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ABSTRACT The grasshopper optimization algorithm (GOA) is a new meta-heuristic algorithm inspired
by the behavior of grasshopper groups. Aiming at the shortcomings of poor development ability and low
convergence accuracy of GOA, this paper introduces the gravity search operator into the optimization
process of GOA to improve the grasshopper’s global exploration and avoid falling into local optimum in
advance. At the same time, a pigeon search operator-landmark operator is introduced to improve and balance
the algorithm’s exploration and development capabilities. In order to verify the validity of the improved
algorithm, this paper will adopts the gravity search operator and a deterrent landmark operator hybrid
grasshoppers algorithm (HGOA) with basic grasshopper algorithm (GOA), particle swarm optimization
(PSO) algorithm, sine and cosine algorithm (SCA), moth-flame optimization (MFO) algorithm, salp swarm
algorithm (SSA), and bat algorithm (BA) to optimize 28 test functions. And the analysis and comparison of
the obtained statistical data results finally show that the proposed improved grasshopper algorithm has better
optimization ability.

INDEX TERMS Grasshopper algorithm, gravity search operator, Pigeon landmark operator, function

optimization.

I. INTRODUCTION

Optimization is the process of finding the best solution
for a particular problem. As the complexity of the prob-
lem increases, the need for new optimization techniques has
become more apparent in the past few decades than before.
Before heuristic optimization was proposed, mathematical
optimization was the only tool used to optimize problems.
Mathematical optimization methods are mainly deterministic
and have a major problem: local optimal notch waves, which
makes them extremely inefficient in solving practical prob-
lems. Natural heuristic algorithms can effectively help solve
many optimization problems encountered in actual processes,
which makes natural heuristic algorithms a research hotspot
for optimization problems in recent years [1]. Natural heuris-
tic algorithm includes heuristic algorithm and meta-heuristic
algorithm. Heuristic algorithms are the process of finding
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solutions through trial and error [2]. Many heuristic algo-
rithms, such as simulated annealing (SA) and artificial neural
network (ANN), have been widely used in the field of optics
and combination optimization. The meta-heuristic algorithm
is a stochastic optimization algorithm with prior knowledge
of random search. It is an optimization process that starts with
a random solution and then randomly explores and utilizes
the search space with a specific probability. These algorithms
can use the useful information of the population to find the
optimal solution [3]. These efficient and robust algorithms are
used to solve a variety of problems, such as path planning [4],
economic scheduling problem [5], inverter parameter identi-
fication [6], backpack problem [7] and location problem [8].
So far, various researchers have conducted in-depth research
on these algorithms, and introduced many naturally-inspired
meta-heuristic algorithms, such as particle swarm opti-
mization (PSO) algorithm [9], bacterial foraging algorithm
(BFA) [10], artificial fish swarm algorithm (AFSA) [11], arti-
ficial bee colony (ABC) algorithm [12], cuckoo search (CS)
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algorithm [13], bat algorithm (BA) [14], ant lion optimizer
(ALO) [15], moth-flame optimization (MFO) algorithm [16],
and salp swarm algorithm (SSA) [17], etc.

Grasshopper algorithm is a new meta-heuristic algorithm
proposed by Saremi et al. in 2017 [18], which is inspired by
the swarm behavior of locusts. Since the algorithm was pro-
posed, it has been widely used in many fields, such as optimal
power flow [19], feature selection [20], financial stress pre-
diction [21], and image segmentation [22]. In fact, this swarm
based meta-heuristic algorithm avoids the stagnation of local
optimality to some extent, but it is found in the test function
that GOA has the disadvantages of poor global search ability
and slow convergence speed. Therefore, in some cases, GOA
cannot find a global optimal solution. The search strategy
used in the base GOA is primarily based on minimums
and random walks, so it cannot always successfully solve
the optimization problems. Thus many researches focus on
improving the performance of meta-heuristic algorithms by
promoting exploration and exploitation.

Wu et al. [23] introduced natural selection strategy and
democratic decision-making mechanism into GOA to avoid
falling into local optimization. In addition, based on the
dynamic feedback mechanism, the 1/5 principle is also intro-
duced to adjust the parameter c to better balance global and
local search. Liu ef al. [24] proposed an integration strat-
egy combining linear weighting and grasshopper optimiza-
tion algorithm to solve the problem of energy management,
improve the comprehensive energy efficiency and realize the
regional coordination optimization. Ewees et al. [25] pro-
posed an improved GOA. The proposed OBLGOA algo-
rithm includes two stages: the first stage uses the OBL
strategy to generate the initial population, and the second
stage uses OBL as an additional stage to update the GOA
population in each iteration. Luo et al. [21] combined three
strategies to achieve a more appropriate balance between
exploration and exploitation. The Gaussian mutation was
adopted to increase population diversity and make GOA
have stronger exploitation capabilities. Then, Levy flight
was used to enhance the randomness of the search agent’s
movement and make GOA have a stronger global exploration
ability. In addition, the opposition-based learning was intro-
duced into GOA to achieve a more efficient search solution
space. Arora and Anand [3] introduced chaos theory into the
optimization process of GOA, which improved the global
convergence speed of GOA. In the optimization process,
the use of chaotic maps effectively balanced the exploration
and exploitation among locusts, and reduced the repulsion
and attraction between locusts. Sulaiman ef al. [26] updated
GOA with a better initialization strategy to balance GOA’s
search capabilities. Yan and Ye [27] proposed a hybrid locust
optimization algorithm based on the idea of quantum comput-
ing in order to overcome the shortcomings of the algorithm
with low convergence accuracy and used quantum revolving
gate operation to improve it. Liang et al. [28] used Levy
flight to balance the exploration and development of GOA
so as to improve the convergence speed and accuracy of
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the algorithm. Taher et al. [19] applied random mutations of
GOA to enhance the new search area to avoid local opti-
mal value stagnation. Jia et al. [22] proposed an effective
satellite image segmentation method based on hybrid GOA
and minimum cross entropy (MCE), and they combined
GOA with adaptive differential evolution (DE) to improve
search efficiency, especially to preserve population diversity
in subsequent iterations. An improved grasshopper algorithm
based on gravity search operator and pigeon colony land-
mark operator was proposed. Firstly, this paper introduces
the gravity search operator (GGOA) on the basis of the
original GOA, which improves the randomness of the algo-
rithm, increases the global search ability of the algorithm, and
avoids falling into local optimization. On this basis, pigeon
landmark operator is added to improve and balance the explo-
ration and exploitation ability of the algorithm. The selection
strategy is adopted in the location update strategy, which
further increases the selection diversity of the algorithm and
improves the convergence accuracy of the algorithm.

