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Abstract
Purpose – The purpose of this paper is to propose a new algorithm for independent navigation of unmanned aerial vehicle path planning with fast
and stable performance, which is based on pigeon-inspired optimization (PIO) and quantum entanglement (QE) theory.
Design/methodology/approach – A biomimetic swarm intelligent optimization of PIO is inspired by the natural behavior of homing pigeons. In
this paper, the model of QEPIO is devised according to the merging optimization of basic PIO algorithm and dynamics of QE in a two-qubit XXZ
Heisenberg System.
Findings – Comparative experimental results with genetic algorithm, particle swarm optimization and traditional PIO algorithm are given to show
the convergence velocity and robustness of our proposed QEPIO algorithm.
Practical implications – The QEPIO algorithm hold broad adoption prospects because of no reliance on INS, both on military affairs and market
place.
Originality/value – This research is adopted to solve path planning problems with a new aspect of quantum effect applied in parameters designing
for the model with the respective of unmanned aerial vehicle path planning.

Keywords Pigeon-inspired optimization (PIO), Quantum entanglement, Quantum entanglement pigeon-inspired optimization (QEPIO),
Unmanned aerial vehicle (UAV)
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1. Introduction

Recently, researchers conduct different approaches concerning
independent navigation and flight planning problems on
unmanned aerial vehicle (UAVs) (Ergezer and Leblebicioglu,
2013; Duan et al., 2013). For instance, gravitational search
algorithm is enhanced by fuzzy controller to command
mutation parameter (Kherabadi et al., 2017). The adaptive
differential evolution algorithms (DE) are further developed for
the multi-objective optimization problems (Wang and Tang,
2016; Brest, 2016). Multi-agent system is adopted to
accommodate the algorithm to support bilateral selections
between individuals and subpopulations (Zhang and Wong,
2013). The improved particle swarm optimization (PSO)
algorithms are used for global search or rotational invariant
strategy to explore the rotation variance property of the search
space (Chen et al., 2013; Tanweer et al., 2016; Ali and Tawhid,
2016). Crisscross search PSO (CSPSO) is proposed for
accelerating the global convergence of PSO through horizontal
and vertical crossover (Meng et al., 2016).
Among the current optimization algorithms, there are several

considerations for path computation, including convergence
property, computational complexity, optimality, etc.

(Duan et al., 2010; Garcia et al., 2013). While the general
representatives above are capable to reach the relatively mature
optimization results, there is still room for improvement on
convergence velocity and the overall robustness of path
planning (Duan and Li, 2014).
The path of UAVs can be assumed by a series of

computational nodes, with the main determinant of optimal
approach. This category of problem can be served by a swarm
intelligence optimizer (Zhao et al., 2012), which works with a
population of particles like PSO (Cai et al., 2014). Based on the
specific navigation behavior of pigeon flight in nature, Duan
and Qiao proposes a new pigeon-inspired optimization (PIO)
algorithm (Duan and Qiao, 2014). Compared to Genetic
algorithm (GA) and PSO, the basic PIO algorithm manifests
faster convergence velocity and avoidance of information
points (Hao and Duan, 2014; Changhao and Duan, 2013).
Meanwhile, based on the PIO algorithm, several studies have
indicated a neurodynamic approach for image restoration
(Duan andWang, 2015), hypersonic vehicles (Xue andHaibin,
2017), quantum spin optimization (Li andDuan, 2014), etc.
Through the present algorithms above, we can figure out a

critical problem that this class of algorithms generally bring on
uncertainty of parameters, with unexpected performance of
robustness. Meanwhile, they are almost considered in
traditional dynamics field. Now we try to find a newmethod forThe current issue and full text archive of this journal is available on
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optimization controlling through the integration with the
concept of quantum field.
Quantum entanglement (QE) is a quantum mechanics

