T Q̃x̃ + ũT R̃ũ − 2x̃ T Q̃x̃ref + x̃ T
ref Q̃x̃ref

= ũT (H T
u Q̃ Hu + R̃)ũ + 2(Hx xk − x̃ref)Q̃ Huũ

+xT
k H T

x Q̃ Hx xk −2xT
k H T

x Q̃x̃ref + x̃ T
ref Q̃x̃ref

(8)

where Q̃ = diag {Q, . . . , Q} , R̃ = diag {R, . . . , R}
and x̃ref = (xref,k+1, xref,k+2, . . . , xref,k+N )T .

The first item of the Eq. (8) is the quadratic term
of ũ, the second item is the monomial term of ũ, and
the last three items are the absolute term. The absolute
terms can be ignored when making optimal solution.
Then, we can get the standard quadric form:

JQ P = ũT (H T
u Q̃ Hu + R̃)ũ

+2(Hx xk − x̃ref)Q̃ Huũ. (9)

From Eq. (9), the cost function JQ P is the function
of the initial state xk and the control input sequence ũ
which is the decision variable. For every certain ini-
tial state xk , by solving the quadratic programming
problem, we may get a group of optimal control input
sequence.

2.4 RHC formation controller

The elementary process of RHC formation controller
is presented in the following exposition [13]:

Step 1 At sampling time k, the follower state is x0. To
solve the optimization problem described in Eq.
(9), obtain the optimal control input sequence
in future N steps.

Step 2 The first item in the sequence is chosen as the
follower RHC inputs, while the rest N -1 items
discarded.

Step 3 The system of follower reaches a new state x1

at sampling time k + 1 under the action of the
control inputs.

Step 4 Regard current time and follower state as k and
x0 respective. Return Step 1.

For each sampling time, the optimal decision variable
of the optimal problems ũ is only concerned with the
initial state xk , i.e., there is a state feedback control
law ũ∗ = f (xk), but there is no analysis relationship
between the system state and the control input. The
RHC formation controller process can be illustrated by
Fig. 1b.

3 Modified BSO

3.1 Basic BSO

BSO has been successfully applied to generate ideas
to solve very difficult and challenging problems [18].
As presented in [18] and [21], the process of BSO can
be described as follows [22]. First, N ideas are ran-
domly generated within the searching space, denoted
as Xi = [xi1, xi2, . . . , xi D], where i = 1, 2, . . . , N ,
and D is the dimension of the optimization problem to
be solved. Each dimension signifies one design vari-
able. Then, each idea is evaluated, and its fitness value
J (Xi ) is obtained. The process of iteration begins after-
wards.

During each generation, the N ideas are clustered
into K cluster according to the positions, and the best
idea in each cluster is recorded as the cluster. Then, a
cluster is randomly selected with a probability of p6a ,
and the cluster center is replaced with a randomly gen-
erated idea.

In the creating operation, BSO first randomly choose
one cluster or two. After that, the selected idea(s) is
updated according to the following equation:

xnew = xold + ξ N (μ, σ )

xold =
{

xi j , one cluster
ω1xi1, j + ω2xi2, j , two cluster

(10)

where N (μ, σ ) is the Gaussian random value with
mean μ and variance σ. ω1 and ω2 are weight values
of the two ideas. ξ is an adjusting factor slowing the
convergence speed down as the evolution goes, which
can be expressed as the following equation:

ξ = log sig

(
0.5 × Ncmax − Nc

K

)
× random(0, 1),

(11)

where r is a random value between 0 and 1.Ncmax

and Nc denote the maximum number of iteration and
current number of iteration, respectively, whereas K
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Fig. 3 Modified BSO
process
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adjusts the slope of the log sig function. Such form of
ξ facilitates global searching ability at the beginning
of the evolution and enhances local searching ability
when the process is approaching to the end.

After the new idea is created, a crossover between
the new one and the old one is conducted. The two
ideas generated by crossover, together with the old one
and the created one, are evaluated, and the old one is
replaced with the best of the four.

The process above repeats until N ideas are updated.
Thus, one generation is finished. The iteration goes
until terminal requirement is met. Then, the best idea
is output as the optimal solution to the problem.

3.2 Modified BSO

Taking a deep sight into the process of BSO described
above, several improvements deserve to be taken into
consideration.