Il. BASIC PRINCIPLES OF GRASSHOPPER ALGORITHM
The grasshopper optimization algorithm is inspired by the
foraging behavior of grasshoppers [18]. Grasshoppers are
a type of insect that are usually seen alone, but they are
one of the largest groups of organisms. The life cycle of
grasshopper is divided into two main stages: larval stage
and adult stage. The larval stage is characterized by the
slow movement and small movements of locusts. The adult
stage is characterized by a large range of sudden movements.
Similarly, naturally inspired algorithms logically divide the
search process into two trends: exploration and exploitation.
In the exploration phase, grasshoppers tend to move quickly,
while in the exploitation phase, they are encouraged to move
locally. Both of these functions, as well as finding food
sources, are naturally realized by grasshoppers. Theoreti-
cally speaking, the swarm behavior of grasshoppers can be
summarized as:

Xi=S8i+Gi+A; (D

where, X; represents the location of the i — th grasshopper,

Si represents social interaction, G; represents the gravity of

the i — th grasshopper, and A; represents wind advection.
The S component in Eq. (1) can be calculated by:

N
Si= ) s(dy)dy ©)
J=1j#

where, dj; represents the distance between the i —th grasshop-
per and the j — th grasshopper, and the expression is d;; =
|xj —xl-‘. s is the strength of the social force, and it is
calculated by using Eq. (3). The unit vector between the
i — th grasshopper and the j — th grasshopper is calculated
in terms of c?,y- = (x; — xi)/d,-j. The social power is defined
by the s function, which can be calculated by:

s(r) =fel —e™ 3)
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FIGURE 1. The effect of S function on grasshopper’s social interaction.
(a) is the effect of S function on grasshopper social interaction when

I=1.5 and f=0.5; (b) is the effect of the function s on grasshopper social
interaction when I=1.5, f=0.5, and when x is in [1,4].

w
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where, f is the intensity of attraction and [ is the scale
of attraction length. According to literature [18], when
f = 05,1 = 1.5, the algorithm has best optimization
performance.Fig. 1 shows the influence of s function on
grasshopper social interaction (attraction and exclusion).

It can be seen form Fig. 1 that a distance from 0 to 15 is
considered. Rejection occurs in the interval [0, 2.079]. When
one grasshopper is 2.079 units away from another, it is neither
attractive nor repulsive. This is called a comfort zone or com-
fort distance. Fig. 1 also shows that the attraction increases
from 2.079 to close to 4 and then decreases gradually. The
component G in Eq. (1) can be calculated by:

Gi = —geg “

where, g stands for the gravitational constant, and ég is the
unit vector pointing to the center of the earth.
The component A in Eq. (1) can be calculated by Eq. (5).

Aj = ue, &)
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where, u represents the constant drift, and e,, is the unit vector
of the wind direction.
Substitute S, G and A into Eq. (1) to obtain:

N
Y sy —u) T - gt uen  ©
j=1j v

X; =

where, N represents the number of grasshoppers.

In the optimization algorithm, Eq. (6) is not used because
it prevents the optimization algorithm from exploration and
exploitation the searching space near the solution [18]. In fact,
this grasshopper model is designed for colonies of grasshop-
pers that live in free space. In addition, the mathematical
model is not directly used to solve the optimization problem
because the grasshopper quickly reaches the comfort zone,
while the grasshopper does not converge to the specified
point. Therefore, the modified Eq. (6) is used to solve the
optimization problem.

J N uba—Iba 4 aN—% ) -
Xt=cei| ¥ csz(‘xj ! >T +7 )

J=1j Y

where, uby and [by; represent the upper and lower limits
respectively. T, represents the optimal position. ¢; and ¢;
represent coefficients of contraction comfort zone, exclusion
zone and attractiveness.

It can be seen from Eq. (7) that the location of the
grasshopper next time is determined according to its cur-
rent position, target position and the location of all other
grasshoppers. Eq. (7) consists of two parts: the first part
considers the location of the current grasshopper relative to
other grasshoppers in the region; The second part reduced
the movement of grasshoppers around the target, allowing
for the exploration of the entire population around the target.
Specifically, the parameter c; is responsible for reducing the
movement of locusts around the target, which means that
c1 basically balances the exploration and exploitation of the
entire population around the target; The parameter ¢, reduces
the attraction zone, comfort zone and exclusion zone between
grasshoppers, that is to say that ¢, linearly reduces the space
to guide grasshoppers to find the optimal solution in the
search space. It is worth noting that the adaptive parameter
c1 helps reduce the repulsion or attraction between grasshop-
pers, which is proportional to the number of iterations, while
¢y reduces the search range around the target as the number
of iterations increases. In order to balance exploration and
exploitation, ¢ decreases proportionally as the number of
iterations increases [3]. Similarly, as the number of iterations
increases, the value of ¢p decreases in order to minimize
the comfort zone. In [18], the parameters (c; and c;) are
considered as a single parameter and modified using the
following methods:

Cmax — Cmin
_ 8
T ®)

C = Cmax —
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where, cmax and cpmin represent the maximum and minimum
values, ¢ represents the current number of iterations, and 7 is
the maximum number of iterations.

The algorithm flowchart of the grasshopper algorithm is
shown in Fig. 2. The pseudocode of the grasshopper algo-
rithm is described as follows [18].

( Stat )

A 4

| Initialize the swarm X, (i=1,2, ,n) |

A 4

InitializeC oy ~ Cpin and maximum number of iterations T |

N

A 4

| Calculate the fitness of each search agent |

A 4

| Update ¢ according to Eq. (8) |

)

Normalize the distances between grasshoppers in [1,4] |

)

| Update the grasshopper's position according to Eq. (9) ‘

N |

Whether the
termination condition
is satisfied

| Output optimal value

End

FIGURE 2. Operation flowchart of grasshopper algorithm.

