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Abstract The minimum independent dominating set

problem (MIDS) is an extension of the classical dominat-

ing set problem with wide applications. In this paper, we

describe a greedy randomized adaptive search procedure

(GRASP) with path cost heuristic for MIDS, as well as the

classical tabu mechanism. Our novel GRASP algorithm

makes better use of the vertex neighborhood information

provided by path cost and thus is able to discover better and

more solutions and to escape from local optimal solutions

when the original GRASP fails to find new improved

solutions. Moreover, to further overcome the serious

cycling problem, the tabu mechanism is employed to forbid

some just-removed vertices back to the candidate solution.

Computational experiments carried out on standard

benchmarks, namely DIMACS instances, show that our

algorithm consistently outperforms two MIDS solvers as

well as the original GRASP.

Keywords Minimum independent dominating set

problem � GRASP � Path cost � Local search

1 Introduction

Given an undirected graph G = (V,E), a dominating set

(DS) D is a subset of vertices such that each vertex not in

D is adjacent to at least one member of D. An independent

set (IS) I of G is a subset of vertices such that, for any

(vi,vj) [ I*I, (vi, vj) 62 E. An independent dominating set

(IDS) in a given graph is a subset of vertices that is both

dominating and independent. Equivalently, an independent

dominating set is a maximum independent set. The mini-

mum independent dominating set problem (MIDS) consists

in identifying the smallest independent dominating set in

this given graph.

MIDS has been widely used in various real-world

domains. For example, a study of the survey of clustering

algorithms for wireless networks [1, 2] shows that the

initial clustering schemes for wireless networks are pri-

marily IDS schemes such as in [3–5]. Renewed interest in

IDS-based schemes is rising recently, in the context of

wireless sensor networks (WSNs) [6, 7] and wireless sensor

and actor networks (WSANs) [8, 9], which are useful in

distributing actors and designing topologies that help to

improve energy efficiency.

MIDS is known to be NP hard [10]. It is also very hard

from an approximation view since there is no polynomial-

time algorithm for these problems within ratio |V|1-e, for

any e[ 0, unless P = NP [11]. Several approximation

algorithms have been introduced to solve MIDS [12]. For

MIDS, the trivial O*(2
|V|) bound is initially broken by [13]

down to O*(3
|V|/3) = O*(2

0.529|V|) using the result by [14],

which means that the number of maximal (for inclusion)

independent sets in a graph is at most 3|V|/3. This result has

been dominated by [15] where an algorithm solving MIDS

optimally through branch and reduce technique with run-

ning time O*(2
0.441|V|) is proposed. For sparse graphs, e.g.,

& Minghao Yin

ymh@nenu.edu.cn

1 College of Computer Science and Technology, Jilin

University, Changchun, China

2 School of Computer Science and Information Technology,

Northeast Normal University, Changchun, China

3 Key Laboratory of Symbol Computation and Knowledge

Engineering of Ministry of Education, Jilin University,

Changchun, China

123

Neural Comput & Applic (2017) 28 (Suppl 1):S143–S151

DOI 10.1007/s00521-016-2324-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2324-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2324-6&amp;domain=pdf


graphs with degree bounded by 3 and 4, a new branching

techniques can be applied to these graphs and the resulting

algorithms [16] are with time complexities O*(2
0.465|V|) and

O*(2
0.620|V|), respectively. In [17], a branching algorithm

computing a MIDS in general graphs with running time

O*(2
0.424|V|) and polynomial space is designed.

Nevertheless, most problems [18–21] found in industry

are either computationally intractable by their nature, or

sufficiently large so as to preclude approximation algo-

rithms. In such cases, heuristic methods [22–27] are usually

employed to find good, but not necessarily guaranteed

optimal solutions [28]. The effectiveness of these methods

depends upon their ability to adapt to particular realization,

avoid entrapment at local optima, and exploit the basic

structure of the problem. However, there are relatively

fewer heuristics for solving MIDS. In this paper, we

develop a greedy randomized adaptive search procedure

(GRASP) based on a new heuristic named path cost and a

tabu mechanism for solving MIDS.

