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Fast image matching via multi-scale
Gaussian mutation pigeon-inspired

optimization for low cost quadrotor
Shanjun Chen and Haibin Duan

Science and Technology on Aircraft Control Laboratory, Beijing University of Aeronautics and Astronautics, Beijing, China

Abstract
Purpose – The purpose of this paper is to propose an improved optimization method for image matching problem, which is based on multi-scale
Gaussian mutation pigeon-inspired optimization (MGMPIO) algorithm, with the objective of accomplishing the complicated image matching quickly.
Design/methodology/approach – The hybrid model of multi-scale Gaussian mutation (MGM) mechanism and pigeon-inspired optimization (PIO)
algorithm is established for image matching problem. The MGM mechanism is a nonlinear model, which can adjust the position of pigeons by
mutation operation. In addition, the variable parameter (VP) mechanism is exploited to adjust the map and compass factor of the original PIO.
Low-cost quadrotor, a type of electric multiple rotorcraft, is used as a carrier of binocular camera to obtain the images.
Findings – This work improved the PIO algorithm by modifying the search strategy and adding some limits, so that it can have better performance
when applied to the image matching problem. Experimental results show that the proposed method demonstrates satisfying performance in
convergence speed, robustness and stability.
Practical implications – The proposed MGMPIO algorithm can be easily applied to solve practical problems and accelerate convergence speed of
the original PIO, and thus enhancing the speed of matching process, which will considerably increase the effectiveness of algorithm.
Originality/value – A hybrid model of the MGM mechanism and PIO algorithm is proposed for image matching problem. The VP mechanism and
low-cost quadrotor is also utilized in image matching problem.

Keywords Quadrotor, Pigeon-inspired optimization (PIO), Image matching, Multi-scale Gaussian mutation (MGM),
Unmanned aerial vehicles (UAVs), Variable parameter (VP)

Paper type Research paper

Introduction
Unmanned aerial vehicles (UAVs) are currently becoming
increasingly popular in civilian and military fields, which have
aroused great interests for its application. UAV is a type of
very complex system which integrates different hardware and
software components. The hardware components include
global positioning system (GPS), camera, controller, inertial
management unit (IMU), and the software components
include image processing, path planning and inner loop
control. UAVs with the ability to perform difficult tasks in
hazardous environments have been used in various places.
However, there are some defects for traditional UAVs such as
high cost, low flexibility and large volume. Compared with
traditional UAVs, the miniature UAVs like quadrotor has its
own advantages in the field of computer vision, and it has been
used widely. For example, quadrotor has been used in the
China’s variety show to shoot many times. Quadrotor was
exploited to test six degrees of freedom flight (Yu and Ding,
2012). Low-cost quadrotor was used for autonomous visual
tracking and landing (Bi and Duan, 2013). Based on

considerations of cost and performance, we use the low-cost
quadrotor assembled by ourselves as a carrier to carry
binocular camera to obtain these images for image matching.

The development of image technology plays a very
important role in the field of vision navigation, image
processing and computer vision. For example, a binocular
vision-based UAVs autonomous aerial refueling platform was
established (Duan et al., 2016). A new image processing
method for discriminating internal layers was proposed (Lang
et al., 2014). The collapsed buildings were detected with the
aerial images captured from UAV (Hua et al., 2016), and
vision navigation for aircrafts based on 3D reconstruction was
utilized (Zhu et al., 2015). While, image matching has always
been a highlighted research topic in image processing, as it is
a fundamental task for many applications of computer vision
such as image registration and image fusion (Koutaki et al.,
2013). Image matching has also been widely applied in the
fields of pattern recognition, three-dimensional reconstruction
and motion analysis (Brown, 1992; Candocia and Adjouadi,
1997). As the importance of the image matching, many
evolutionary algorithms (EAs) and improved methods,
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including artificial bee colony (ABC) (Karaboga and Basturk,
2007), genetic algorithm (GA) (Im et al., 2002), particle
swarm optimization (PSO) (Riccardo et al., 2007) and ant
colony optimization (ACO) (Duan, 2005), are proposed to
achieve a better matching effect. Cauchy biogeography-based
optimization based on lateral inhibition was used to solve the
image matching problem (Wang and Duan, 2013). Duan and
Yu utilized predator-prey PSO to achieve parameter
identification of UCAV flight control system (Duan et al.,
2013). In general, almost all kinds of image matching
algorithms which have been proposed (Duan, 2005; Karaboga
and Basturk, 2007; Riccardo et al., 2007; Zhang and Chen,
2008; Elboher and Werman, 2013; Duan et al., 2013; Koutaki
et al., 2013; Wang and Duan, 2013) can be divided into the
algorithm based on image statistics and the algorithm based
on image characteristics (Ma et al., 2009). The algorithm
based on image statistics analyzes the attributes of an image to
measure the similar degree between the template image and
the reference image under test which is also called the original
image. Its measurement methods mainly include the
minimum distance measurement, correlation function and
probability measure. One of the most commonly used
methods is the minimum distance measurement, including
square difference, mean square difference, absolute difference
and absolute difference. The algorithm-based image
characteristics make use of some image features such as spatial
location, point features, image edge ,texture ,energy, shape
and entropy to evaluate the similar degree of the two images.
Because the performance of the algorithm based on image
characteristics is associated with the choice of image features,
it varies when choosing different image features, which leads
to this type of algorithm with a weak robustness. The
algorithm based on image statistics is independent from the
extensive characteristics extractions. Therefore, it is widely
used and shows a better performance.

