
Chinese Journal of Aeronautics, (2015),28(1): 200–205
Chinese Society of Aeronautics and Astronautics
& Beihang University

Chinese Journal of Aeronautics

cja@buaa.edu.cn
www.sciencedirect.com
Gaussian pigeon-inspired optimization approach

to orbital spacecraft formation reconfiguration
* Corresponding author. Tel.: +86 10 82317318.

E-mail address: hbduan@buaa.edu.cn (H. Duan).

Peer review under responsibility of Editorial Committee of CJA.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.cja.2015.12.008
1000-9361 ª 2015 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.
Zhang Shujian, Duan Haibin *
School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
Received 23 July 2014; revised 22 August 2014; accepted 30 October 2014

Available online 26 December 2014
KEYWORDS

Formation configuration;

Gaussian distribution;

Gaussian pigeon-inspired

optimization (GPIO);

Orbital spacecraft;

Pigeon-inspired optimization

(PIO)
Abstract With the rapid development of space technology, orbital spacecraft formation has

received great attention from international and domestic academics and industry. Compared with

a single monolithic, the orbital spacecraft formation system has many advantages. This paper pre-

sents an improved pigeon-inspired optimization (PIO) algorithm for solving the optimal formation

reconfiguration problems of multiple orbital spacecraft. Considering that the uniform distribution

random searching system in PIO has its own weakness, a modified PIO model adopting Gaussian

strategy is presented and the detailed process is also given. Comparative experiments with basic PIO

and particle swarm optimization (PSO) are conducted, and the results have verified the feasibility

and effectiveness of the proposed Gaussian PIO (GPIO) in solving orbital spacecraft formation

reconfiguration problems.
ª 2015 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.
1. Introduction

Orbital spacecraft formation is the concept that multiple
spacecraft work together to achieve a common mission. Coor-
dinating orbital spacecraft formation has more benefits than

single spacecraft, including faster build time, easier launch,
cheaper replacement and the ability to view research targets
from multiple angles or at multiple times. These qualities make
them ideal for astronomy, meteorology, communications,

earth science, environmental uses and even military uses.
This problem can be solved in terms of convex optimization
and some other approaches have been proposed to obtain opti-

mal control strategies for reconfiguration on other vehicles in
literature. In Ref. 1, closed-loop brain storm optimization is
used to work out the optimal satellite formation reconfigura-

tion problem. In Ref. 2, a new formation reconfiguration tech-
nology is applied in other autonomous vehicles, which has a
particularly instructive inspiration for spacecraft formation.

In terms of controlling the spacecraft formation, an ideal
autonomous attitude coordinated controller, a robust adaptive
attitude coordinated controller and a filtered robust adaptive

attitude coordinated controller are proposed to deal with the
issue in Ref. 3. A method for fuel-optimal trajectories consid-
ering collision avoidance designing is discussed based on
mix-integer linear programming in Ref. 4. Inalhan et al.5 stud-

ied relative dynamics and the spacecraft formation controlling
system in eccentric orbits. Furthermore, in Ref. 6, an analytical
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Fig. 1 Coordinate system.
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fuel-optimal impulsive formation reconfiguration strategy
from the perspective of relative orbital elements is presented.

Swarm intelligence optimization has obtained increasing

attention from researchers in the last two decades. Some opti-
mization algorithms have been proposed and studied during
these years, including particle swarm optimization (PSO),7,8

ant colony optimization (ACO),9 brain storm optimization
(BSO)10 and the artificial bee colony (ABC) algorithm.11 In
Ref. 12, co-evolutionary PSO is used on satellites’ formation

reconfiguration. Although these optimization algorithms have
remarkable performance in solving optimization problems,
there is also large room for improvement in terms of the con-
vergence rate and global searching abilities. The pigeon-

inspired optimization (PIO) algorithm is a novel swarm intelli-
gence algorithm, which was firstly proposed by Duan and Qiao
in 2014.13 It can accelerate the convergence speed impressively.

Thus this paper will adopt the PIO as a research target.
Although PIO solves the convergence rate problem, the

ability of global searching is still not optimistic. In order to

overcome this weakness in PIO, a Gaussian item is introduced
to balance the importance between exploration and exploita-
tion results. In this paper, this Gaussian PIO algorithm

(GPIO) is used for optimal trajectory design in cooperative
orbital spacecraft formation reconfiguration, namely, to design
an optimal route for the spacecraft when they need to reach a
new formation required for different missions. For the reason

that the lifetime of spacecraft is limited, one of the most impor-
tant constraints for the optimal trajectory is overall fuel cost
minimization. The other two constraints are easy to under-

stand, that is, collision avoidance and final configuration.1

Specifically, the collision avoidance is the basic requirement
and has to be satisfied at any time.