GRASP [29, 30] is amulti-start heuristic which consists of

applying local search to feasible starting solutions generated

with a greedy randomized construction heuristic. There are

two phases including a construction phase and a local search

phase, in each GRASP iteration. In the construction phase, a

candidate solution is iteratively constructed by adding one

element each time. The score of each element is adaptive, for

it is associated with every element updated at each iteration

of the construction phase to reflect the changes coming with

the selection of the previous element. At each construction

iteration, the next element to be added is randomly selected

from the list of the best candidates, which is the highest score

value. This list is also called the restricted candidate list

(RCL), which means the selected element is not necessarily

the top candidate. By applying RCL, different solutions are

allowed to be obtained in the construction phase. However,

the construction phase of GRASP is not guaranteed to obtain

a local optimal with respect to simple adding operations.

Hence, it should be beneficial to adapt a local search phase to

search the neighborhood of the construction solution to

obtain the improved solution. In the local search phase, a

local optimum in the neighborhood of the constructed solu-

tionwould be found. The local search phaseworks iteratively

by swapping one element in the candidate solution with

another one or by removing the redundant element from the

candidate solution which is still the solution after being

removed.

However, the effectiveness of a simple GRASP is not

satisfying. The classical method to improve the GRASP

process is called path relinking [31]. It is an intensification

method that explores paths in the solution space connecting

good-quality solutions. However, path relinking is not

suitable for MIDS since an independent solution con-

structed by another solution is not very well. Therefore, we

firstly propose a novel heuristic named path cost to improve

the GRASP for MIDS. Each vertex will be associated with

the path cost. In the construction phase, RCL is built by

some vertices with best scores. The best score of each

vertex is dynamically computed according to the path cost

of vertices, while the previous score is calculated by the

static method. In the local search phase, the selection of a

swapping pair of vertices and a removed vertex are also

depended on the path cost of each vertex. At each local

search iteration, the value of path cost of uncovered vertex

need to be increased. It requires the candidate solution to

cover these vertices as soon as possible. On the other hand,

at the end of local search phase, the path cost value of all

vertices should be cleared to obtain the next construction

solution.

The second heuristic is the tabu mechanism [32, 33] to

overcome the cycling problem in the local search phase.

Our algorithm uses the tabu mechanism to forbid reversing

the recent changes, i.e., a swapping pair of vertices or a

just-removed vertex, where the strength of forbidding is

controlled by a parameter called tabu tenure. Combining

with the path cost and the tabu mechanism, we develop a

novel GRASP algorithm for MIDS, which is called

GRASP ? PC. We carry out extensive experiments to

compare GRASP ? PC with two MIDS solvers, namely

CPLEX12.6 and LocalSolver5.5, on the classical DIMACS

benchmark [34] from the Second DIMACS Implementa-

tion Challenge which introduces in real applications and

randomly generated graphs. Experimental results show that

GRASP ? PC significantly outperforms CPLEX12.6 and

LocalSolver5.5 on most instances.

The remainder of this paper is organized as follows: we

give some necessary background knowledge in Sect. 2.

Then, in Sect. 3 we propose a new path cost strategy fol-

lowed by a novel GRASP ? PC being proposed in Sect. 4.

Section 5 gives the experimental evaluations and the

analyses of the experimental result. Conclusions and future

directions are introduced in the last section.

2 Background

An undirected graph G = (V,E) comprises a vertex set

V = {v1, v2, …, vn} of n vertices together with a set

E = {e1, e2, …, em} of m edges, where each edge

e = (v,u) connects two vertices u and v where u is adjacent

to v. The neighborhood of a vertex v is N(v) = {u [ V|(-

v,u) [ E}, and the close neighborhood of a vertex v is

N[v] = N(v) [ {v}.