3.2.1 New clustering method

First, the clustering method can be improved by sort-
ing fitness values. In basic BSO, during each gener-
ation, the N ideas are clustered into K cluster com-
pletely according to the positions. Two clustering meth-
ods have been proposed, which are k-means cluster-
ing method and SGM [19]. There is no denying that
these methods give expression to prodigious random-
ness thus give security to diversity. However, it makes
no difference in generating ideas. Hence, a brand-new
clustering standard can be tried. In this paper, fitness
value is taken into account as a new clustering standard.
In the Modified BSO, the facilitator is implemented by
fitness value clustering method as the following steps:

Step 1 Randomly produce K random positive integers
with a constraint that the sum of these integers is
constant N .These K random positive integers
are denoted as the number of individuals in each
cluster nri (1 ≤ i ≤ K ).

Step 2 Calculate the fitness value J (Xi ) for each idea
Xi (1 ≤ i ≤ N ) and sort values in ascending
or descending order (It depends on the expected
fitness value, maximum or minimum) to obtain
Jorder and Indorder, where Jorder ∈ R1 × N , is
the form of J (Xi ) in ascending or descending
order, and I ndorder ∈ R1 × N , is the sequence

Fig. 4 Multiple UAV formation

of original index for each idea Xi when Xi is
sorted by J (Xi ) in order.

Step 3 Assign the idea X I ndorder(m) into the i group,

where m =
(

i−1∑
j=1

nr j + 1

)
, . . . ,

(
i∑

j=1
nr j

)
,

i = 1, . . . , K , and set nr0 = 0. Meanwhile,
choose the idea X

I ndorder

(
i−1∑
j=1

nr j +1

) as the cen-

ter of i group.

Generally speaking, above-mentioned clustering
method is to classify ideas by fitness value in essence.
In the actual situation, this clustering method has rele-
vance to the behavior of human beings. People with the
same thoughts level easily reach a consensus to gather
together. And in their respective groups, the owner of
better idea has more possibility to become the cluster-
ing center.

It is worthwhile to specify that this method does not
show any contrariness to Osborn’s original rules for
idea generation in a Brainstorming process. In other
words, the diversity of basic algorithm is not destroyed.
Specifically, it is just to provide some convenience for
later generating steps.

3.3 Local optimal solution

In the process of simulation, BSO is trapped in local
optimal problems, the same as PSO and ABC. In this
paper, two kinds of solutions to this problem are pro-
posed.

The first method is based on the principle of prob-
ability updating. In basic BSO algorithm process, the
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two ideas generated by cross, together with the old one
and the created one, are evaluated and the old one is
replaced with the best of the four [22]. For the fol-
lowing exposition, we assume that the smaller value
of the cost function is better. Probability updating is to
replace the old one with the best one in a probability
[23]:

T (Xi → X j ) = 1

1 + exp[(ω j − ωi )/κ] (12)

where κ characterizes the intensity of updating, ωi rep-
resents the cost value of the old one, and ω j represents
the cost value of best one. For κ = 0, Xi will be
replaced with X j deterministically when ω j < ωi .
For κ > 0, ideas performing worse are also remained
with a certain probability. In most cases, better ideas
prefer to replace the worse one. In line with most pre-
vious studies, we set κ to be 0.1 (strong updating).

Specific replacement formula is as follows:

Xi =
{

X j rand ≤ T
Xi rand > T

. (13)

This method fully reflects inclusive of group and
appropriate humanistic cares to worse ideas; there-

fore, it meets the need of the required diversity of
algorithm.

In addition, slightly traditional method is chaos.
Chaos is the highly unstable motion of deterministic
systems in finite phase space which often exists in non-
linear systems [24]. In the well-known logistic equa-
tion,

xn+1 = 4xn(1 − xn) (14)

where 0 < xn < 1, a very small difference in the ini-
tial value of x would give rise to large difference in its
long-time behavior, which is the basic characteristic of
chaos. The track of chaotic variable can travel ergod-
ically over the whole space of interest. The variation
of the chaotic variable has a delicate inherent rule in
spite of the fact that its variation looks like in disor-
der. Therefore, after each search round, we can con-
duct the chaotic search in the neighborhood of the cur-
rent optimal parameters by listing a certain number of
new generated parameters through chaotic process. In
this way, we can make use of the ergodicity and irreg-
ularity of the chaotic variable to help the algorithm
to jump out of the local optimum as well as finding

Table 1 Optimization parameters

Variables Description Value

Objective variable J Cost function value –

Design variables Control variables Thi (N) Engine thrust [10,100]

ngi g-load (ngi = L f i /(gami )) [−5,5]

φbi (rad) Banking angle [−π ,π ]