2. Problem formulation

In order to apply the swarm intelligence optimization algo-

rithms to solve the complex dynamic problems, the orbital
spacecraft formation reconfiguration problem has to be simpli-
fied. This section aims at formulating the spacecraft formation

reconfiguration problem so that the parameters in the algo-
rithm can be obtained easily.

2.1. Coordinate system

The length of the orbital spacecraft can be ignored compared
with the distance between two spacecrafts. According to the
relative motion dynamics, each spacecraft can be modeled as

one mass point. The coordinate system is shown in Fig. 1.
The reference spacecraft is represented by L, which means
the leader spacecraft, and F represents the follower spacecraft.

The x coordinate is in the radial direction, y-axis is in the in-
track direction, and the z component is in parallel with the
angular momentum direction.

2.2. Dynamics model

In this paper, three fundamental assumptions have to be
satisfied14:

(1) Assume that the Earth is a homogeneous globe and
ignore any perturbation.
(2) The eccentricity of the orbital spacecraft orbit, including
the reference spacecraft and the follower ones, should be

equal to zero.
(3) The distance between the reference spacecraft and the

follower spacecraft is much less than the orbit radius.

To describe the relative motion between the spacecraft,
Hill’s equation, which is also known as Clohessy-Wiltshire

(CW) equation,3 is the most widely used approximation based
on the fundamental assumptions mentioned above. Generally,
it can be expressed as

€x ¼ 2x _yþ 3x2xþ ux

€y ¼ �2x _xþ uy

€z ¼ �x2zþ uz

8><
>: ð1Þ

where x, y and z are the F coordinates in the above coordinate
system; ux, uy and uz are the control inputs in x-axis, y-axis and
z-axis directions, respectively; x is the average orbit angular

velocity.

2.3. Two-impulse control mathematical model

In order to describe the complex motion of the orbital space-
craft formation with the Hill’s equation, the orbital spacecraft
formation reconfiguration is supposed to satisfy the three con-

straints. First, the orbit of the reference spacecraft has to be in
the shape of a circle or an approximative circle. Second, in the
two-impulse control mathematical model, the whole power for

the follower spacecraft should be originated from these two
impulses. In other words, during the spacecraft formation
reconfiguration process, only the predesigned two impulses
provide the power. Third, the error of the follower spacecraft’s

relative position can be ignored by comparing with the dis-
tance between the spacecraft.14 Under these assumptions, the
control inputs ux, uy and uz in Eq. (1) are equal to zero. Thus

xðtÞ ¼ _x0

x
sinðxtÞ þ �3x0 �

2 _y0
x

� �
cosðxtÞ þ 2

�
2x0 þ

y0
x

�

yðtÞ ¼ 2 3x0 þ
2 _y0
x

� �
sinðxtÞ þ 2 _x0

x
cosðxtÞ � 3ð2xx0 þ _y0Þt

þ
�
y0 �

2 _x0

x

�

zðtÞ ¼ _z0
x

sinðxtÞ þ z0 cosðxtÞ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð2Þ

where x0; y0; z0; _x0; _y0 and _z0 are the initial states of the
spacecraft.
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According to Eq. (2), the state transition-matrix U(t) can be
expressed as

UðtÞ ¼
u11ðtÞ u12ðtÞ
u21ðtÞ u22ðtÞ

� �
ð3Þ

where

u11ðtÞ ¼
4� 3 cosðxtÞ 0 0

6ð�xtþ sinðxtÞÞ 1 0

0 0 cosðxtÞ

2
64

3
75;

u12ðtÞ ¼
1

x

sinðxtÞ 2ð1� cosðxtÞÞ 0

2ð�1þ cosðxtÞÞ �3xtþ 4 sinðxtÞ 0

0 0 sinðxtÞ

2
64

3
75;

u21ðtÞ ¼
3 sinðxtÞ 0 0

6ð�1þ cosðxtÞÞ 1 0

0 0 � sinðxtÞ

2
64

3
75;

u22ðtÞ ¼
cosðxtÞ 2 sinðxtÞ 0

2 sinðxtÞ �3þ 4 cosðxtÞ 0

0 0 cosðxtÞ

2
64

3
75:

At time t, the relative position vector r(t) and the relative

speed vector m(t) are [x(t), y(t), z(t)]T and ½ _xðtÞ; _yðtÞ; _zðtÞ�T.
After a period Dt, the relative motion state can be transformed

to
rðtþ DtÞ
mðtþ DtÞ

� �
¼ UðDtÞ rðtÞ

mðtÞ

� �
.