The concepts of maximum independent set, minimum

dominating set, minimum independent dominating set, and

partial independent dominating set are defined as below.
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Definition 1 (Maximum independent set problem) Given

an undirected graph G = (V,E) where V = {v1, v2, …, vn}

is the set of vertices and E = {e1, e2, …, em} is the set of

edges. The aim of maximum independent set problem is to

find a maximum size subset IS of V such that no two

vertices in IS are adjacent, i.e., Vvi, vj [ IS, (vi, vj) 62 E.

Definition 2 (Minimum dominating set problem) Given

an undirected graph G = (V,E) where V = {v1, v2, …, vn}

is the set of vertices and E = {e1, e2, …, em} is the set of

edges. The task of minimum dominating set problem is to

find a minimum size subset DS of V that has a property that

every vertex in V either belongs to DS or is adjacent to a

vertex in DS.

Definition 3 (Minimum independent dominating set)

Given an undirected graph G = (V,E) where V = {v1, v2,

…, vn} is the set of vertices and E = {e1, e2, …, em} is the

set of edges. The task of minimum independent dominating

set problem is to find a minimum subset IDS of V such that

each vertex of V not in IDS is adjacent to at least one

member of IDS and no two vertices in IDS are adjacent.

Definition 4 (Partial independent dominating set) Given

an undirected graph G = (V,E) where V = {v1, v2, …, vn}

is the set of vertices and E = {e1, e2, …, em} is the set of

edges. V0 is a subset of a set V. The task of partial inde-

pendent dominating set problem is to find a subset PIDS of

V0 such that each vertex of V0 not in PIDS is adjacent to at

least one member of PIDS and no two vertices in PIDS are

adjacent.

During the construction and local search phases of our

algorithm, we need to maintain a partial independent

dominating set as the candidate solution CS.

3 A novel path cost heuristic

During the construction and local search phases of our

algorithm for MIDS, deciding which subset should be

selected to be added into or removed from the candidate

solution plays an important role in the efficiency of the

search. In this section, we introduce a novel heuristic

called path cost for each vertex during the vertices

selection process. This heuristic can be used to decide

which vertex could be picked as a candidate solution

component.

Definition 5 (Path cost) Given an undirected graph

G = (V,E), for each vertex v [ V, we use a property path

cost function, denoted by pc(v), associated with v, which is

maintained during the local search process.

In the initialization period of our algorithm, the pc(v) is

initialized as 1, for each vertex v [ V. To attain more

solutions, we propose a forgetting cost strategy to improve

the quality of solutions obtained by our algorithm. Firstly,

we give two forgetting rules as below.

Forgetting Rule 1 In the end of each step during the

local search phase, if v is uncovered by the candidate

solution, pc[v] will be increased by 1.

Forgetting Rule 2 In the end of each step after the local

search phase, the pc of each vertex v is reduced to forget

the earlier path cost decisions with the formula

pc(v) = pc(v)*b ? 1, where b is a parameter.

Based on this path cost heuristic, we also define another

definition, i.e., path scoring, to select which vertex need to

be added or removed based on the circumstance of candi-

date solution.

Definition 6 (Path scoring) Given an undirected graph

G = (V,E), pc(v) associated with each vertex v [ V, and a

candidate solution CS, the path scoring denoted by ps, is a

function such that

psðviÞ ¼
P

u2N½vi�\inde½u�¼0 pcðuÞ; for each vi 62 CS; inde½vi� ¼ 0

�
P

u2N½vi�\inde½u�¼1 pcðuÞ; for each vi 2 CS

�

where inde[v] is used to denote the number of the close

neighborhood of a vertex v covered by the candidate

solution CS.

The search process is driven by a general and unified

(v1,v2)-swap (v1,v2 [ V) operation combined with specific

rules to explore three constrained neighborhoods. Given an

candidate solution CS, (v1,v2)-swap exchanges v1 in V\CS

against v2 in CS, where there are no edges that v1 is not

adjacent to any vertex ofCS/{v2}. In the construction phase, to

add the most promising vertex into the candidate solution, we

use (v1,0)-swap to iteratively generate the candidate solution.