Initialize the swarm X; i = 1,2, --- , n)
Initialize cpmax, cmin and maximum number of iterations
Calculate the fitness of each search agent
Target = the best search agent
while (1<Max number of iterations)
Update c using Eq.(8)
for each search agent
Normalize the distances between grasshoppers
in [1,4]
Update the position of the current search agent by
the Eq.(7)
Bring the current search agent back if it outside the
boundaries
end for
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Update Target if there is a better solution
I=1+1

end while

Return Target

llIl. HYBRID GRASSHOPPER ALGORITHM BASED ON
GRAVITY SEARCH OPERATOR AND PIGEON
COLONY LANDMARK OPERATOR
A. GRAVITY SEARCH OPERATOR
Inspired by the law of universal gravitation in physics,
Rashedi et al. [29] proposed the Gravitational Search Algo-
rithm (GSA) in 2009. GSA believes that each particle in the
search space has a mass, and can actually perform undamped
objects, and the objects are attracted to each other by grav-
itation. The law of motion follows Newton’s second law,
so that it moves toward the optimal position under the action
of this law movement [30]. The standard gravitational search
algorithm is described as follows. Suppose the dimension
of the search space is D, the population size is N, and the
initial population is P = {Xi, X3, -+, Xy}, where X; =
{x},x2,---x'},i = 1,2,--- N is the position of the
i — th particle, and x{‘ represents the position of the
i — th particle on the k — th dimension.

(1) The inertial mass Mass;(t) of each particle i can be
defined as:

. fiti(t) — worst(t)

mi(t) = best(t) — worst(t)
m;(t) )
Massi(t) = -
S mito)

where, fit;(t) is the fitness value of particle i at time t.
When solving the minimum value problem, best(t) =
min(fit;(¢)),j = 1,2,---, N, worst(t) = max(fit;(t)),j =
1,2,---,N; And when solving the maximum problem,
best(t) = max(fi;(t)),j = 1,2,---,N,worst(t) =
min(fitj(t)),j=1,2,--- ,N.

(2) The gravity of particle j on the k — th dimension of
particle i can be defined as:

Massi(t) — Massj(t)
Rji(t) + ¢
where, Mass;(t) and Mass;(t) are the inertial masses of par-
ticles i and j respectively. ¢ is a very small constant, R;;(?) is
the Euclidean distance between particles i and j, and G(t) is

the universal gravitational constant at time ¢, which decreases
with the age of the universe and is calculated by:

Fi(t) = G() (x}‘(r) - x,-"(r)) (10)

G(t) = GO) x e~ T (11)

where, G(0) is the universal gravitational constant at time
t = 0, « is the attenuation coefficient, and T is the maximum
number of iterations.

(3) The resultant force of particle i in the k — th dimension
can be calculated by:

Fl.k([)z Z rande{]‘-(t) (12)

JEKbest »i?éj

VOLUME 8, 2020



S. S. Guo et al.: Improved Grasshopper Algorithm Based on Gravity Search Operator and Pigeon Colony Landmark Operator

IEEE Access

where, rand; is the random number within the interval [0,1],
Kpes: 1s the document storing the elite particle of the pop-
ulation and its scale decreases linearly with the number of
iterations.

According to Newton’s second law, at time 7, the acceler-
ation of particle 7 in the k — th dimension can be defined as:

Fk(t)
Mass;(t)

Therefore, the velocity and position of the particle at time
t + 1 are respectively described as:

ak(t) = (13)

V@ + 1) = rand x vE@t) + ak (1) (14)
e+ =xfO+Wae+1) (15)

B. PIGEON-INSPIRED ALGORITHM

Pigeon-inspired optimization (PIO) algorithm is a bionic
intelligent optimization algorithm proposed by Duan et al
in 2014 [31]. Each pigeon in PIO algorithm corresponds to
a feasible solution, which has two attributes of position and
speed, which respectively represents the current position and
moving speed of the pigeon in the solution space, and eval-
uates the quality of the pigeon through the fitness function.
The PIO algorithm uses a compass operator and a landmark
operator to imitate navigation tools in different flight phases,
and completes evolution and screening operations in two
independent loops to achieve optimization. The landmark
operator can be described as:

Vi(t) = Vit — 1)-¢ R 4 rand-(X, — Xi(t — 1)) (16)
Xi(t) = Xit — 1) + Vi(®) a7

where, R is the map and guide factor . r represents the current
number of iterations. X;(¢) and V;(¢) represent the position
and velocity of pigeon i in generation ¢, Xgp,s represents the
global best position obtained by comparing the positions of
all pigeons after the iteration t — 1, and rand is a random
number on the scope [0,1].

The landmark operator is used to imitate the role of land-
marks in individual pigeon flock evaluation and correction
when the pigeons are flying close to the destination [31]. If the
pigeons are familiar with landmarks, they can fly straight to
their destination. Conversely, if the pigeons are unfamiliar
with the landmark and stay away from the destination, they
will follow the familiar pigeon to reach the destination. In the
landmark operator, the number of pigeons in each generation
is halved by Np. However, the pigeons are still far from their
destination and they are not familiar with landmarks. Let
X.(t) be the center of a pigeon’s position at the r —th iteration,
assuming that each pigeon can fly directly to its destination.
The position update rule of pigeon i at the ¢ — th iteration can
be described as follows.

Nyt — 1)

Np(1) = —— (18)
2 Xi(t)fimess(X;(1))
Xet) = N, Y fitness(Xi(1)) 19
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Xi(t) = Xi(t — 1) + rand-(X(1) — Xi(t — 1))~ (20)

where, fitness() represents the fitness value of pigeon.

C. IMPROVED GRASSHOPPER ALGORITHM

According to Eq.(7), after a given initial population, the
search individual will converge to the target location, and
continuously adjust the location according to the influence
of interaction forces during the convergence process, and
finally make the population more evenly distributed around
the target location. This unique way of interacting with other
search individuals is a significant feature that distinguishes it
from other algorithms and allows the algorithm to have better
exploitation capabilities. However, this remarkable feature
also leads to the shortcomings of the basic locust optimization
algorithm, such as rapid population diversity decline and
insufficient global search ability, which leads to the algo-
rithm falling into local optimization and insufficient conver-
gence precision. In order to improve the performance of the
algorithm, the acceleration in gravity search is introduced
to enhance the global search ability, which is described as
follows.