Image matching is a process of searching the template
image in the reference image under test by using a specific
algorithm. In general, the image under test is larger than the
template image. As the different of perspectives and filming
equipment, the same object is different in different time of
imaging. In addition, the difference between the template
image and the image under test is expanded as the influence
of noise, rotating, interference and image pre-processing,
which increases the difficulty to matching. At present,
during the process of image matching, the matching
precision, matching speed, versatility and robustness are
the main evaluation standards. To improve these standards,
many algorithms have been exploited. Although the
application of these algorithms has been made great
development in many ways, there are still many aspects
such as computing time, stability, and robustness having
room for improvement. In this paper, multi-scale Gaussian
mutation pigeon-inspired optimization (MGMPIO) is
utilized for image matching problem, which combines the
advantages of a nonlinear model.

The original pigeon-inspired optimization (PIO) algorithm
is a new swarm intelligence optimization algorithm, which was
firstly proposed by Duan and Qiao (2014), and inspired by the
features of the homing pigeons. Here, we are ready to utilize
the PIO algorithm to solve the problem of image matching. In

this type of algorithm, two kinds of operators, including the
map and compass operator model based on magnetic field and
sun and the landmark operator based on landmarks, are used
to search the optimal solution. In early iterations, the speed of
the pigeon mainly depends on its previous speed inertia
according to the map and compass operator. Thus, the global
search ability of PIO is strong because the speed of the pigeons
is randomly given. This operator contributes to the diversity of
population and enables the algorithm to have better stability.
While in late iterations, every pigeon is flying straight toward
the center of all pigeons according to the landmark operator.
This operator contributes to the convergence rate of the
algorithm. The PIO algorithm has been proven to converge
more quickly and more stable comparing with the standard
DE algorithm, and with the increasing of pigeon number, the
convergence performance is much better (Duan and Qiao,
2014). However, the basic PIO algorithm falls into local
optimum easily while keeping a higher convergence speed. To
improve the performance of the basic PIO algorithm,
improved mechanism has been investigated such as Li and
Duan (2014) used the improved PIO algorithm to accomplish
the target detection task for UAVs. In our work, some
improved mechanism is also exploited in the basic PIO
algorithm.

A nonlinear model can make the system become more
flexible by setting the appropriate parameter. In addition, it
can determine its own value according to the actual situation.
The nonlinear model has been applied widely in recent years.
For example, Huang and Ma investigated the nonlinear
attitude-orbit coupling dynamics and control for the
reconfiguration of a two-satellite coulomb tether formation
near earth-moon libration points (Huang et al., 2014). Jeon
and Eun, (2014) exploited nonlinear multiple models to study
distributed estimation fusion problem. In this work, the
nonlinear models, including the multi-scale Gaussian
mutation (MGM) mechanism (Morgan and Druckmüller,
2014) and variable parameter (VP) mechanism (Chatterjee
and Siarry, 2004), are proposed to improve the performance
of the basic PIO algorithm for image matching problem and
the improved PIO algorithm is called MGMPIO. Through
adjusting the change of the previous speed inertia part, the VP
mechanism makes the PIO algorithm has stronger global
searching ability at early iterations and stronger local searching
ability at later iterations (Riccardo et al., 2007). In that case,
the precision and convergence rate of the original PIO
algorithm can be improved. The introduction of MGM
mechanism makes some pigeons get rid of the restriction of
the basic PIO algorithm’s update rule (Tao and Xun, 2009),
which can improve the ability to get rid of local optimum
easily.