Then, in the local searchphase,whenobtaining an IDS,weuse

(0,v2)-swap to find a smaller size of IDS. Otherwise, in the

local search phases, we use (v1,v2)-swap to switch a pair of

vertices with the help of specific selection rule.

A tabu mechanism [32, 33] is also employed to prevent

searching from short-term cycles in local search phase.

Tabu mechanism characteristically introduces a tabu tenure

to forbid recently visited solutions from being revisited. In

our algorithm, we adopt the following general prohibition

rule: a vertex that leaves the current candidate solution CS

is forbidden to be moved back to CS for the next T itera-

tions where we use tabu_list to denote tabu tenure, which

means that we allow this vertex to be a selected vertex, if

this vertex is not included in tabu_list.
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Our selection rules pick each (v1,v2)-swap operation by

combining path scoring based on path cost with tabu

mechanism which is formally like this.

(v1,v2)-swap operation rule Select v2 from CS with the

greatest ps(v2) value by breaking ties randomly, remove

this vertex v2 from CS, and put this just-removed vertex v2
into tabu_list. Then, select v1 from V/CS with the greatest

ps(v1) value and v1 62 tabu_list by breaking ties randomly

and add this vertex v1 into CS, where v1 is not adjacent to

any vertex in CS.

4 GRASP with path cost and tabu mechanism
for the MIDS

In this section, we design a GRASP with path cost and tabu

mechanism for the MIDS (GRASP ? PC for short).

Algorithm 1 shows the pseudo-code for GRASP ? PC.

Algorithm 1 GRASP+PC
1 Initialize a best solution CS* and a candidate solution CS;
2 Initialize the pc of each vertex as 1;
3 while running time is less than the given time limit do
4 CS←ConstructionPhase();
5 CS←LocalSearchPhase(CS, ITER);
6 if(|CS|<|CS*|) then
7     CS*←CS;
8   end if
9   pc(v)=pc(v)*β+1, for each vertex v V;
10 end while

Lines 1 and 2 initialize the best-known candidate solu-

tion CS*, the candidate solution CS, and the path cost of

each vertex. The loop from lines 3–10 corresponds to the

GRASP with path cost and tabu mechanism. In each iter-

ation, an initial solution is built by the greedy randomized

construction phase in line 4. A locally optimal candidate

solution CS with respect to (v1,0)-swap and (v1,v2)-swap is

computed by the local search phase in line 5. At the end of

each step in the line 9, the path cost of each vertex will

drop the previous value by formula pc(v) = pc(v)*b ? 1.

It is built to generate a candidate solution based on some

useful vertex information in the next construction phase.

4.1 Construction phase

Algorithm 2 shows the pseudo-code of the construction

phase algorithm, which is used to construct the initial

candidate solution for GRASP ? PC.

Algorithm 2 ConstructionPhase()
1 Initialize CS;
2 Initialize the path scoring ps of each vertex based on

3 while CS is not a IDS do
4 psmax←MAX{ps(v)|ps(v)>0,v V/CS};
5 psmin←MIN{ps(v)|ps(v)>0,v V/CS};
6 RCL←{v|ps(v)>psmin+α(psmax-psmin),v V/CS}; 
7   v1←selecting one vertex v1 from RCL randomly;
8   CS←updating CS by the (v1,0)-swap operation;
9   update ps(v), for each vertex v N(v1);
10 end while
11 return CS;

the path cost pc of each vertex; 

The candidate solution represented by the candidate set

CS is initialized in line 1. The path cost pc as well as the

path scoring ps of all vertices are computed in line 2 for all

vertices. The loop in lines 3–10 adds one vertex at each

time to the candidate solution CS, until CS is an IDS. The

maximum psmax and minimum psmin path scoring values of

the candidate vertices are calculated in lines 4 and 5,

respectively. The restricted candidate list (RCL), formed

by all candidate vertices whose path scoring values are less

than or equal to psmin ? a(psmax - psmin), is built in line 6,

where a is a parameter in the interval [0,1]. A vertex v1 is

selected at random from the RCL in line 7, and the just-

selected vertex is added to the candidate solution CS in line

8 through the (v1,0)-swap operation. Finally, in line 9, the

path cost value of neighborhood of this just-added vertex

would be updated by judging the situation of candidate

solution CS.