N ubg—iby Xi—x;
Xidzcl Z C)————=§ (‘xfi—x,-d ) #—i—afl +Ty
T | 4
(2D

where, af is the acceleration in the gravitational search. The
purpose of afl is to increase the randomness of grasshop-
per movement, improve grasshopper’s global exploration
and avoid falling into local optimization. Suppose Solf =

N -
. ;#.CQMS ()xjfl — xlfiD x’d—ijx’ + af, Solld indicates the
J=Lj#i

new position of the grasshopper formed by the effect of the

force between grasshoppers. Eq. (7) can be simplified as:
x4 = c1Sold + T4 (22)

At the same time, in order to improve the convergence
speed of the algorithm, this paper introduces the search oper-
ator in the pigeon algorithm after introducing the gravity
search operator, which is described as follows.

x4 = ¢, Sol? + &R (X;f - fd) (23)
where, R represents the map and guide factor. The research
results of literature show that the smaller R is, the stronger
the search ability is and the greater the development potential
is [45]. In order to solve the balanced development problem,
the linear variation strategy is adopted in this paper, and the
calculation formula is defined as:

R= <Rmin + Rmax%) (A +pGand — 1) (24)

where, Rmax represents the maximum map compass factor
value, Rpyin represents the minimum map compass factor
value, and p, represents the probability of variation.
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Therefore, the operation flow chart of the improved
grasshopper algorithm is shown in Fig.3, and the pseudocode
is described as follows:

Initialize the swarm X, (i=12,---,n)

l

Initialize ¢, Cmin + Ry ~ Roias G(0)~ X
and maximum number of iterations 7'

—
4

| Calculate the fitness of each search agent |

l

| Update ¢ according to Eq. (8) |

l

Normalize the distances
between grasshoppers in [1,4]

rand > 0.5

Y

Update the grasshopper's position
according to Eq. (22)

Update the grasshopper's position
according to Eq. (23)

Whether the
termination condition
is satisfied

Output optimal value

FIGURE 3. Operation flowchart of improved grasshopper algorithm.

Initialize the swarm X; i = 1,2, --- , n)
Initialize ¢max, Cmin, Rmaxs Rmin, G(0), « and maximum
number of iterations T
Calculate the fitness of each search agent
Target = the best search agent
while (1 < T)
Update c using Eq.(8)
for each search agent
Normalize the distances between grasshoppers
in [1,4]
if rand>0.5
Update the position of the current search agent by
the Eq.(23)
else if
Update the position of the current search agent by
the Eq.(22)
end
Bring the current search agent back if it outside the
boundaries
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end for
Update Target if there is a better solution
I=1+1

end while

Return Target

D. THE TIME COMPLEXITY OF THE HWOA

The computational complexity of the algorithm is an impor-
tant index to evaluate its running time, which can be defined
according to the structure and implementation of the algo-
rithm. This section uses the big oh notation, which is the
worst-case time complexity. The time complexity of HWOA
depends on the number of grasshoppers, the dimension of
the variable, the maximum number of iterations, and the
location-updating mechanism of grasshoppers in each iter-
ation. The calculation of the specific time complexity is as
follows:

@ To initialize and assign the value of n grasshoppers in
d- dimensional search space, dn times should be run.

@ Computing the fitness values of each grasshoppers, and
inertial mass to run n times, and selecting the optimal fitness
value needs to run 2= times.

® To calculate the distance between grasshoppers and
normalize it to [1,4] requires running ”("T_l) times.

@ Updates of parameters ¢, R and G need to be run once,
respectively.

® According to Eq.13, the acceleration of n grasshoppers
in the d dimension needs to be run (n(n — 1)d) times.

® According to Eq.23 or Eq.22, updating the position of
the grasshopper requires running n> times.

@ The optimal value and the judgment algorithm need to
run once respectively.

In summary, the time complexity of HWOA is simplified
as:

nn—1)

2
B +2d)n?t — (1 + 2d)nt + 10t
- 2

0(HWOA)=t< +3+n(n—1)d+n2+2>

(25)

IV. SIMULATION EXPERIMENTS AND RESULT ANALYSIS
ON FUNCTION OPTIMIZATION PROBLEMS

A. TEST FUNCTIONS

In order to verify the performance of the proposed HGOA
in this section, 28 most widely used benchmark functions
are adopted for evaluation. The expressions of the 28 bench-
mark functions are shown in Table 1. In order to prove the
superiority of the improved algorithm from multiple angles,
the 28 functions are divided into three groups. F1 ~ F12
are unimodal functions [33]-[35], that is to say that there
is only one global optimal solution in the solution space of
the function, so these unimodal functions are used to test
the convergence rate of the algorithm. Fj3 ~ F»; are multi-
modal functions [35], [36]. There is more than one extremum
in multimodal function, so there are many local optima in
multimodal function, so the algorithm is easy to fall into
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TABLE 1. Benchmark functions.

Function

Range

F=Y"x’

B =20+ T

B0=X0 (%))
F,(x):m‘axux“.lﬁlﬁ/z}

Fio)= Z:[IOU (=) + (xﬁl):]
Fy(x) =" ix,* +rand[0,1)
F=x+103" x
R@=X /"

E=3

RW=X5"

R =) )
R = =1+ X025 )

Fa =31 sin ()

f“u(x):dﬂexp[fﬂz lz;x,‘jfexp[lz:;ycos(brx,)]+20+t:
" .

()= T cos 2
r,f(x)f‘mnzux, H’:'coa[‘/;}rl

[-ln(x):%(l()xin(ﬂ\")+z:(y, —1)[1+10sin* (73, ]

(o, =11+ 2 u(x,,10,100,4)

y =1t

k(y-a)'  x>a
u(x,a,k,m)= 0 —a<x <a

k(-x-a)'  x<-a

Fp (0 =0.14sin* (32x)+ Y (x,=1)"[1+sin® (37, +1)]

+(x, = 1) [1+sin” (27, ) i + 27 u(x,5,100,4)
F(x) =" Jxsin(x,)+0.1x,|

[jk,(x):zi‘:z[(x‘ “1) +(x, 7x‘2)1:|

Fy( =sin® (mm)+ 3 (w,<1)' [1+10sin* (7w, +1)]

1) [1+sin* (27w,)]
_x-1

4

Fuo= {ﬁZ,’L.‘(ﬁ (sin(5005°7)+ 1)]}:
5 =43+ a,

Fy(x) = —cos(x, ) cos(x, )e[

(-7 (v =)' ]

1 25 1 )
D e
o [500*2” Z(JJ

(57 b, )T

b2 +bx, +x,

Fux)= ZL{{I,

51, ;
F'H(x):(x,——lx"+ix,—6) +|o[1-i]cosx,+m
27y I3 87

B ==X [(X-a )X ) +e]
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local optima. The test results of multimodal function can
well show the function optimization ability of the algorithm.
F»>3 ~ F»g are combination functions [33], which are formed
by rotation, displacement and offset of various benchmark
functions. Such functions have low dimensions and a small
number of local optimal values [36]. Both unimodal and mul-
timodal functions are tested in 30 dimensions, and composite
functions are tested in their own dimensions.