Fixed variables Simulation parameters Countmax RHC simulation cycles 30

dt (s) Simulation sampling time 0.1

RHC parameters P_rhc The length of prediction horizon 3

M_rhc The length of control horizon 1

UAV number leader_num Leader number 1

fol_num Follower number 4

Single UAV parameters Dgi (N) Drag 50

mi (kg) Mass 30

ga (m/s2) The acceleration due to gravity 9.8

Leader control parameters Th1(N) The leader engine thrust 50

ng The leader g-load 1

φb (rad) The leader banking angle 0

Formation fd (m) The forward distance 90

ld (m) The lateral distance 120

α (rad) The formation angle arctan (ld/fd) 0.6435

�a (m) The distance between two UAVs
√

ld2 + f d2 150
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Table 2 Constraints Variables Description Value

Vgi (m/s) The ground speed Vgi ≤80

Thi (N) Engine thrust [10,100]

ngi g − load(ngi = L f i /(gami )) [−5,5]

φbi (rad) Banking angle [−π , π ]

Table 3 Initial states of
UAVs

Variables Description Leader Follower1 Follower2 Follower3 Follower4

xi (m) The down-range displacement 0 600 −200 −600 −100

yi (m) The cross-range displacement 0 −800 0 150 400

hi (m) The altitude 300 450 500 200 100

Vgi (m/s) The ground speed 50 50 50 50 50

γi (rad) The flight-path angle 0 0 0 0 0

χi (rad) The heading angle 0 0 0 0 0

Table 4 Control
parameters of BSO and the
modified BSO

Parameter Description Value Used in

Maxiter Maximum times of iteration 100 BSO & modified BSO

N Number of ideas 100

K Number of clusters 5

p5a Probability to directly update a cluster
center

0.2

p6b Probability to choose one cluster 0.8

p6biii Probability to select the center of the
selected clusters

0.4

p6c Probability to select the center of the
two selected clusters

0.5

k Parameter to change logsig()
function’s slope

20

μ The mean of the Gaussian random
function

0

σ The mean of the Gaussian random
function

1

c1 Respective cluster center learning
factor

2 Modified BSO

c2 Best cluster center learning factor 2

c(1) the first basic characteristic of chaos 0.3

Table 5 Control
parameters of PSO

Parameter Description Value

Maxiter Maximum times of iteration 100

N Number of particles 100

ω Inertia weight 0.5

c1 Self best factor 2

c2 Global best factor 2

Table 6 Simulation results
of leader

xi (m) yi (m) hi (m) Vgi (m/s) γi (rad) χi (rad)

Leader 1500 0 300 50 0 0
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Table 7 Simulation results
of J

Reference BSO Modified BSO PSO

J 0 16.632558 1.3648400 31.466215

5968166 3451963 9746113

Table 8 Simulation results of xi , yi and hi by different methods

Variables xi (m) yi (m) hi (m)

Followers 1 2 3 4 1 2 3 4 1 2 3 4

Reference 1380 1380 1260 1260 90 −90 180 −180 300 300 300 300

Modified BSO 1379. 1379. 1260. 1259. 90.86 −90.24 180.0 −180.1 299.2 298.9 299.1 300.5

82202 87604 65915 43842 18222 29454 30031 58678 35101 67979 53329 88794

4 8 5 1 1 9 9 2 7 1 5 9

BSO 1381. 1380. 1258. 1259. 91.97 −90.97 179.3 −180.9 299.2 301.5 298.8 298.6

97617 63593 77051 80586 34821 07740 91575 13731 99453 66804 56582 23973

6 3 9 8 7 8 7 2 3 5 9 6

PSO 1384. 1383. 1254. 1260. 88.54 −89.81 175.3 −178.1 300.9 302.4 302.4 287.1

80124 22265 02789 8404 32015 67047 83003 69254 66440 49012 06113 06156

9 8 5 7 3 1 8 3 8 5 2 3

Table 9 Simulation results of Vgi , γi and χi by different methods

Variables Vgi (m/s) γi (rad) χi (rad)

Followers 1 2 3 4 1 2 3 4 1 2 3 4

Reference 50 50 50 50 0 0 0 0 0 0 0 0

Modified BSO 49.667 49.084 50.491 49.633 −0.354 −0.026 −0.398 −0.152 0.0690 −0.027 −0.014 −0.132

73873 15388 43031 91434 46798 85211 50463 25276 046361 46396 13738 53646

2 2 4 8 1 9 9

BSO 49.90 48.02 49.81 49.90 −0.305 −0.124 −0.294 −0.114 0.464 −0.079 −0.173 0.0564

03334 63383 73607 51872 63149 02371 71652 04135 50392 42887 05554 27782

4 6 6 4 5 5 4

PSO 57.641 47.351 53.707 51.885 −0.211 −0.269 −0.212 −0.012 −0.028 −0.609 −0.327 −0.230

90063 37817 61734 72922 47043 14329 84783 10549 43501 23000 91593 36796

5 2 2 1 8 2 7 1

the optimal parameters. The specific procedure is as
follows:

Step 1 Conduct the chaotic search around the best idea
Xi parameters based on Eq. (13) after trans-
forming the parameters ranges into (0, 1).