4.2 Local search phase

The candidate solutions built with the randomized greedy

algorithm are not guaranteed to be locally optimal, even

with respect to a simple neighborhood structure, i.e., only

adding one vertex into the candidate solution each time.

Therefore, applying local search phase into such a solution

would definitely result in an improved locally optimal

solution. We give this local search phase for MIDS in the

following.

Starting from the candidate solution generated by the

construction phase, the local search phase explores the

neighborhood of the candidate solution for obtaining a

smaller size of solution. If no improved solutions are

found, the local search phase will return the constriction

candidate solution as a local minimum. Otherwise, if an

improved solution is obtained, it will be the new best

candidate solution, and this phase repeats itself.
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Our local search phase makes fully use of two opera-

tions including (0,v2)-swap and (v1,v2)-swap. Specially, we

use the first operation (0,v2)-swap in attempt to remove

some redundant vertices from the candidate solution. The

second operation is (v1,v2)-swap in which we try to swap a

pair of vertices where we need to remove v2 from the

candidate solution and then add v1 into this solution. The

local search phase is illustrated by the pseudo-code in

Algorithm 3.

Algorithm 3 LocalSearchPhase(CS, ITER)
1 Initialize tabu_list;
2 for(step=0;step<ITER;step++)
3 if(CS is IDS) then
4 v2←selecting v2 from CS with the greatest ps(v2) value,

5     update ps(v), for each vertex v N(v2);
6     adding v2 into tabu_list;
7 CS←updating CS based on the (0,v2)-swap operation rule; 
8 continue;
9 end if
10 v2←selecting v2 from CS with the greatest ps(v2) value,

11 update ps(v), for each vertex v N(v2);
12 adding v2 into tabu_list;
13 v1←selecting v1 from V\CS with the greatest ps(v1) value

14 update ps(v), for each vertex v N(v1) ;
15 CS←updating CS based on the (v1,v2)-swap operation rule;
16 pc(v)=pc(v)+1, for v V/CS;
17 update ps(v), for each vertex v V;
18 end for
19 return CS;

breaking ties randomly;

and v1 tabu_list, breaking ties randomly; 

breaking ties randomly;

At first, tabu_list is to be initialized. The loop in lines

2–18 is repeated until the step number reaches a maximum

iteration number ITER. If the new obtained candidate

solution is an IDS in lines 3–9, then our algorithm turns to

find a smaller size of IDS by (0,v2)-swap operation rule,

i.e., finding a vertex with the greatest path scoring and then

removing this vertex from the candidate solution. A new

candidate solution will be tested for next steps. Otherwise,

our algorithm will attempt to remove one vertex v1 in

candidate solution with the biggest path scoring value and

update the path scoring of neighborhood of this removed

vertex if the candidate solution is infeasible. In this pro-

cess, the just-removed vertex v1 in line 12 is inserted in

tabu_list. After that, in the line 13 we select a greatest path

scoring vertex v2 not included in candidate solution or

tabu_list and update the path scoring value of neighbor-

hood of this vertex v2. In line 15, we use the (v1,v2)-swap

operation rule to update the candidate solution. After

increasing the path cost value of each vertex by one, the

corresponding path scoring value of each vertex also

should be updated. Finally, when the number of step

reaches ITER, the local search phase will return the can-

didate solution.

5 Results

In this section, we carry out extensive experiments to

evaluate the performance of our algorithm GRASP ? PC

for MIDS on one classical benchmark, i.e., DIMACS (61

instances) [34].