B. SIMULATION EXPERIMENTS AND PERFORMANCE
ANALYSIS WITH OTHER SWARM INTELLIGENT
ALGORITHMS

1) TEST FUNCTION RESULTS AND ANALYSIS

In order to verify the performance of the improved algo-
rithm, this paper compares the improved hybrid grasshopper
algorithm (HGOA) with the original grasshopper algorithm
(GOA), particle swarm optimization (PSO) algorithm, sine
cosine algorithm (SCA), moth flame optimization (MFO)
algorithm, salp swarm algorithm (SSA) and bat algorithm
(BA). The parameter settings of each algorithm are shown in
Table 2 . The simulation results of 28 test functions are shown
in Fig.4, and the performance comparison simulation results
under 10 runs are shown in Table 4. The optimal value, mean
value and variance of the simulation results for 10 times are
given in Table 3 , in which bold data is the best result.

From the above experimental results, we can see that the
function optimization ability of HGOA is better than other
optimization algorithms. For the test results of the unimodal
functions F1 ~ F12, HGOA algorithm gets the best results.
In most single-mode test functions, the performance of the
improved algorithm has been significantly improved, show-
ing the high performance of the algorithm. The single-modal
test function has only one global optimum, and the results
show that HGOA has a high exploitation ability. It can be seen
from the data table of test results, HGOA greatly improves
the accuracy of optimization results. In function F9, HGOA
improves the accuracy by 58% compared with GOA, and
in function Fy, it improves the accuracy by 37%. However,
according to the optimal convergence curve, it can be seen
that although HGOA effectively improves the convergence
accuracy of the algorithm, for some functions, its conver-
gence speed needs to be further improved. For the multimodal
functions F13 ~ F»22, the optimization results of HGOA are
all near the optimal value. For the function F3, the optimal
value is basically found. In other functions, the optimization
accuracy is also improved compared with other algorithms
in different degrees. Because there are a large number of
local solutions in the multi-modal test function, these results
quantitatively show the effectiveness of the algorithm to avoid
local solutions in the optimization process. For the test func-
tion with fixed dimension, HGOA shows a good optimization
effect. Except for the test function F»5, the optimal value of
the function can be found, and the convergence speed of the
algorithm can be improved to a large extent. At the same
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TABLE 2. Parameter Settings for each algorithm.
Algorithm Main parameters Settings
GOA Particle number n=30; ¢, =1, ¢, =0.00004
Particle number n=30;
HGOA
Come =1, Cow = 0.00004 : GO=100, @, =20 , R, =15 R, =0.00004  p, =0.5
PSO Particle number n=30 ; ¢=2 , ¢,=2 ; W\, =09 w, =01
SCA Particle number n=30;
MFO Particle number 1 =30
SSA Particle number n =30
BA Particle number n =30

time, it can be seen from the difference column of the test
data that HGOA is very stable in the 10 times of optimization
process. The fixed dimension function is more challenging

22214

balance between e

than the multimodal test function, which requires a proper

xpansion and development. Therefore,

it can be said that HGOA can well balance exploration and
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TABLE 3. Performance comparison of test functions.

Function Algorithms Best Ave Std
GOA 449775 3.6601E+02 3.9169E+02
HGOA 4.3310E-10 6.5062E-10 1.1164E-10
PSO 1.1434E-05 1.5304E-04 1.2353E-04
Fi SCA 0.0334 6.9835 11.0410
MFO 0.5617 3.0124E+03 4.5752E+03
SSA 4.1635E-08 1.3420E-07 9.2057E-08
BA 2.2642E-05 0.2157 0.6233
GOA 4.2691 72.4397 59.8905
HGOA 8.0858E-06 9.3861E-06 1.0799E-06
F) PSO 8.1035E-03 4.1658E-02 3.3409E-02
SCA 8.2068E-04 1.2217E-02 1.0720E-02
MFO 1.3775 24.2605 17.2174
SSA 0.3066 1.5303 1.5086
BA 1.5856 2.4931 0.6444
GOA 2.6216E+02 9.7724E+02 6.9810E+02
HGOA 1.9869E-10 1.5404E-09 9.3521E-10
PSO 27.2366 81.8572 36.2547
F; SCA 2.4586E+03 1.0679E+04 7.6250E+03
HFO 8.7188E+03 1.8903E+04 1.0541E+04
SSA 7.2685E+02 1.6487E+03 1.0004E+03
BA 0.2334 3.6608 4.0681
GOA 2.3208 5.7757 2.8539
HGOA 2.9394E-06 7.0056E-06 2.4155E-06
PSO 1.0213 1.1887 0.1490
Fa SCA 8.7561 34.0384 12.9850
MFO 57.6726 70.0633 5.6430
SSA 3.6143 11.7734 4.4597
BA 0.2827 0.5460 0.1871
GOA 98.2408 9.8179E+02 1.3317E+03
HGOA 1.9920E-03 2.3461E-02 2.1591E-02
PSO 29.6011 66.8661 23.6728
Fs SCA 1.2731E+03 2.6522E+04 2.3091E+04
MFO 2.0963E+02 1.0397E+04 2.6661E+04
SSA 29.0483 1.6995E+02 1.7059E+02
BA 27.8161 64.5438 50.3435
GOA 0.3303 0.5115 0.1216
HGOA 5.5559E-07 3.0389E-05 2.3142E-05
PSO 0.0605 0.1657 7.4477E-02
F, SCA 2.0865E-02 0.1202 0.1006
MFO 0.1226 7.4656 8.2143
SSA 0.0732 0.1487 7.8556E-02
BA 9.7673 31.6906 16.2933
GOA 1.7428E+05 5.8891E+07 7.6357E+07
HGOA 1.1117E-04 4.2509E-04 1.8678E-04
PSO 9.2277 1.2100E+02 88.3537
F; SCA 2.0253E+04 9.1122E+06 1.1946E+07
MFO 1.6218E+05 2.0027E+09 3.9998E+09
SSA 0.8427 1.2831E+03 1.6218E+03
BA 17.4572 2.2063E+05 6.3358E+05
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TABLE 3. (Continued.) Performance comparison of test functions.