The remainder of this paper is organized as follows.
Section 2 introduces the low-cost quadrotor. Then, the
original PIO algorithm is given in Section3. Section 4
describes the MGMPIO algorithm in detail, including the
MGM mechanism and VP mechanism. A series of
experiments are conducted to verify the performance of the
MGMPIO algorithm in Section 5. The concluding remarks
are contained in the final section.
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Low-cost quadrotor
Quadrotor is an electric multiple rotorcraft containing four
rotors, and there are two pairs of counter-rotating, fixed-pitch
blades located in the four corners of its body. As early as
1920s, the idea of using four rotors is realized as a full-scale
helicopter (http://en.wikipedia.org/wiki/Quadrotor). In recent
years, with the development of computer vision, and new
materials and new micro-electro mechanical continually
spring up, quadrotor gets rapid development and wide
application. There are several advantages in comparison to
traditional helicopters, including novel appearance, simple
structure, low cost and excellent performance in a unique way
of flight control (Tian and Xun, 2008). In addition, by using
four rotors, each individual rotor can have a smaller diameter.
In that case, the damage caused by the rotors can be reduced
greatly. Furthermore, quadrotor can finish a variety of flight
attitude such as vertical take-off and landing, free hovering. At
the same time, four rotors can produce greater lift, which
ensure that the fuselage can carry a binocular camera. In view
of the above advantages of quadrotor, we utilize a low-cost
quadrotor with a binocular camera to obtain the images
needed by image matching. As a low-cost quadrotor, in
addition to its own advantage of low cost, we assembled the
quadrotor by using the selected module where the APM flight
control system is used. The APM flight control system is a
kind of open-source system with the main chip ATMEGAL
1280/2560, which supports for three axes, four axes, six axes,
fixed wing and helicopter. Meanwhile, this kind of system
exploited two-stage PID control method. The first level is
navigation grade, and the second is to control level. In this
way, the cost will be further compressed. The quadrotor we
assembled is shown in Figure 1(a), which is a
Wi-Fi-controlled quadrotor which is capable of carrying a
binocular camera. Height is 300mm and diameter is 650mm.
The APM flight control system as a platform offers an open

application programming interface (API) and freely
downloadable software development kit (SDK) for developers
(Krajnik et al., 2011). Many useful pieces of development
information can be found on the developers’ websites or the
official forum. The binocular camera is shown in Figure 1(b),
which is a kind of MERCURY series CCD/CMOS industrial
camera.

Pigeon-inspired optimization algorithm
According to Duan’s theory (Duan and Qiao, 2014) in solving
air robot path planning problem, the PIO algorithm can be
described as follows:

Firstly, initialize the parameters. The maximum number of
iterations for the map and compass operator is T1, and T2 is for
the landmark operator. The number of pigeons is set to N.
Every pigeon’s position and velocity are randomly initialized
within the search space. The position and velocity of the ith

pigeon is donated as Xi�t� � �xi1,xi2, . . . . . ., xiD� and Vi �
�vi1,vi2, . . . . . ., viD�, where D represents the dimension of the
search space. Then, choose the best position by calculating the
quality of all the pigeons.

In the PIO model, according to the characteristics of the
homing pigeons, two operators, including the map and
compass operator and the landmark operator, are utilized. At
early iterations, as the scope of optimal position is not
confirmed and pigeons are far away from the destination, the
map and compass operator is used, which is based on the
magnetic field and sun. In the map and compass operator,
the velocity of each pigeon is determined by their own current
velocity and position, as well as the global optimal position
information, which can be depicted by equation (1). Then the
position of each pigeon at next generation is determined by
equation (2) (Duan and Qiao, 2014). The pigeons are
manipulated by the following equations (1) and (2):

Figure 1 Quadrotor picture from different views
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Vi(t) � Vi(t � 1) · e�Rt � rand · (Xg � Xi(t � 1)) (1)

Xi(t) � Xi(t � 1) � Vi(t) (2)

where R represents the map and compass factor which can
control the changing trend of pigeon’s own speed inertia as the
iteration goes. rand is a random number within [0, 1], Xg

represents the current global best position, which can be
obtained by comparing all the positions among all the pigeons.

After a certain number of iterations, the pigeons fly close to
their destination and will rely on landmarks neighboring them.
The landmark operator instead of the map and compass operator
is exploited to search the best position. In the landmark operator,
every pigeon can fly straight to the destination which is the center
of all pigeons, and the number of pigeons decreases to half of the
last generation. Half of all the pigeons that are far from
the destination and unfamiliar to the landmarks will follow the
pigeons who are familiar to the landmarks. In that case, it is
possible for two pigeons at the same position, and the destination
will be found by the pigeons that are close to their destination
quickly. In Duan’s model (Duan and Qiao, 2014), the center of
all pigeons is their destination in the tth iteration, which can be
written as:

Xc �
�Xi(t) · fitness(Xi(t))

Np ·� fitnesss(Xi(t))
(3)

where fitness�� is the function to evaluate the quality of the
pigeon individually, Np represents the number of pigeons in
the tth iteration, which is the half of last iteration amount. The
position of each pigeon is updated by the following equation:

Xi(t) � Xi(t � 1) � rand · (Xc(t) � Xi(t � 1)) (4)

The PIO algorithm has been proven to be effective and
feasible when it is exploited to solve air robot path planning
problem. But it is easy to get into the local optimum
sometimes; thus, it is essential improve the robustness and
stability of the basic PIO algorithm.