For we are the first to design a heuristic algorithm to

solve this problem, we choose two MIDS solvers, i.e.,

CPLEX12.6 and LocalSolver5.5 for comparison. Local-

Solver5.5 is a new-generation, hybrid mathematical pro-

gramming solver, which contains the best of all

optimization techniques: local search, constraint propaga-

tion and inference, linear and mixed integer programming,

as well as nonlinear programming techniques, while

CPLEX12.6 is used to solve large-scaled linear program-

ming problems as a commercial integer programming

solver. Both of them run with some default parameter

settings for solving MIDS. We run CPLEX12.6 and

LocalSolver5.5 long enough so that they can acquire good

approximations of the optima. The stopping criterion for

CPLEX12.6 is either the convergence of lower and upper

bounds or a maximum time limit set as 3600 s (1 h), while

the stopping criterion of LocalSolver5.5 is a unified max-

imum same time limit 3600 s. Instead of comparing our

algorithm GRASP ? PC with CPLEX12.6 and LocalSol-

ver5.5, which finds very good solutions for these instances,

our aim is to use the solution values generated by

CPLEX12.6 and LocalSolver5.5 as an indication of the

quality of solutions by GRASP ? PC.

There are four important parameters to be set in

GRASP ? PC. In the local search phase, we set the inner

step to 106. For the RCL parameter, GRASP ? PC set

a = 0.8 for all instances. GRASP ? PC employs a tabu

mechanism where the tabu tenure is set to 4. In our pro-

posed new path cost strategy, the forgetting parameter b is

set to 0.2.

Our algorithm GRASP ? PC is implemented in C??

and compiled by g?? 4.6.2 with the –O2 option. All the

experiments by GRASP ? PC are run on Ubuntu Linux,

with 2.3 GHZ CPU and 8 GB memory. For each instance,

GRASP ? PC performs 10 independent runs with different

seeds, terminating upon reaching a given time limit (200 s)

each time.

For each instance, MIN is the minimum independent

dominating set found, AVG is the average size of 10 runs,

SD is the standard deviation based on 10 results, and Rtime
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Table 1 Experimental results

of GRASP ? PC, CPLEX12.6,

and LocalSolver5.5 on

DIMACS benchmark (61

instances)