In the typical spacecraft formation reconfirmation problem,
t1 and t2 (0 < t1 < t2 < tw) can be defined as the exact time for
activating the two impulses, with tw the whole control time. Let

the initial state of the spacecraft be X0 ¼ ½rT0 ; mT0 �
T
, and the final

state can be given by Xf ¼ ½rTf ; mTf �
T
.

According to the above analysis and the two-impulse con-

trol precondition, we have

UðT� t2Þ Uðt2 � t1Þ Uðt1ÞX0 þ
0

I1

� �� �
þ

0

I2

� �� �
¼ UðTÞXf

ð4Þ
where I1 and I2 are the control impulses at t1 and t2 time

respectively.
Based on the transition-matrix properties, the Eq. (4) can

be expressed as

Uðt2Þ
r0 � rf

m0 � mf

� �
þUðt2 � t1Þ

0

I1

� �
þ

0

I2

� �
¼ 0 ð5Þ

Therefore, the two control impulses and the solutions of
Eq. (5) can be expressed as12

I1 ¼ �u�112 ðt2 � t1Þu11ðt2ÞDr0 � u12ðt1ÞDm0

I2 ¼ �½u21ðt2ÞDr0 þ u22ðt2ÞDm0 þ u22ðt2 � t1ÞI1�

�
ð6Þ

where Dr0 and Dm0 are the changes of position vector and
velocity vector and

u�112 ðtÞ ¼
x

8ð1� cosðxtÞÞ � 3xt sinðxtÞ

�

�3þ 4 sinðxtÞ 2ð�1þ cosðxtÞÞ 0

2ð1� cosðxtÞÞ sinðxtÞ 0

0 0 cscðxtÞ

2
64

3
75
Obviously, on the premise that the beginning state, the final
state and the whole controlling time tw are settled, how much
fuel the orbital spacecraft formation reconfiguration costs can

be determined by the timing of activate the two impulses.
Therefore, the spacecraft formation reconfiguration problem
is transformed into a typical finding-best-timing problem.

2.4. Collision avoidance

In order to avoid the various collisions in the space, each pair

spacecraft has to keep a safety distance during the formation
configuration process and collision avoidance has to be the
first requirement. Assume that all the spacecraft are sphere,
and the distance between the geometry center and the farthest

point on the spacecraft is the radius
Rs

2
. Thus, the minimum

safety distance is Rs and the constraint inequality is

kriðtÞ � rjðtÞk > Rs

where ri(t) = [xi(t), yi(t), zi(t)]
T and rj(t) = [xj(t), yj(t), zj(t)]

T

represent the position of spacecraft i and j at time t; k�k denotes
the 2-norm of a matrix or a vector.

3. Gaussian pigeon-inspired optimization

3.1. Pigeon-inspired optimization

In recent years, population-based swarm intelligence algo-

rithms have been studied in depth and used in many areas to
solve optimization problems. Among them, PSO is a classic
one, which has been applied in many fields. However, the con-

vergence speed of basic PSO is not effective enough to solve
some complex optimization problem. Generally, the basic
PSO would be trapped into a locally optimal solution. Con-

cerning this issue, the PIO makes particular improvement. In
nature, pigeons can find their destinations by relying on the
sun, magnetic field and landmarks. The basic PIO has two
operators, which are map and compass operator, and land-

mark operator. The map and compass operator is based on
magnetic field and sun, and the landmark operator is based
on landmarks.
3.1.1. Map and compass operator

After defining N as the number of the pigeons, D as the num-
ber of dimensions, T1 as the maximum iterations and initializ-

ing each pigeon’s position x and velocity v, it is necessary to
settle a rule for position and velocity updating. Naturally,
the map and compass can help the pigeons find their destina-

tions. In PIO model, the map and compass operator assists
each virtual pigeon to search the resolution space in each iter-
ation. The rule can be expressed as13

miðTÞ ¼ miðT� 1Þ e�ST þ R ðxg � xiðT� 1ÞÞ ð7Þ

xiðTÞ ¼ xiðT� 1Þ þ miðTÞ ð8Þ

where T is the number of iterations; vi (T) is the velocity of

pigeon i in T-th iteration; xi(T) is the position of pigeon i in
T-th (0 < T 6 T1) iteration; S is the map and compass factor;
R is a random number between 0 and 1; and xg is the current
global best position.
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3.1.2. Landmark operator