Model development

Variable parameter mechanism
In the basic PIO algorithm, according to equation (2), we can
see that the next iteration position of pigeon decided jointly by
the current speed and position of pigeon’s own, and the speed
direction and size of current pigeon determine the change of
pigeon’s direction and size of next generation. We can also
know that the current speed relies on previous speed inertia
and global optimal position Xg by equation (1). We hope that
the PIO algorithm has larger global search ability at early
iterations, so that we can quickly narrow the range of the
searching space for the optimal value to improve the
convergence speed of algorithm, and in later iterations with
stronger local development ability (Tian and Xun, 2008). In
the original PIO, there is a formula e�Rt in the previous speed
inertia part which represents Vi�t � 1� · e�Rt. The value of the
formula e�Rt decreases gradually with the increase of the
number of iterations, so that at early iterations, the previous
speed inertia part takes a heavy weight in determining the

current velocity, and the effect of the global optimal position
Xg part, which represents rand · �Xg � Xi�t � 1��, is relatively
light. Therefore, the current speed of pigeons mainly depends
on the previous speed inertia part (Chatterjee and Siarry,
2004). Because the previous speed inertia part represents the
pigeons’ own information, different pigeon has different
information, which has strong subjectivity and uncertainty. In
that case, at early iterations, pigeons can locate any location of
search space, and the PIO algorithm shows great global
searching ability. On the contrary, in the late of iterations, the
previous speed inertia part has become small. The current
speed of pigeons mainly depends on the global optimal
position Xg part (Duan and Qiao, 2014). As the global optimal
position Xg part represents the global shared information, it
has the characteristics of prompting aggregation and
convergence. In that case, it can accelerate the convergence
speed of the original PIO algorithm. However, through
analysis, we find that once R is established, the value of
formula e�Rt has normally a fast reduced trend as the increase
of the number of iterations. There is a high chance that the
value of formula e�Rt has become very small in the case of
having not found the range of the global optimal position for
the original PIO algorithm, which leads to the loss of strong
global search ability. Therefore, it will be easy for the original
PIO algorithm trapped in local optimal position and cannot
find the global optimal position finally.

Based on the above shortcomings, here imitating the
thought of inertia weight (Shi and Eberhart, 1998), we adjust
R by utilizing the VP mechanism to control the change of the
previous speed inertia part on the basis of the PIO algorithm.
This new algorithm is called R-adjustable PIO (RPIO)
algorithm. The improved previous speed inertia part has a
slow attenuation trend at early iterations, so that it has a
stronger global search ability to enhance the probability of
finding the range of global optimal position accurately. In the
later of iterations, the improved previous speed inertia part has
a rapid attenuation trend, so that it can find the global optimal
position quickly on the basis of finding the range of the global
optimal position, speeding up the convergence speed of the
basic PIO algorithm. The specific improvement is as follows:

The VP mechanism is designed as (5). The speed of each
pigeon is updated by equation (6), where t represents the
current generation, T1 represents the largest number of
iterations for the map and compass operator and n represents
a parameter, which can set freely by us (Chatterjee and Siarry,
2004).

R � Rmin � (Rmax � Rmin ) · � t
T1�n

(5)

Vi(t) � Vi(t � 1) · e(�R) � rand · (Xg � Xi(t � 1)) (6)

Here, a series of comparative experiments are conducted when
n � 1, n � 2, n � 3, n � 6 and the original version that has not
been improved for the previous speed inertia part to test effect.
The comparative results for the speed of the previous inertial
part are presented in Figure 2, where the X-axis denotes the
number of iterations and has no units, and the Y-axis
represents the previous speed inertia (Vi�t � 1� · e�Rt) in
equation (1) and its unit is m/s.
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In Figure 2 represents the changing trend curves of no
processing previous speed inertia part. The parameters are set
as: Vi�t � 1� � 100, Rmax � 11, Rmin � 1, T1 � 50, and the
no processing parameter R is set to 1.1. From Figure 2, we can
see that the changing trend of the previous speed inertial part
has a distinct improvement. At early iterations, the decline
curves show that the previous speed inertia part that not be
improved has a fast reducing trend, and rapidly decay trends
to 0. But the improved previous speed inertia part has a slow
attenuation trend. Especially when n � 6, it almost did not
reduce in early iterations. At the same time, in the late of
iterations, the improved previous speed inertia part reduced
quickly. In that case, The RPIO algorithm not only can ensure
larger global search ability, but also has stronger local search
ability.