GOA 9.7890E+04 3.0384E+22 9.1151E+22
HGOA 1.1894E-16 5.6666E-15 4.5343E-15
PSO 9.3227E-05 4.3238E-02 9.2559E-02
Fs SCA 98.5254 5.5128E+17 1.6532E+18
MFO 1.0101E+28 1.0001E+43 3.0000E+43
SSA 2.0361E+08 5.7533E+17 1.1661E+18
BA 7.6487E-07 1.5342E-04 3.0675E-04
GOA 9.0140 21.4275 9.8625
F HGOA 4.3075E-05 8.0291E-05 2.7702E-05
PSO 2.8335E-03 1.7310E-02 1.7716E-02
SCA 3.7097E-03 0.4201 0.9460
MFO 0.7157 91.5758 69.3906
SSA 2.9331 16.5740 8.6873
BA 1.4315 3.0777 1.2034
GOA 9.8450E-03 7.0908E+07 1.1986E+08
HGOA 2.7025E-53 7.2542E-51 1.2936E-50
PSO 7.3315E-09 5.8141E-06 9.0929E-06
F. SCA 4.2860E+04 4.5152E+14 8.1608E+14
MFO 2.4277E+09 1.1215E+12 1.5602E+12
SSA 1.1401E-09 6.5487E+03 1.5744E+04
BA 4.1754E-25 5.3261E-06 1.5924E-05
GOA 2.2642 17.4256 18.9014
HGOA 2.2364E-15 4.3966E-13 2.7795E-13
PSO 4.7596E-05 5.5339E-04 6.9750E-04
Fn SCA 1.0537E-04 4.6765E-03 7.2856E-03
MFO 5.0002 16.7214 10.9969
SSA 2.8185E-10 2.4727E-09 3.0402E-09
BA 3.6462E-05 7.9141E-02 0.1250
GOA 8.4815E+02 5.6260E+04 6.1685E+04
HGOA 0.3050 0.7747 0.2468
PSO 0.8466 2.5304 1.5133
Fi SCA 2.8222E+02 1.6827E+06 2.5229E+06
MFO 4.3945E+03 5.5868E+08 1.6760E+09
SSA 62.5414 1.0979E+03 1.2740E+03
BA 1.1164 6.0532 4.1903
GOA -8711.8189 -7296.3449 6.8091E+02
HGOA -12569.48017 -12569.4225 0.0910
PSO -6527.7196 -5302.6887 8.7555E+02
Fui SCA -3855.8904 -3697.6173 90.84612166
MFO -9637.3793 -8605.2191 9.4624E+02
SSA -8359.9017 -7152.0633 5.9087E+02
BA -9.2978E+269 -1.0378E+269 Inf
GOA 2.6569 15.0001 2.5681
HGOA 2.4883E-06 4.8242E-06 1.3172E-06
PSO 2.6301E-03 0.1594 5.5263E-03
Fua SCA 0.2542 15.6714 8.6095
MFO 0.8323 14.7045 1.3302
SSA 1.3404 2.4012 0.7881
BA 1.8998 2.1697 0.1819
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TABLE 3. (Continued.) Performance comparison of test functions.

GOA 0.3350 3.3628 2.9376
HGOA 4.4986E-10 6.7444E-10 2.4514E-10
PSO 1.3963E-06 5.9263E-03 5.0758E-03
Fis SCA 9.3831E-02 1.2176 0.9080
MFO 0.7634 0.9266 0.1277
SSA 3.7470E-03 1.2862E-02 7.3918E-03
BA 6.1783E-06 1.2780E-02 1.2903E-02
GOA 3.2364 5.4450 1.6698
HGOA 7.7119E-09 1.6616E-05 3.0514E-05
PSO 3.0180E-07 3.1106E-02 4.7506E-02
Fie SCA 2.1403 2.0820E+03 6.2074E+03
MFO 2.0498 6.9777 5.8609
SSA 2.0917 5.9218 2.4441
BA 0.0423 0.1291 7.5873E-02
GOA 0.4500 3.5298 3.1923
HGOA 7.3136E-08 9.4120E-05 1.4902E-04
PSO 3.1446E-05 6.5784E-03 7.0389E-03
Fi7 SCA 8.6177 1.7641E+05 3.0730E+05
MFO 6.8560 99.2959 1.9769E+02
SSA 0.6349 15.6610 11.1654
BA 0.7710 1.8994 0.7289
GOA 6.1118 11.4837 4.3237
HGOA 4.0125E-07 8.8038E-07 2.4074E-07
PSO 2.2831E-03 3.4222E-02 6.8672E-02
Fis SCA 1.0770E-02 1.2902 2.0452
MFO 3.2785E-02 4.2063 3.2684
SSA 1.5101 2.6123 0.7412
BA 4.1720E-03 0.1047 0.1962
GOA 4.9797 92.5859 1.4483E+02
HGOA 1.6366E-13 7.9376E-12 1.0701E-11
PSO 3.4765E-02 0.1655 0.2702
Fio SCA 25.4747603 26.4568 0.6365
MFO 7.6702 12.9831 2.7605
SSA 6.6085E-06 1.8165 4.8746
BA 5.5167 9.7739 3.2181
GOA 28.1076 50.0637 15.1512
HGOA 9.9992E-10 4.6011E-07 6.5357E-07
PSO 1.8596E-04 0.4823 0.5031
Fa SCA 2.1412 4.1274 2.8273
MFO 19.2212 41.9444 24.7528
SSA 3.5941 8.0976 3.3762
BA 1.0965 1.4220 0.2172
GOA 2.3137 2.5767 0.1417
HGOA 7.5472E-04 8.0254E-04 2.4498E-05
PSO 0.2630 0.5582 0.2677
Fa SCA 5.4818E-03 7.4004E-02 5.1362E-02
MFO 1.5615 2.0630 0.2490
SSA 1.1013 1.4543 0.1787
BA 0.7246 0.8493 0.1004
GOA 8.4187E+02 1.2047E+03 1.8721E+02
F HGOA 0.3394 0.6106 0.1884
PSO 1.8995E+02 3.6069E+02 1.0304E+02
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TABLE 3. (Continued.) Performance comparison of test functions.