Instance GRASP ? PC CPLEX12.6 LocalSolver5.5

MIN AVG SD Rtime UB LB UB

brock200_2 4 4 0 0.06 4 4 4

brock200_4 6 6.60 0.49 1.14 6 6 6

brock400_2 10 10 0 0.32 10 5.20 11

brock400_4 9 9.80 0.40 5.39 10 5.05 11

brock800_2 8 8.30 0.46 15.70 9 2.88 9

brock800_4 8 8.30 0.46 21.80 9 2.88 9

C1000.9 27 28 0.45 6.65 29 10.12 30

C125.9 15 15 0 0.62 14 14 14

C2000.5 7 7 0 5.49 11 2 8

C2000.9 33 33.20 0.40 52.12 48 10.03 36

C250.9 17 17.80 0.40 3.25 18 13.22 18

C4000.5 8 8 0 17.28 N/A N/A N/A

C500.9 23 23 0 2.78 23 11.39 22

c-fat200-1.clq 13 13 0 \0.01 13 13 13

c-fat200-2.clq 6 6 0 \0.01 6 6 6

c-fat200-5.clq 3 3 0 \0.01 3 3 3

c-fat500-1.clq 27 27 0 0.14 27 27 27

c-fat500-2.clq 14 14 0 \0.01 14 14 14

c-fat500-5.clq 6 6 0 \0.01 6 6 6

DSJC1000.5 6 6 0 1.29 6 2.06 6

DSJC500.5 5 5 0 3.20 10 2 7

gen200_p0.9_44 16 16.70 0.64 1.12 16 16 16

gen200_p0.9_55 16 16 0 1.11 16 16 16

gen400_p0.9_55 21 21.20 0.40 2.50 22 12.68 22

gen400_p0.9_65 21 21.60 0.49 4.31 21 12.67 22

gen400_p0.9_75 20 21.50 0.67 6.14 21 12.87 22

hamming10-4 12 12.80 0.40 13.46 14 5.82 12

hamming6-2 12 13.60 0.80 0.01 12 12 12

hamming6-4 2 2 0 \0.01 2 2 2

hamming8-2 32 34.40 2.42 1.03 32 32 32

hamming8-4 4 4 0 \0.01 4 4 4

johnson16-2-4 8 8 0 \0.01 8 8 8

johnson32-2-4 16 16 0 \0.01 16 16 16

johnson8-2-4 4 4 0 \0.01 4 4 4

johnson8-4-4 7 7 0 \0.01 7 7 7

keller4 5 5 0 0.01 5 5 5

keller5 9 9.90 0.54 9.79 11 4.14 10

keller6 18 18.80 0.40 174.22 32 5.59 19

MANN_a27 27 27 0 \0.01 27 27 27

MANN_a45 45 45 0 \0.01 45 45 45

MANN_a81 81 81 0 \0.01 81 81 81

MANN_a9 9 9 0 \0.01 9 9 12

p_hat1500-1.clq 13 13.40 0.49 59.81 17 4.06 19

p_hat1500-2.clq 7 7 0 51.40 9 2 9

p_hat1500-3.clq 3 3.20 0.40 56.04 4 1.33 4

p_hat300-1.clq 9 9 0 0.38 9 9 10

p_hat300-2.clq 5 5.10 0.30 0.16 5 5 5

p_hat300-3.clq 3 3 0 \0.01 3 3 3
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is the running time when GRASP ? PC gets the minimum

independent dominating set. We also list the best upper

bound (UB) and lower bound (LB) values generated by

CPLEX12.6 and the best upper bound (UB) of LocalSol-

ver5.5. Bold face indicates the best solution values from

GRASP ? PC, CPLEX12.6, or LocalSolver5.5. For

instances where CPLEX12.6 and LocalSolver5.5 fail to

find a solution within the time limit, the column would be

marked as ‘‘N/A’’.

The results based on DIMACS benchmark are summa-

rized in Table 1. GRASP ? PC is essentially better than

CPLEX12.6 and LocalSolver5.5. In particular, compared

with CPLEX12.6, GRASP ? PC improves the minimum

independent dominating set of 19 instances, while

CPLEX12.6 outperforms our algorithm with the better

quality of minimum solution in 3 instances. GRASP ? PC

can find better solutions than LocalSolver5.5 in 26

instances. However, in only 2 instances, the solution found

by LocalSolver5.5 is better than that of the GRASP ? PC.

In the 39 ones out of all instances, GRASP ? PC consis-

tently finds the independent dominating set of the same

quality.

5.1 The effectiveness of path cost strategy

In this subsection, we will evaluate our new path cost

strategy and a counterpart forgetting strategy. Therefore,

we design another two algorithms: GRASP ? NO-

FORGET which adopts the path cost strategy into the local

search and construction phases but does not apply our

forgetting strategy to select some key vertices in these

phases, and GRASP which works without two strategies.

The results are summarized in Table 2. In particular,

compared with GRASP ? NOFORGET, GRASP ? PC

Table 1 continued
Instance GRASP ? PC CPLEX12.6 LocalSolver5.5

MIN AVG SD Rtime UB LB UB

p_hat700-1.clq 11 11 0 1.69 14 4.80 13

p_hat700-2.clq 7 7 0 0.36 7 2.66 8

p_hat700-3.clq 3 3 0 0.09 3 3 3

san1000 4 4 0 11.62 4 2.99 5

san200_0.7_1 7 7 0 0.01 6 6 7

san200_0.7_2 6 6 0 0.01 6 6 6

san200_0.9_1 16 16 0 0.09 15 15 16

san200_0.9_2 16 16.80 0.40 0.13 16 16 16

san200_0.9_3 15 16 0.45 0.09 15 15 15

san400_0.5_1 4 4 0 0.03 4 4 4

san400_0.7_1 7 7.10 0.30 2.22 8 4.46 8

san400_0.7_2 7 7 0 0.66 7 4.59 8

san400_0.7_3 8 8 0 0.08 8 4.50 9

Table 2 Experimental results of GRASP ? PC, GRASP ? NOFORGET, and GRASP on DIMACS benchmark