phenomenon, which plays a vital role in quantum computing
and quantum communication (Nielson and Chuang, 2000). It
describes the entanglement of several particles which are
independent of localization. Even if they are far apart in
distance, the behavior of a single particle will affect the state of
others, both in the ways of thermodynamics and kinetics
(Kurzyk, 2012), bringing with instantaneous corresponding
state changes (Lockhart et al., 2017). QE is always regarded as a
non-local “information source”, with continuous leakage to the
environment (Wang et al., 2013; Kielpinski et al., 2013).
In recent years, quantum technology has accomplished

several breakthroughs, with the following researches mainly on
the degree of QE C. In Milburn’s intrinsic decoherence theory
(Milburn, 1991), it shows the effect of external magnetic field
on entanglement in the existence of intrinsic decoherence. Qian
investigates the effect of interaction vector for entanglement
Dzyaloshinskii–Moriya (DM) on two-particle Ising model
when considering intrinsic decoherence (Qian and Fang,
2009). Xie discusses the impact of anisotropy on performance
of QE with Heisenberg XYZ chains case of two particles (Li-
Jun et al., 2009). In the current field for application, the
development of Quantum Key Distribution and other aspects
are further advanced (Liu andDeng, 2016).
In our paper, we will further consider the flight planning

based on merging QE theory of two-particle XXZ Heisenberg
system (Guo et al., 2014) with the conventional PIO algorithm.
This article will be discussed in the following sections. In the

next section, we first introduce the two-particle Heisenberg
system XXZ model, and launch the equation of QE from
different entangled initial states. In the third section, we briefly
introduce two processes of traditional PIO algorithm –map and
compass operator and landmark operator. Then, we do
hypotheses of QEPIO algorithm, including underlying
assumptions and further assumptions based on QE theory in
the fourth section. In the fifth section, we figure out the analysis
of convergence and complexity of QEPIO and put forward the
logic process. In the sixth section, simulations are conducted on
QE evolution, choice of switching point and the results of
proposed QEPIO optimization algorithm, compared with the
traditional PIO, DE, GA and PSO algorithm on convergence
velocity and robustness. The comparison results show great
improvement on features of convergence and consistence.
Eventually, we will discuss the general prospect of QEPIO
algorithm in military and civil field, and possible further
research direction for algorithm optimization onmulti-QE.

Quantum entanglement in a two-qubit XXZ
Heisenberg system

With the external conditions changing, Heisenberg system can
evolve XY, XXZ and other dynamic models (Kloc et al., 2017;
Barenco et al., 1995). In this paper, we will use the two-particle
Heisenberg XXZ model theoretically for further integrating
research.
The Hamiltonian H of the two-particle XXZ Heisenberg

model can be expressed as follows (Santos, 2003):

H ¼ 1
2
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is the bubble matrix operator, J is the

coupling coefficient, D is the module of the DM interaction
vector parameter (Hu et al., 2011), D is the dimensionless
coefficient that characterizes the anisotropy of this system, and
B expresses the strength of the appliedmagnetic field.
Under the two particle bases {|00i, |01i, |10i, |11i}, the

HamiltonianH can be expressed as:
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We can obtain the eigenvalues of the corresponding
Hamiltonian from the above matrix, and then obtain the
following corresponding eigenstates:
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In the above equation, u = arctan (D/J).
Milburn argues that the quantum system process is a random

sequence evolution, with a modified Schrodinger equation for
quantum decoherence factor in energy eigenstates, i.e. the
intrinsic decoherence model described above (Milburn, 1991).
Based on the time-density matrix r(t) (Guo et al., 2014), three
initial system assumptions in the study of QE systems are
shown below:
� If the initial state of QE system is a separate state |c (0)i =

|00i or |c (0)i = |11i, then the degree of system
entanglement Cis always equal to 0; (where |1i and |0i
respectively represent the upward and downward spin
state of a single quantum).

� If the initial state of QE system is |c (0)i = a|00i1b|11i
(a, b are parameters), then the system entanglement is
unrelated to the value of the DM interaction and has time-
independent evolution relationship with external magnetic
field and intrinsic decoherence g . Among them, when
a ¼ b ¼ ffiffiffi

2
p

=2, known as the maximum entangled state,
the evolution is attenuated to zero at different rates with
the effect of field strength B (when B is zero, the system
entanglement is always the maximum).