SCA 7.8573E+02 9.0950E+02 63.5996
MFO 5.9119E+02 9.1522E+02 1.8479E+02
SSA 3.9865E+02 6.3873E+02 1.5661E+02
BA 7.1141E+02 9.3240E+02 87.6770
GOA 0.9980 0.9980 4.6444E-16
HGOA 0.9980 0.9980 5.6352E-10
PSO 0.9980 3.8544 2.7608
Fa SCA 0.9980 27738 2.8209
MFO 0.9980 1.7889 1.5160
SSA 0.9980 1.5928 1.0104
BA 2.9821 11.7017 2.9065
GOA 0.0003 0.0065 8.4686E-03
HGOA 0.0003 0.0003 4.1792E-06
PSO 0.0007 0.0008 9.1242E-05
F o SCA 0.0008 0.0011 3.2184E-04
MFO 0.0007 0.0049 7.7537E-03
SSA 0.0003 0.0048 7.7714E-03
BA 0.0003 0.0040 4.2918E-03
GOA 0.3979 0.3979 1.0771E-13
HGOA 0.3979 0.3979 1.2708E-05
PSO 0.3979 0.3979 5.5511E-17
Fas SCA 0.3980 0.3992 1.6948E-03
MFO 0.3979 0.3979 5.5511E-17
SSA 0.3979 0.3979 1.4388E-14
BA 0.3979 0.3979 4.6497E-10
GOA -5.1008 -3.6291 1.2018
HGOA -10.1532 -10.1532 2.8161E-06
PSO -10.1532 -8.6537 2.9986
F e SCA -4.8564 25477 1.8364
MFO -10.1532 -4.8978 3.4405
SSA -10.1532 53918 3.2517
BA -10.1532 -5.5650 1.5294
GOA -5.1288 -3.6609 1.0190
HGOA -10.4029 -10.4026 8.0210E-04
PSO -10.4029 9.8714 1.5946
Fa SCA -6.7212 -3.6808 1.7641
MFO -10.4029 -7.0083 3.4478
SSA -10.4029 -8.8741 3.0576
BA -5.0877 -5.0877 3.7140E-07
GOA -10.5364 53569 3.4832
HGOA -10.5364 -10.5363 1.3406E-04
PSO -10.5364 -9.8663 2.0103
Fas SCA -4.9918 27142 1.4972
MFO -10.5364 -7.7596 34111
SSA -10.5364 92291 2.6629
BA -5.1285 -5.1285 0.0000
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FIGURE 5. The convergence curves of test functions.

development and solve such challenging problems. Accord-
ing to all the test results, HGOA has been improved in most
cases in terms of convergence speed, and has shown good
optimization effect in terms of convergence accuracy. Espe-
cially, in the fixed dimension test functions, the algorithm’s
robustness is improved while ensuring the convergence speed
and optimization accuracy.

2) NONPARAMETRIC TEST ANALYSIS

In order to verify the stability of the algorithm, the average
value of each algorithm has been carried out the nonpara-
metric tests. In this work, Wilcoxon rank sum test is used as
nonparametric statistical test to determine the importance of

VOLUME 8, 2020

the results. Table 4 depicts the 5% p value obtained from this
test. It can be seen from Table 4 that the p-value of unimodal
functions and multimodal functions are far less than 0.05,
highlighting the significant advantages of HGOA compared
with other algorithms based on p-value (less than 0.05).

C. SIMULATION EXPERIMENTS AND PERFORMANCE
ANALYSIS OF IMPROVED ALGORITHM

In order to more accurately express the influence of gravity
search operator and pigeon search operator on the algorithm,
this section carries out simulation tests on the basic grasshop-
per algorithm (GOA), the grasshopper algorithm (GGOA)
with gravity search operator and the grasshopper algorithm
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FIGURE 5. (Continued.) The convergence curves of test functions.

TABLE 4. Nonparametric test results.

Algorithm comparison ~ Unimodal functions

Multimodal functions ~ Combination function

HGOA vs GOA 4.6949E-05
HGOA vs PSO 0.0017
HGOA vs SCA 1.5580E-04
HGOA vs MFO 3.6585E-05
HGOA vs SSA 0.0011
HGOA vs BA 7.3148E-04

0.0022 0.4567
0.0140 0.4177
0.0028 0.3939
0.0022 0.4177
0.0028 0.4177
0.0058 0.4177

(PGOA) with pigeon search operator. In the simulation exper-
iment, it was found that both GGOA and PGOA had different
degrees of improvement in convergence speed and conver-
gence accuracy, so the curves and data with relatively obvious
effect were given. Partial convergence curves were shown in
Fig.5, and the convergence results were shown in Table 5.
It can be seen from the convergence curve that for unimodal
functions, the influence of GGOA and PGOA on the conver-
gence speed of the algorithm is not obvious. For multimodal
functions, the convergence speeds of GGOA and PGOA have
been improved to varying degrees, especially the effect of
PGOA is the most obvious. It can be seen from the table 5

22220

that PGOA has greatly improved the convergence accuracy of
the algorithm, especially by 40 orders of magnitude in both
functions Fg and Fg. At the same time, combined with Fig.4
and Table 3, it can be found that HGOA has further improved
convergence speed and accuracy compared with GGOA and
PGOA.

V. SIMULATION AND RESULT ANALYSIS OF

PRESSURE VESSEL DESIGN PROBLEM

In recent years, using stochastic optimization technology to
solve structural design problems is a research hotspot in the
field of structural design [37], [38]. In order to further verify
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TABLE 5. Performance comparison of the test functions.
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Function Performance GOA GGOA PGOA
Best 1.2100 0.2861 9.3354E-10
Fi Ave 76.4808 2.6472 9.3604E-10
Std 100.5757 2.6834 1.5580E-12
Best 10.4705 71.5561 1.1480E-05
F Ave 63.7554 7.6175E+04 1.2318E-05
Std 45.4566 2.1908E+05 5.1212E-07
Best 3.0281 1.1925 9.1611E-06
Fa Ave 7.6567 17.0914 9.8736E-06
Std 3.5959 21.9562 3.5183E-07
Best 88.2889 28.5811 28.9097
Fs Ave 5.8744E+03 29.1271 28.9503
Std 1.4952E+04 0.7648 0.0158
Best 2.9080E+05 4.7724E+04 7.4530E-04
F; Ave 8.9874E+07 1.3090E+06 8.0112E-04
Std 1.1451E+08 1.5174E+06 2.5914E-05
Best 7.7710E+08 3.1886E-05 8.0906E-17
Fs Ave 1.0000E+27 2.6642E+05 8.9695E-14
Std 3.0000E+27 7.9926E+05 1.2417E-13
Best 18.8280 1.0351 1.2275E-04
Fo Ave 36.2857 2.9281 1.2686E-04
Std 11.6065 1.3840 2.0795E-06
Best 0.0002 1.6861E-10 1.2272E-50
Fo Ave 4.2570E+07 3.1368E-06 1.9756E-50
Std 1.2770E+08 5.8234E-06 5.1459E-51
Best 3.4463 4.0773E-08 9.5586E-13
Fu Ave 15.3420 5.2007 1.0655E-12
Std 15.1522 15.5998 8.7809E-14
Best 14.3943 2.2579 0.9808
Fi Ave 6.5760E+04 6.4878E+02 0.9903
Std 1.5246E+05 1.3777E+03 4.7412E-03
Best 3.4838 3.7573E-04 7.1484E-06
Fu Ave 8.3698 5.6082E-03 7.1659E-06
Std 53112 7.2703E-03 5.8796E-09
Best 1.6443 3.9056E-05 0.5129
Fis Ave 43232 1.5959 0.6856
Std 2.1383 3.1714 0.1169
Best 0.2421 0.0008 2.9665
Fu Ave 9.0559 0.0145 2.9909
Std 12.1315 0.0148 0.0083
Best 35.5773 1.0000 2.1757
F 20 Ave 45.7531 28.0792 2.6303
Std 8.2278 18.7409 0.2556
Best 22172 1.8626 8.6552E-04
F Ave 2.5185 2.3507 8.7408E-04
Std 0.1670 0.2904 6.0343E-06
Best 1.1912E+03 9.4810E+02 9.9758E+02
F Ave 1.4044E+03 1.1095E+03 1.0681E+03
Std 133.2538 1.0890E+02 41.0383
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FIGURE 6. Pressure vessels and parameters.