Multi-scale Gaussian mutation mechanism
Through the improvement of the above VP mechanism, the
RPIO algorithm has a good performance in comparison with
the original PIO algorithm. By many times test, we find that
the large R value is conductive to the improvement of the
convergence speed. To ensure a faster convergence speed, we
can increase the value of Rmax and Rmin . But it will speed up
the declining trend of the previous speed inertial part. From
equation (6), we can see that the closer to the current global
best position Xg, the velocity is smaller. Therefore, during the
process of chasing the best position, the PIO algorithm shows
a stronger convergence as the iteration goes. Especially in the
late of iterations, it will become particularly evident. If the
region of the best position has not been found at early
iterations, as the increase of the R value, it will be easier to fall
into local optimal position and eventually cannot find the
global optimal position. In view of above analysis, if the speed
or position of pigeons makes variation (Morgan and
Druckmüller, 2014), the pigeons can get rid of the restrictions
of the PIO algorithm’s update rule to achieve the search of the
other space, jumping out of the local optimal position and
further improving the probability to find the global optimal
position. Through systematic analysis and comparison, here

we use the MGM mechanism (Li et al., 2004) to make a
further improvement for the RPIO algorithm. This new
improved algorithm is called MGMPIO. The Gaussian
distribution is also called the normal distribution, which is
decided by the standard deviation � and the mean � of two
parameters. Obey one-dimensional Gaussian distribution
denoted as N��, ��. Its density function f�x� is defined as
equation (7):

f(x) �
1

�2��
· e

(x � �)2

2 · �
2 (7)

Gaussian mutation is a process that any dimension of pigeon’s
position makes variation according to a certain probability P
(Morgan and Druckmüller, 2014). Formula is as equation (8),
where i represents the ith pigeon, j represents the jth

dimension:

Xij � Xij � N(�, �) (8)

According to the Gaussian distribution’s theory, the size of the
standard deviation determines the distance of mutated pigeon
away from the original position. The greater standard
deviation, the probability of the mutated pigeon far away from
the original position is bigger. The smaller standard deviation,
the pigeon will remain in its own original position with a large
probability. If we determine the size of the standard deviation
� according to the size of the position’s fitness of pigeon (Li
et al., 2004), the pigeon that has a smaller fitness gets a bigger
standard deviation �, which can make it has a greater
probability to locate other locations of the search space to
search, and the pigeon that has a greater fitness gets a smaller
standard deviation �, which can make a further search to all
around the current position. In that case, the MGMPIO
algorithm not only can enhance the probability of jumping out
of local optimal position, but also accelerate the convergence
speed of the algorithm. The specific design is as equation (9):

� � L · �1 �
fitness(Pnow)
fitness(Pfinal)

	 · (Xij max �Xij min) (9)

where L represents a parameter which depends on the specific
situation, fitness�� represents the objective function which
describes the similarity of the image under test and the
template, fitness�Pnow� represents the similarity value of the
current pigeon position, fitness�Pfinal� represents the similarity
value of the global optimal expected position and
�Xij min, Xij max� represents the search interval of the j
dimension.

On the basis of the above improvements, if we also adopt
MGM mutation to the current global optimal position Xg after
each iteration, we can change the update of the pigeons
velocity at the next iteration by changing the Xg, which can
make pigeons locate other parts of the searching space to
search, so as to further increase the probability of finding the
global optimal position. But the MGM mechanism cannot be
added randomly; it should satisfy some conditions. Here, we
introduce the notion of the degree of pigeon’s focus (Li et al.,
2004); its function D�Xi, Xg� is defined as equation (10).

Figure 2 The changing trend of pigeon’s own previous speed
inertia for different situations
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D(Xi, Xj) � max
i�1,2,. . . . . .,N
�

j�1

D

(Xgj � Xij)2 (10)

As the D�Xi, Xg� value will get smaller as the iteration goes, we
established bounds A (Karaboga and Basturk, 2007). When D
�Xi, Xg� is smaller than the value of the A, it indicates that the
pigeons gather closely, which will make the algorithm have a
weak ability to search in the global search space. In that case, the
MGMPIO algorithm will show a strong convergence as the
iteration goes and falls into local optimal position easily. Same as
above, here we determine the size of the standard deviation �
according to the size of the global optimal position’s fitness of the
tth iteration and use the MGM mechanism again. The specific
design is as equations (11) and (12).

� � L · �1 �
fitness(Xg)

fitness(Pfinal)
	 · (Xij max �Xij min) (11)

Xgj � Xgj � N(�, �) (12)

where j represents the j dimension likewise. Through the
above improvements, the MGMPIO algorithm further
contributes to the jumping out of the local optima.

Implementation procedure
The implementation procedure of our MGMPIO can be
described as follows:
● Step 1: Image pre-processing. Obtain the original image

and the template image. Then, convert them into
gray-scale format.

● Step 2: Initialize parameters. Initialize the parameters of
the MGMPIO algorithm such as the number of pigeons N,
the value of bounds A, the search space dimension D, the
value range of the factor for the map and compass operator
�Rmin, Rmax � and the maximum number of iteration T1 and
T2 for two operators.

● Step 3: Initialize the velocity and position of each pigeon
randomly within the scope of the allowed. Compare each
pigeon and calculate the fitness value, finding out the
optimal pigeon to initialize the global optimal fitness value
and optimal position.

● Step 4: Operate map and compass operator. Utilize
equation (5) to update the factor R firstly.