� If the initial state of QE system is |c (0)i = c|01i 1 d|10i
(c, d are parameters), then the entanglement degree C is
not related to any anisotropy parameter and applied
magnetic field. Instead, it is strongly influenced by DM
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and the intrinsic decoherence factor g , with the
characteristics of time-independent evolution.

In this paper, we focus on the common state threeof the
entangled system. Thus, the numerical entanglement analysis
based on state threeis embedded into the traditional pigeon
optimization algorithm (basic PIO) to form a PIO optimization
algorithmbased onQE (i.e. QEPIO):
By the definition of two-particles, entanglement proposed by

W.K (Kloc et al., 2017), in the initial state (|c (0)i = c|01i1 d|
10i), the entanglement degreeC is:

S ¼ exp �iuð Þ cd cosu � c2 � d2

2
i exp �2gt J2 1D2

� �� ��

� sin 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 1D2

p
t

� 	
1 icd sin u cos 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 1D2

p
t

� 	
� exp½�2gtðJ2 1D2Þ�
: (4)

C ¼ 2maxð0; jSjÞ (5)

Where S is related to time-density matrix.
In the fourth section, we will use the conclusion above to

devise the QEPIO algorithm optimization through certain
hypotheses.

Basic pigeon-inspired optimization

The basic PIO algorithm is originated from the phenomenon of
pigeon’s independent navigation, and mainly determined by
two operators: map and compass operator and landmark
operator (Duan andQiao, 2014).

Map and compass operator
In nature, pigeons in homing process will experience different
stages of nerve feedback, and make the use of magnetic fields
and landmarks to find their flight path. The map and the
compass operator is the magnetic field factor in which occur at
the beginning of the stages (the actual time for neural feedback
will be replaced by the amount of iteration NCmax1 in our
model). In the basic PIO, we process this map and the compass
operator in certain iterations and help virtual “pigeons” (i.e.
each coordinate placement) confirm the real-time position xi
and velocity vector vi after iterations of t.
Before the formal operation of iterations, initialization should

be set. The total number of virtual “pigeons”N, the number of
iterations of the map and the compass stage NCmax1, and the
factor of map and the compass operatorR are assigned. By PSO
theory and initialization conditions, we obtain:

vi tð Þ ¼ vi t� 1ð Þ � e�Rt 1 rand � xg � xi t� 1ð Þ� �
(6)

xi tð Þ ¼ xi t� 1ð Þ1 vi tð Þ (7)

Where rand is a random figure and xg is the current global
optimal coordinate, which can be obtained by comparing the
current position of all virtual “pigeons”. In the simulation
operation, it will reflect in the fitness function for all the
“pigeons” coordinating relative to the target position.

In map and compass operator, if we assume a rightmost
“pigeon” with the current global optimal position, then each
virtual “pigeon” will have a direction vector towards to the
rightmost “pigeon”. In the coordinate system, it is reflected by
other coordinates vector pointing to the rightmost point.
Meanwhile, each virtual “pigeon” itself retains a velocity vector
in the iteration of t21. Thus, in the iteration of t, the velocity of
each virtual “pigeon” is the speed of the former multiplied by
the factor e–RT, and do vector summation with the velocity
pointing to the current global optimal coordinate multiplied by
a random number, reflected in the figure for the two arrows and
the direction of the vector superposition of the results.