TABLE 6. Parameters comparison results of pressure vessel design
problems.

Algorithms Ts Th R L Cost

GOA 0.908456  0.476796  47.15804  122.6225 6250.458
HGOA 0.865738  0.427684  45.02398  143.5293 6047.587
PSO 1.034572 0510759  53.73043  71.25397 6478.81
SCA 1.242034  0.696617  64.18282  14.70179 7868.192
MFO 1.256757 0.618359  65.21382  10.04916 7300.218
SSA 1.332253  0.655809  69.19275  53.88863 11442.46
BA 7287851 5232686  59.50347  46.22813 412384.9

the effectiveness of the improved algorithm, the design of
pressure vessel is optimized in this section. The objective of
pressure vessel design problem is to minimize the total cost of
material, forming and welding of a cylindrical vessel. Fig. 6
shows the pressure vessel and parameters involved in the
design [39], [40]. In Fig. 6, T, represents the thickness of the
shell, T}, represents the thickness of the head, R represents
the inner radius, and L represents the length of the cylindrical
section without considering the head. The problem has four
constraints, which are described as follows.

Consider X = [x1x2x3x4] = [T ThRL],

Minimize f (X) = 0.6224x;x3x4 + 1.7781)62x32 +
3.1661x7xs + 19.84x7x3
g1 (X) = —x; +0.0193x3 < 0,
g2 (¥) = —x2 +0.00954x3 < 0,
g3 (¥) = —mxlxy — 373 + 1296000 < 0,
g4 (¥) = x4 — 240 <0,
0<x1 <99,
0=<x <99,
10 < x3 < 200,
10 < x4 < 200,

Subject to

Variable range
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TABLE 7. Performance comparison results of pressure vessel design
problems.

Algorithms Best Worst Ave Std
GOA 6000.916 7699.293 6869.22 510.5817
HGOA 5904.079 6198.458 6044.841 75.54298
PSO 6111.89 6506.57 6312.888 134.4375
SCA 7053.085 154611.8 22612.01 44003.25
MFO 6010.09 7301.196 6721.802 495.237
SSA 5905.54 11586.24 8074.36 1875.607
BA 7956.912 428495.1 195336.1 144260

Convergence curve
T : T T T
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FIGURE 7. Convergence curves of pressure vessel design.

The algorithm used to test this problem are the algorithms
for test function in Section 4.2. The convergence curve of
each algorithm is shown in Fig. 7. The optimal value and
corresponding variable value are shown in Table 6. In order
to test the stability of the algorithm, run the problem 10 times,
and obtain the optimal value, average value and variance
as shown in Table 7. Obviously, the inspection algorithm
showed that HGOA showed very competitive results com-
pared with GOA, PSO, SCA, MFO, SSA and BA in this prob-
lem, and had better optimization ability. Moreover, according
to the variance data in the table, the robustness of the algo-
rithm is obviously better than other algorithms. Because the
search space of this problem is unknown, these results provide
strong evidence for the applicability of HGOA in solving
practical problems. In addition, due to the limitations of case
studies, it can be said that HGOA algorithm can also optimize
the search space with infeasible areas. The results show that
HGOA algorithm can effectively deal with the problem of
limited search space.

VI. CONCLUSION

Grasshopper algorithm, as a new kind of biologically-
inspired algorithm, can avoid the local optimal stagna-
tion to some extent. However, under certain circumstances,
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grasshopper algorithm always fails to show the global
search ability and solve the problem successfully. This paper
firstly introduces the gravity search operator, which greatly
improves the global search capability of GOA, and then intro-
duces the pigeon landmark operator, which well improves
and balances the exploration and development capability of
the algorithm. In order to verify the effectiveness of the
improved algorithm, 28 test functions were used for testing.
Among them, the unimodal function indicates that HGOA
has a higher mining ability; the multimodal function indicates
the effectiveness of HGOA in avoiding local solutions in the
optimization process; the fixed-dimensional function indi-
cates that HGOA can balance exploration and development
well. At the same time, in order to test the influence of
the two operators on the improved algorithm, the grasshop-
per algorithm (GGOA) with only gravity search operator,
the grasshopper algorithm (PGOA) with only pigeon land-
mark search operator and the original grasshopper algo-
rithm (GOA) are compared. The experimental results show
that PGOA plays a great role in the convergence speed and
accuracy. However, combined with the data of HGOA, it
can be found that HGOA has better optimization results
than GGOA and PGOA. Therefore, while increasing the
exploration ability of the algorithm, the balance between the
exploration and development ability of the algorithm must
be ensured to achieve the optimal effect of the algorithm.
Of course, in the convergence curve of some functions, it can
be seen that the convergence speed of HGOA is slow, so the
convergence speed of the algorithm needs to be further stud-
ied in the next study. This paper also applies the improved
HGOA to the design of pressure vessels. Experiment shows
that HGOA has a good performance in solving the problem
of unknown search space. In the future study, we should pay
attention to improving the global search ability of the algo-
rithm, while maintaining the balance between the exploration
and development ability of the algorithm, and apply the idea
to other algorithms to improve the optimization effect of the
algorithm.
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