Step 2 Among the engendered series of solutions,
select the best one and use it to replace the for-
mer best ideas.

3.3.1 Learning behavior

Gazing at the entire idea of BSO algorithm, we will
notice that the algorithm tries to pursue diversity while
it loses sight of the purpose to find the optimal solution
as soon as possible.

During each generation, lots of ideas can and should
be based on ideas already generated [18]. Any gener-
ated idea can and should serve as a clue to generate
more ideas. Picking up several good ideas from ideas
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Fig. 5 Detailed results generated by the control sequence optimized by the modified BSO

generated so far is to cause the brainstorming group to
pay more attention to the better ideas which the brain-
storming group to pay more attention to the better ideas
which the brainstorming group believes to be. The ideas
picked up work like point attractors for the idea gener-
ation process. In the specific process of the algorithm,
generally, cluster centers are selected with higher prob-
ability than other ideas in the creating and updating
section; therefore, the cluster centers are treated with
higher priority [22].

In a nutshell, the cluster centers with better ideas just
cause enough attention but not play guiding roles. In
a group, the center not only deserves to be paid closer
attention to, but also is duty bound to play the role of
appropriately guiding other individuals. Namely, other

individuals should learn to the center of the group. Tak-
ing example by PSO, the individual updates its ideas
according to the following equations [25]:

Xnew
i = Xold

i + Vi

Vi =ωVi +c1r1
(
Pid −Xold

i

)+c2r2
(
Pgd −Xold

i

) (15)

where Pid is the idea of the m group center, m is the
group with i, Pgd is the best idea among K centers at
present, ω is the inertia weight, c1 and c2 are positive
constants, and r1 and r2 are two random numbers in
the range [0,1], 1≤ i ≤ Nc. In this paper, we define
ω = 0.5, c1 = c2 = 2 , and we restrict Xi in the range
[0, 1]D and Vi in the range [0, 0.1]D .

The modified BSO process can be illustrated by
Fig. 3.
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Fig. 6 Detailed results generated by the control sequence optimized by BSO

4 Comparative experimental results

In a typical multiple UAV formation flight, the follow-
ers follow the trajectory of the leader UAV, taking other
aircrafts as reference to keep its own position inside the
formation [16]. In a large formation, intra-aircraft dis-
tances must be kept constant. The formation model in
this paper adopts leader-mode strategy (as shown in
Fig. 4), which means each follower UAV takes its tra-
jectory references from the leader UAV, while the alti-
tude is the same for all. The leader UAV takes charge
of formation trajectory.

To test the effectiveness of the modified algorithm,
the optimization for a model of UAV formation is cho-
sen as the benchmark [22]. 30 RHC circles were con-

ducted in the process of each simulation. In a single
RHC circle, algorithm optimization loops 100 times.
As shown in Table 1, this benchmark problem has three
design variables and one cost function value. Our object
is to minimize the cost function value indirectly deter-
mined by these design variables with the constraints
shown in Table 2 at the initial states shown in Table 3.
The performances of the modified algorithm are com-
pared with the basic BSO and a popular population-
based algorithm called PSO. The control parameters of
BSO and the Modified BSO are given in Table 4. The
control parameters of PSO modeled after [25] are given
in Table 5.

In order to clearly illustrate the performance of the
modified BSO in single RHC process, the evolution
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Fig. 7 Detailed results generated by the control sequence optimized by PSO

curve after 100 generations in the first round of the
RHC simulation cycle compared with basic BSO and
PSO is displayed in Fig. 8a. As we shall see, due to
probability updating and chaos optimization, the mod-
ified BSO exhibits better capability to jump out of local
optimum [22]. When the individuals converge to a local
optimum, indicated by the horizontal retention parts of
the evolution curve, the modified BSO takes much less
generations to jump out of the local optimum and find
a position with smaller cost function value.