● Step 5: Update pigeons. Update the velocity and position
of every pigeon by using equations (2) and (6) and
calculate the fitness of the newly generated pigeons.

● Step 6: Add MGM. Compare with the established
probability P, if a random value between 0 and 1 is smaller.
Then add MGM to the newly generated pigeons’ position
according to equations (8) and (9).

● Step 7: Compare the fitness of pigeons before and after
mutation. If the fitness added by the MGM is better,
replace the position of pigeons before mutation with the
better pigeons’ position. Otherwise, remain the same as
before.

● Step 8: If N newly generated pigeons have been generated,
go to Step 9. Otherwise, go to Step 5.

● Step 9: Update the global optimal position Xg and optimal

fitness. Calculate and compare all the newly generated
pigeons’ fitness and find the new best position.

● Step 10: Calculate the degree of pigeon’s focus D�Xi, Xg�
according to equation (10).

● Step 11: Add MGM. Compare with the established bounds
A, if the value of the formula D�Xi, Xg� is smaller. Then,
add MGM to the global optimal position Xg according to
equations (11) and (12).

● Step 12: Calculate and compare the fitness of the newly
generated Xg before and after mutation, if the fitness added
by the MGM is better, then replace the pigeons’ global
optimal position before mutation with the better global
optimal position. Otherwise, remain the same as before.

● Step 13: If the number of iterations is more than T1, go to
Step 14. Otherwise, go to Step 4.

● Step 14: Operate the landmark operator. Rank all pigeons
according their fitness values and update the number of
pigeons where half of the pigeons whose fitness is low will
be discarded.

● Step 15: Calculate the center position of all pigeons
according to equation (3). This center position is the
desirable destination, and all pigeons will fly to the
destination by adjusting their flying direction according to
equation (4).

● Step 16: Update the global optimal position Xg and optimal
fitness.

● Step 17: If the current number of iteration t reaches to
T1 � T2, stop the iteration and output the solution.
Otherwise, go to Step 14.

The detailed flow chart of the improved MGMPIO approach
for image matching is shown in Figure 3.

Theoretical analysis
The theoretical analysis of evolutionary algorithms is very
important. Here, we have concisely analyzed our MGMPIO
algorithm in respect of global convergence property and
computational complexity. In the original PIO algorithm,
through the landmark operator, the algorithm is able to quickly
converge to the optimum position in later iterations. In
MGMPIO, the speed of pigeons adjusted by the VP mechanism
can accelerate the rate of finding the region of the global optimal
position; thus, there is faster convergence rate compared the
original PIO. In addition, the MGM mechanism enables the
algorithm to get rid of local optimal position, which is conductive
to global convergence. So, the global convergence performance
of MGMPIO is superior to the original PIO.

We analyzed the time complexity of each operation in the
original PIO and that of these added operation in MGMPIO.
And, the result is given in the Table I. Therefore, the total
complexity of the added operations in MGMPIO in all
iterations is ��2NT1�. Although, these added operations
implement more calculations on the original of PIO. It is
worthy for the significant improvement of performance.

Comparative experimental results and analysis
To test the performance of our proposed MGMPIO, we chose
three cases to carry out experiments. For Case 1, the original
image is shown in Figure 4(a), and the template image is
shown in Figure 4(b). The task is to find out two benches in

Fast image matching

Shanjun Chen and Haibin Duan

Aircraft Engineering and Aerospace Technology: An International Journal

Volume 89 · Number 6 · 2017 · 777–790

782

D
ow

nl
oa

de
d 

by
 B

ei
ha

ng
 U

ni
ve

rs
ity

 A
t 2

3:
38

 2
8 

A
pr

il 
20

18
 (

PT
)



the original image. In this paper, the parameters for
MGMPIO are shown in Table II. All the pictures used for
experiments originate from our assembled low-cost quadrotor
and binocular camera introduced in Section 2, and all the
following experiments are implemented on a PC with Intel
Core i5, 2.6-GHz CPU, 4-GB memory and 64-bit Windows

7. All algorithms are implemented by MATLAB
8.0.0.783(R2012b).

The control parameters in the MGMPIO algorithms are
chosen as follows: parameter P denotes the probability for
Gaussian mutation, and its value depends on the specific
situation. In general, for complex problems, mutation

Figure 3 Detailed flow chart of the improved MGMPIO
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operation is able to strengthen the ability of the algorithm to
find the optimal solution, and it is essential to appropriately
increase the probability of mutation operation. But in some
simple questions, good results can be obtained by the standard
algorithm. In this paper, we choose p � 0.32 is appropriate.
Parameter A is as the reference for aggregation degree; it
mainly depends on the number of pigeons. Its value can be
roughly determined by the formula � · A2 � 15N and the
precise adjustment is then carried out. When the scope of
the search space is large, a larger A is necessary. In this paper,
we choose A � 26 is appropriate. Parameter L in equation (9)
controls the range of the standard deviation, usually preferably
from one to two times of the search space. In this paper, we
choose L � 2. The large R value is conductive to the
improvement of the convergence speed. To ensure a faster
convergence speed, we can increase the value of Rmax and
Rmin . But it will speed up the declining trend of the previous
speed inertial part in equation (1). As the R value increases, it
will be easier to fall into local optimal position and eventually
cannot find the global optimal position. Through further
analysis, we find that, in addition to the parameter n, the value
of �Rmax � Rmin � also affects the changing trend of the previous
speed inertial part. Thus, we can set up a large Rmax value
while a small Rmin value is determined. Through a series of
tests, we find that a good performance can be achieved when
Rmax � 10, Rmin � 0.1, n � 12. Other parameters are selected
empirically through trial and error.