In nature, when pigeons approach to their destinations, they

use landmarks as a guide instead of map and compass.
Similarly, in PIO model, there is a landmark operator so that
the convergence speed can be improved. Let T2 be the maxi-

mum iterations, xc the center of a group of pigeons and f(x)
the fitness value calculating function. According to f(x), sort
the xi and find the center as xc. In each iteration, after finding

out the center of the pigeons, the number of the pigeons is
going to be cut to a half. Those, who are far away from the
destination, are supposed to follow near the destination ones.
Thus, the updating rule is given by13

NðTÞ ¼ NðT� 1Þ
2

ð9Þ

xiðTÞ ¼ xiðT� 1Þ þ R ðxcðTÞ � xiðT� 1ÞÞ ð10Þ
3.2. Gaussian pigeon-inspired optimization

PIO has a fast convergence speed, but still has a certain possi-
bility trapping into a locally optimal solution. PIO also has the
common problem, which is how to balance the importance

between exploration and exploitation. To formulate a more
efficient model, a Gaussian item is added to the position
iteration.
3.2.1. Gaussian distribution

The random number R has an obvious feature that the random
output R is a uniform distribution. It has a significant advan-

tage which is the ability of full-scale searching. Gaussian distri-
bution, also known as normal distribution, is extensively used
in natural and social sciences. It has two parameters, which

are l and r. The parameter l in this definition is the mean or
expectation of the distribution (also its median and mode).
The parameter r is its standard deviation, and its variance is r2.

In many cases, the optimization algorithm should have the
ability of concentrated searching when it can be sure that the
destination is right there. The method to get a random num-
ber, which satisfy the uniform distribution rule, is not good

enough to meet the requirements. The searching equation in
the PIO landmark operator satisfies the latent premise of
Gaussian distribution and it can be improved for achieving

the global best.

3.2.2. Gaussian item

The improved position updating equation in PIO landmark

operator is given as

xiðTÞ¼ xiðT�1Þþ2ðR1�0:5Þ�ðxcðTÞ�xiðT�1ÞÞ�mn ifðR2> pÞ
xiðTÞ¼ xiðT�1Þþ2ðR1�0:5Þ�ðxcðTÞ�xiðT�1ÞÞ�2n ifðR26 pÞ

�

ð11Þ

where p is a flexible parameter in order to balance the normal
distribution and the uniform distribution; R1 and R2 are two
random numbers from 0 to 1.

m ¼ jRnj

n ¼ 0:5� 0:25
T

T2

8<
: ð12Þ
where Rn is a random number created according to the

Gaussian distribution between 0 and 1; T2 is the maximum
iteration.15

4. The proposed GPIO for orbital spacecraft formation

reconfiguration

4.1. Process of basic PIO

Step 1. Initialize the parameters, including the initial posi-
tion and velocity of each pigeon.

Step 2. Calculate each pigeon’s fitness value.
Step 3. Search the best current position for each pigeon by
comparing each pigeon’s fitness value.

Step 4. Search the best global position by comparing each
pigeon’s current best position.
Step 5. Update the position and velocity based on Eqs. (7)
and (8), which is achieved by map and compass operator.

Step 6. If T > T1, start the landmark operator, otherwise
go to Step 5.
Step 7. According to Eq. (10), update the pigeon’s position

by using landmark operator.
Step 8. If T < T2, output the result, else return to Step 7.

4.2. GPIO for formation reconfiguration

The process of GPIO is similar to the basic PIO process except

the landmark operator. After adopting the landmark operator,
three new parameters, m, n and p, should be assigned with
initial values. The pigeon’s position can be updated by using
Eq. (11). In addition, according to the Eqs. (12), m and n have

the fixed calculating methods, but p is flexible. p is a weight
factor which is responsible for the balance between uniform
and Gaussian distribution. In other words, m and n are

invariables regardless of situations, but p varies according to
the situations. In this paper, p is equal to 0.3.

4.3. Algorithm flow of GPIO

Step 1. Initialize the parameters, including the orbit param-
eters and the algorithm initialization parameters.
Step 2. Calculate each pigeon’s fitness value.