Instance GRASP ? PC GRASP ? NOFORGET GRASP

MIN AVG SD Rtime MIN AVG SD Rtime MIN AVG SD Rtime

brock200_4 6 6.6 0.49 1.14 6 6.7 0.3 2.12 7 7 0 0.01

C250.9 17 17.8 0.4 3.25 18 18 0 0.61 18 18.1 0.3 2.4

gen200_p0.9_44 16 16.7 0.64 1.12 16 17.2 0.6 0.71 18 18.2 0.4 1.27

gen400_p0.9_75 20 21.5 0.67 6.14 21 21.7 0.46 3.28 21 22.5 0.67 4.79

hamming8-2 32 34.4 2.42 1.03 32 35.3 2 0.93 40 42.6 1.02 4.01

p_hat700-1 11 11 0 1.69 11 11 0 3.85 11 11.2 0.4 5.73

san200_0.9_3 15 16 0.45 0.09 15 16.1 0.54 1.81 16 16.2 0.4 0.69

san400_0.7_1 7 7.1 0.3 2.22 7 7.3 0.46 4.09 7 7.9 0.3 0.46
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could improve the optimal values of two instances. When

GRASP ? NOFORGET and GRASP ? PC find the same

minimal value in two instances, GRASP ? PC also gets

the smaller value of average independent dominating set.

For the rest of the instances where the two algorithms find

solutions of the same quality, GRASP ? PC consistently

solves these instances faster than GRASP ? NOFORGET.

Compared with GRASP, GRASP ? PC is also essentially

better than GRASP.

To show the efficiency of our algorithm, as shown in

Figs. 1 and 2, time-to-target plots [35] are used to compare

GRASP ? PC with GRASP ? NOFORGET and GRASP

on two instances, p_hat700-1 and its target 11, as well as

san400_0.7_1 and its target 7, respectively. Two hundred

independent runs of three algorithms are done for each of

these problems. As shown in Fig. 1, the probability of

obtaining a solution of the target value by GRASP ? PC in

at most 3.38 s is about 50 %, in at most 7.31 s is about

80 %, and in at most 8.54 s is about 90 %. However, the

probability of obtaining a solution by GRASP ? NO-

FORGET and GRASP of the target value in 3.86 s and

12.96 s is about 50 %, more than 7.76 s and 25.68 s about

80 %. Similarly, in Fig. 2, it is easy to observe that

GRASP ? PC performs much better than GRASP ? NO-

FORGET and GRASP.

6 Conclusion

This paper presents the novel GRASP algorithm named

GRASP ? PC to solve MIDS. Few heuristics are available

in the literature for this problem. The demand for good

approximate algorithms for large-scale instances of this

problem is well met, due to the fact that it is NP hard.

In this paper, the first heuristic is a novel path cost

heuristic, which is motivated by observations on drawbacks

of the original GRASP for MIDS. Based on this heuristic,

we redesign the path scoring of each vertex to judge which

vertex could be selected from the vertex set. Moreover, to

diversify the candidate solution, we propose two forgetting

rules to update the path cost value of each vertex in the

construction and local search phases, respectively. To

further deal with the classical cycling problem, we incor-

porate the tabu mechanism into the local search phase.

Experiments on standard benchmarks show that

GRASP ? PC outperforms two current great solvers,

CPLEX12.6 and LocalSolver5.5, in respect of MWCP. We

also carry out extensive experiments to analyze the effec-

tiveness of the path cost heuristic and corresponding for-

getting rules.

This work takes the first step toward the heuristic

algorithm for MIDS on classical graphs. In the future, we

would like to design more efficient heuristic algorithms in

the aspect of MIDS and to exploit other properties of

vertices to promote improvement on such algorithms.
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