The matching result for Case 1 is shown in Figure 4(c).
From Figure 4(c), it is obvious that the MGMPIO algorithm
can accurately find the location of the template image in the
original image, which indicates that the MGMPIO algorithm
is feasible. To test the advantages of the MGMPIO algorithm
relative to the original PIO algorithm, we conducted a set of
contrast experiments. At the same time, we also choose the
other algorithms, including PSO and RPIO, to further
compare their performance. The result of contrast
experiments is shown in Figure 4(e). It is evident from
Figure 4(e) that the MGMPIO algorithm has the fastest
convergence speed in all of these algorithms, which confirms
that the MGMPIO algorithm has a better effectiveness. Here,
we also show the histogram of image that has been matched
successfully in the Figure 4(d). Its abscissa denotes gray scale,
and its ordinate represents the number of pixels. The left of

Figure 4(d) is template image histogram, and the right of
Figure 4(d) is the histogram matched in original image.

Further experiments are given in Figure 5 to test the
stability of the improved MGMPIO algorithm. Here, all the
algorithms run for 10 times independently. The experimental
results for PSO, PIO, RPIO and MGMPIO are shown in
Figures 5(a)-(d) separately. Moreover, different algorithms
are applied to the same Case 1, and they have the same fitness
function. The number of pigeons and the maximum number
of iterations for different algorithms are set to be same. From
the results in Figure 5, it is clear that, compared with the
original PIO algorithm, the evolutionary curves of the
MGMPIO algorithm are more stable. Compared with other
two algorithms, the MGMPIO algorithm also shows a better
stability. In the experiment, we decrease the demand for speed
to ensure the stability of the original PIO algorithm. If the
original PIO algorithm has the same demand for speed as the
MGMPIO algorithm, it cannot guarantee to match
successfully in each time. When we just use the VP mechanism
to improve the original PIO algorithm, the results in
Figure 5(c) indicate that the RPIO algorithm can improve the
convergence speed. But it is easy to fill into local optimal
solution and cannot find the global optimal solution. After
adding the MGM mechanism, from the results in Figure 5(d),
it is obvious that the MGMPIO algorithm not only can
improve convergence speed significantly, but also maintain
good stability.

To further investigate the robustness of the MGMPIO
algorithm, a series of experiments are conducted for the other
two different cases. Figures 6 and 7 are the results for Case 2
and Case 3, respectively. Just like Case 1, Figure 6(a) and
Figure 7(a) are original images. Figure 6(b) and Figure 7(b)
are template images. Figure 6(d) and Figure 7(d) are
histograms of images that have been matched successfully.
Figure 6(e) and Figure 7(e) are the evolutionary curves with
PSO, PIO, RPIO and MGMPIO. For Case 2, the task is to
find out the car in the original image. The task for Case 3 is to
find out the aircraft in the original image. Here, the
parameters for Case 2 and Case 3 are the same as the Case 1.

From Figure 6(c) and Figure 7(c), it also shows that the
location of the target template image is found accurately in the
original image. The accuracy of our proposed MGMPIO

Table I Parameters for MGMPIO

Operation Time complexity

Operation in original PIO Parameters initialization ��NT1�
Update each pigeon’s position during the map and compass operator ��NT1�

Update each pigeon’s velocity during the map and compass operator ��NT1�

Calculate the fitness of each pigeon during the map and compass operator ��NT1�

Arrange all pigeons by ascend during the landmark operator 	 ��2Nlog N�1 � 0.5T2��

Calculate the center coordinates of all individuals ��2N�1 � 0.5T2��

Update each pigeon’s position during the landmark operator ��2N�1 � 0.5T2��

Calculate the fitness of each pigeon during the landmark operator ��2N�1 � 0.5T2��

Added operation in MGMPIO Update the map and compass factor R in each iteration by equation (5) ��T1�

Calculate the standard deviation � by equation (11)
Pigeons’ mutation operation by equation (12) ��0.32NT1�

Calculate the degree of pigeon’s focus by equation (10) ��2NT1�
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Figure 4 The experimental results of image matching for Case 1
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Notes: (a) Original image for Case 1; (b) template image for Case 1; (c) results for
image matching; (d) the histogram of image that has been matched successfully and
template; (e) evolutionary curves with PSO, PIO, RPIO and MGMPIO
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shows that it is more reliable than the other three algorithms.
Furthermore, it is clear that, compared with other three
algorithms, the MGMPIO algorithm remains its superiority in
the aspects of the effectiveness and the convergence speed
from Figure 6(e) and Figure 7(e).