Step 3. Imitate the steps of PIO. Search the best current
position and the best global position. Then update the
positions and velocities by using the map and compass

operator.
Step 4. If T > T1, go to step 5, otherwise, go back to Step 3.
Step 5. Operate the landmark operator.
Step 6. Set two parameters, m and n according to the

Eq. (12). Set the balance factor p.
Step 7. According to Eq. (11), update the pigeon’s position.
Step 8. If T < T2, output the result, else return to Step 7.
5. Experimental results

In order to verify the feasibility and effectiveness of our
proposed GPIO for solving orbital spacecraft formation recon-

figuration problem, a series of comparative experiments are
conducted by using PSO, PIO and the proposed GPIO, with



Table 1 Orbit parameters of three orbital spacecraft.

Spacecraft number Initial state Final state

ðx0; y0; z0; _x0; _y0; _z0Þ ðxf; yf; zf; _xf; _yf; _zfÞ
1 (�233.01, 499.90,�403.59, 0.2479, 0.4622, 0.4294) (�533.01, 701.55,�923.20, 0.3479, 1.0573, 0.6026)
2 (332.97, 153.62, 576.72, 0.0762,�0.6605, 0.1319) (570.29, 572.40, 987.78, 0.2839,�1.1312, 0.4916)
3 (�99.97,�653.52,�173.16,�0.3241, 0.1983, 0.5613) (�37.31,�1273.96,�64.62,�0.6318, 0.0740, 1.0942)

Table 2 Optimal impulses for each orbital spacecraft.

Spacecraft

number

Optimal impulse

Impulse

number

Optimal impulse

I (m/s)

Implementing

time t (s)
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constraints of overall fuel minimization, final configuration

and collision avoidance. The whole running time of the three
algorithms are recorded for measuring the efficiencies of each
algorithm. To simplify the problem, the comparative experi-

ments are designed to be geometrically perfect, and the initial
and final configurations are on circular orbits. The orbit
parameters of the three spacecraft are given in Table 1.1 Based
on the initial orbit parameters, the 3 dimensional (3D) diagram

is shown in Fig. 2.
In Fig. 2, the three orbital spacecraft initially move on a cir-

cular orbit (marked with black) forming an equilateral triangle

in space. On the larger orbit (marked with green), the three
orbital spacecraft compose another equilateral triangle as their
final confirmation.

For PSO, set the number of particles Num = 50, the
maximum iteration G= 100, two evolution parameters
C1 = C2 = 1.5. For PIO and GPIO, T1 = 90, T2 = 30,
Num = 30, S= 0.1, l = 0, d = 1. The results of these three

comparative algorithms are shown in Fig. 3.
Fig. 2 Formation reconfiguration for three orbital spacecraft.

Fig. 3 Convergence curves of PSO, PIO and GPIO.
Optimal impulses for each orbital spacecraft and compari-

son of the three algorithms’ running time are shown in Tables
2 and 3. From that, it is obvious that the best results are from
the GPIO and the control timing obtained by GPIO.

The above situation is that the three orbital spacecraft can
transform from a smaller formation to a bigger one. Now, con-
sider an opposite situation, which is from the bigger orbit to
the smaller orbit and the orbit parameters are the same. The

comparative convergence curves are given in Fig. 4, and the
whole running time is in Table 4. The results show that our
proposed GPIO is more efficient in solving the orbital space-

craft formation reconfiguration problems.
1 1 [0.1570, 0.0001, 0.2666] 4487

2 [�0.1574,�0.0001,�0.2779] 1067

2 1 [�0.1570,�0.0001,�0.2658] 5571

2 [0.1575, 0.0001, 0.2789] 2181

3 1 [�0.2234, 0.0331,�0.4025] 296

2 [�0.0747,�0.0331,�0.1450] 6064

Table 3 Comparison of running time.

Algorithm Running time (s)

PSO 5.33

PIO 3.37

GPIO 3.29

Fig. 4 Convergence curves of PSO, PIO and GPIO.



Table 4 Comparison of running time.

Algorithm Running time (s)

PSO 5.31

PIO 3.43

GPIO 3.21
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6. Conclusions

(1) PSO, PIO and GPIO are all feasible optimization algo-
rithms in solving the orbital spacecraft formation recon-

figuration problems. The convergence rates of PIO and
especially GPIO are much better than basic PSO.

(2) The comparative results have shown that the perfor-
mance of our proposed GPIO performs best for solving

orbital spacecraft formation reconfiguration problems in
various conditions.

(3) The robustness of GPIO is satisfied but not perfect. How

to improve the robustness of GPIO is one focus of our
future work.
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