From the below location of the modified BSO
always, it also gives a satisfactory performance on
the final optimization result in single RHC simulation
process. It is obvious that the learning behavior toward
to their respective cluster center and the best cluster

center is crucially involved in speeding up to seek the
optimal solution within the global scope.

The final results after 30 RHC simulations are pre-
sented in Tables 6–9. Without loss of generality, in the
simulation, we set the leader to level off at an even
speed in a straight line. From data in the table, we can
conclude that either the modified BSO or basic BSO
or PSO can complete the optimization goal to form a
comparative stable flight formation. The down-range
displacement xi , the cross-range displacement yi , the
altitude hi , the ground speed Vgi , the flight-path angle
γi , and the heading angle χi of four followers are in
line with reference values relatively.

Figures 5–7 show the detailed results generated
by the control sequence optimized by three algo-
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rithms, respectively, in which (a)–(d) describe three-
dimensional formation trajectories, relative velocities,
heading angles, and flight-path angles of
UAVs.

As shown in (c) of Figs. 5–7, each RHC control para-
meters solved by three algorithms can make the relative
heading angles χi of followers tend to coincide with
leader at about 1.5 s with minor fluctuations. However,
the performance of three algorithms on velocities Vgi

and flight-path angles γi is quite different. Observed
from Fig. 5b, d, in the presence of the modified BSO,
the relative velocities and flight-path angles of UAVs
are close to accordance at about 2 and 1.5 s, respec-
tively. The performance of basic BSO is inferior to the
modified algorithm. The velocities of followers in Fig.
6b fluctuate irregularly within 5 m/s amplitude, and the
flight-path angles of followers in Fig. 6d can track the
sates of leader in stable at 2 s, 0.5 s behind the modified
BSO. PSO, by contrast, is defeated due to fluctuation
shown in Fig. 7b, d with larger amplitude and higher
frequency.

From the three-dimensional formation trajectories
of UAVs in (a) of Figs. 5–7, the aggregate performance
of three algorithms can be observed directly. It is evi-
dent that the follower 2 in (a) of Figs. 6 and 7 selected
a more awkward path before converging to the desig-
nated position, while at the help of the modified algo-
rithm, it can find a relatively better way shown in Fig. 5a
to reach a desired position and keep formation. The for-
mation trajectories in Fig. 5a have better stability, faster
convergence rate, and better tracking ability, indicated
by more smooth curve and longer stage of keeping for-
mation, than the other two.

According to the above analysis, the modified BSO’s
optimization purposes to form stable formation has a
basic implementation. In order to see the difference
among three algorithms clearly and straightforward,
the cost function value evolution curves after 30 times
of RHC simulations (as shown in Fig. 8b, c) is presented
to compare the performance measured by numerical
values. From Fig. 8b, the evolution curve of the mod-
ified BSO is always below the other two algorithms.
In other words, the modified algorithm can find bet-
ter control parameters in each RHC simulation cycle;
therefore, the result of last RHC simulation cycle will
provide a good starting point for the next cycle. In
Fig. 8c, the logarithmic axes are chosen as the verti-
cal axis to facilitate the analysis of formation stability
and tracking ability. The evolution curve of the mod-
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ified algorithm converges to a smallest steady value
with the fastest speed than the others, which means
that UAVs get in a relatively stable formation at a
rapid speed, and a better consistency exists in UAVs
group.

To sum up, given credit to the aforementioned
improvement measures, the modified BSO does
embody certain superiority in jumping out of local opti-
mum and speeding up the optimization process in the
set off of basic BSO and PSO.

5 Conclusions

This paper presents a modified BSO approach for for-
mation flight optimization problem based on the non-
linear RHC mode of UAVs. The proposed modified
algorithm enhances the basic BSO performance in
jumping out of local optimum and speeding up the rate
of convergence from the following aspects of improve-
ment:

(1) A new clustering method by sorting cost function
value;

(2) Probability updating which means to replace the
old one with the best one in a probability;

(3) Conduct chaotic search around the best one utiliz-
ing the ergodicity and irregularity of the chaotic
variables;

(4) Learning behavior toward to their respective cluster
center and the best cluster center.

From the comparative results in simulation, we can
conclude that either the modified BSO or basic BSO
or PSO can complete the optimization goal to form
a comparative stable flight formation. It also demon-
strates that the modified BSO has certain superiority
in jumping out of local optimum and speeding up the
optimization process. Our future work will focus on
a novel bio-inspired algorithm named Pigeon-Inspired
Optimization (PIO) [26] to provide new methods for
multi-UAV control problem.
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