During the above three cases, MGMPIO has successfully
found the global optimum that is the true position of the target
with higher convergence rate. Although the original PIO has
an acceptable performance compared with PSO, the efficiency
of PIO is low compared with MGMPIO. An intuitive reason is
that the VP mechanism is able to control the change of the
previous speed inertia part in velocity updating formula (1),
which can maintain a low-attenuation trend for the improved
previous speed inertia part at early iterations, so that the
algorithm possesses a stronger global search ability to enhance
the probability of finding the range of global optimal position
accurately. At the same, at the late of iterations, the rapid
attenuation trend for the improved previous speed inertia part

Table II Parameters for MGMPIO

Parameter Description value

N The number of pigeons 150
T1 The maximum times of iteration for

the map and compass operator
50

T2 The maximum times of iteration for
the landmark operator

50

� The mean of Gaussian distribution 0
R Variable parameter [0.1 10]
D The dimension of search space 2
P The probability for Gaussian mutation 0.32
L A set parameter for Gaussian mutation 2
A Reference for aggregation degree 26

Figure 5 Results of run 10 times for Case 1
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Figure 6 The experimental results of image matching for Case 2
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Fast image matching

Shanjun Chen and Haibin Duan

Aircraft Engineering and Aerospace Technology: An International Journal

Volume 89 · Number 6 · 2017 · 777–790

787

D
ow

nl
oa

de
d 

by
 B

ei
ha

ng
 U

ni
ve

rs
ity

 A
t 2

3:
38

 2
8 

A
pr

il 
20

18
 (

PT
)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/AEAT-01-2015-0020&iName=master.img-009.jpg&w=161&h=99
http://www.emeraldinsight.com/action/showImage?doi=10.1108/AEAT-01-2015-0020&iName=master.img-010.jpg&w=157&h=93
http://www.emeraldinsight.com/action/showImage?doi=10.1108/AEAT-01-2015-0020&iName=master.img-011.jpg&w=278&h=135
http://www.emeraldinsight.com/action/showImage?doi=10.1108/AEAT-01-2015-0020&iName=master.img-012.jpg&w=101&h=60
http://www.emeraldinsight.com/action/showImage?doi=10.1108/AEAT-01-2015-0020&iName=master.img-013.jpg&w=102&h=60


Figure 7 The experimental results of image matching for Case 3
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is obtained. Thus, the algorithm can find the global optimal
position quickly on the basis of finding the range of the global
optimal position, speeding up the convergence speed of the
basic PIO algorithm. In addition, the MGM mechanism is
able to make the individual with low fitness value has a greater
probability to locate other locations of the searching space to
search and the individual with low fitness value carry further
search to all around the current position, which not only can
enhance the probability of getting rid of local optimal position,
but also accelerate the convergence rate of the algorithm. It is
observed that RPIO has enhanced the robustness of the
original PIO, and MGMPIO has further enhanced the
robustness of the original RPIO. The fast convergence speed
of an algorithm is crucial for image matching, particularly in
aerial images with complex backgrounds. Based on an overall
consideration of experiments in the above three groups, the
proposed MGMPIO algorithm is superior to three
evolutionary algorithms in solving image matching problem.

Conclusions
In this paper, the MGMPIO algorithm is proposed to
accomplish the image matching problem, which combines the
VP mechanism and the MGM mechanism. The VP
mechanism helps to improve convergence speed and enhance
the probability of finding the optimal location. The MGM
mechanism contributes to jumping out of the local optimum
and preventing from falling into local optimum. The
experimental results in three test cases show that the
MGMPIO algorithm can successfully find the optimal
solution during every run, and it markedly improves the
performance of the original PIO algorithm in terms of
convergence speed, robustness and stability. Compared with
the RPIO algorithm, MGMPIO also shows a better stability
by using the MGM mechanism, which provides a more perfect
way for the image matching problem. The MGM mechanism
used in this paper can enhance the probability of jumping out
of local optimal position and accelerate the convergence
speed. But, according to the principle of the MGM
mechanism, when there are several objects similar to the
template image in original image, it will be not sure to find the
optimal solution accurately. Therefore, further improvements
should be made in the future work. We will be more focused
on balancing the convergence speed and accuracy of the
algorithm. Moreover, as the uncertainty of the variation, when
the search space is large enough, the matching difficulty will
get larger. We will also focus on the study of better methods
for strengthening stability and enhancing searching ability. We
will also apply the proposed approach to solve other real-world
problems, such as UAV, mobile robots, industry production
line and intelligent transportation.
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