Landmark operator
In the landmark operator process, the purpose is to imitate the
influence of the actual landmark navigation on pigeon’s
autonomous navigation. The core is selection for the global
center coordinate. After the iterations of map and compass
operator, the current real-time position xi and velocity vector vi
will be transferred to the new landmark operator process with
iterations ofNCmax2. The natural mechanism is that some of the
pigeons are familiar with the path and hold narrow deviation
value, while some of the pigeons are in an unknown path and
need to observe flight position and direction of the “lead”
pigeon then to decide whether to correct their current speed
direction.
Reflected in the PIO algorithm, we take the “abandonment”

principle of halving the current number of pigeons in each
iteration for this operator cycle. The reason why we abandon
half of the number (1/2) instead of 1/4 or 1/3 is for the tendency
to decrease the possible iterations, to better control the time
complexity of the proposed algorithm, which depends on
iterations times to a weighted extent (with more relative details
shown in Table I). Then we use the “center” best position xC of
the retaining pigeons as a moving landmark to determine the
current flight speed reference direction vector, according to the
following formula:

N tð Þ ¼ N t� 1ð Þ=2 (8)

Table I Comparison results on time complexity of algorithms

Algorithm Time complexity

GA O 2NPNC

XD
m¼1

CodeLm 1
3
2
NPD

 !

PSO O(DNPNC)
Basic PIO O(DNPNC 1 NCmax2NP log 2NP)
QEPIO O(DNPNC 1 NCmax2NP log 2NP)

Notes: Similarly, we can figure out the computation complexity of PSO
algorithm by calculating the effecting factors for updating process,
correlating with dimensionality, amount and iterations; we obtain the
computation complexity of GA algorithm through procedure analysis of
deciphering, selecting and copying, intersecting and variation, where
CodeLm in the formula is the threshold figure of the mth dimension; we
postulate that the time complexity is basically determined by the worst
time complexity
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xC tð Þ ¼
X

xi tð Þ � fitness xi tð Þð Þ
N �

X
fitness xi tð Þð Þ (9)

xi tð Þ ¼ xi t� 1ð Þ1 rand � xC tð Þ � xi t� 1ð Þ� �
(10)

where xC(t) is the “center” optimal position after retaining half
of the pigeons and is calculated from the fitness function. In
simulations, the fitness function fitness(xi(t)) is determined by
the dimension and the actual problem:

fitness xi tð Þð Þ > 0

fitness xi tð Þð Þ ¼ 1
fmin xi tð Þð Þ1 «

min:ð Þ

fitness xi tð Þð Þ ¼ fmax xi tð Þð Þ max:ð Þ
(11)

In this part of algorithm, the operation coordinate xi(t) is
similar to that of the landmark and the map operator. min.
stands for minimization issues and max. stands for
maximization issues.

Assumptions

In this paper, to further simplify and optimize the problem,
several assumptions of the QEPIO optimization algorithm are
made.

Basic assumptions
� As we mainly focus on the combination of QE theory and

conventional PIO algorithm, we regard every UAV as a
particle in two-dimensional environment for simplification
and better comprehension.

� All virtual “pigeons” have the ability to self-compute map
and compass operator and landmark operator, which is
reflected in nature to perceive the sun, geomagnetic fields,
surrounding landmarks and lead pigeons.

� All virtual “pigeons” move in a given border zone. If
beyond the border it will hold the flight direction of the
border line.

� All virtual “pigeons” in the iterative operation process will
not be affected by other external factors, such as other
disturbance changes.

Specific assumptions for quantum-entanglement
pigeon-inspired optimizationmodel
� The pigeon and the environment are overall regarded as a

QE system, and each virtual “pigeon” is defined as a single
quantum in our operation.

� Based on the dynamic process of the two-particle
Heisenberg XXZ model, we consider that the evolution
process of each virtual “pigeon” entangles with the current
global optimal position.

� We assume that the initial state for QE system is |c (0)i =
c|01i1d|10i, as it holds high possibility and obvious
characteristic of quantum system. The evolution is mainly
affected by the DM interaction degree D and the intrinsic
decoherence factor g , with the characteristic of time-
independence.

� Considering the given value of DM interaction degree D
and the intrinsic decoherence factor g , we can control the
given range of parameters D and g , and then obtain the
convergence result of the evolution of the QE with time
(i.e. the number of iterations)

Quantum-entanglement pigeon-inspired
optimization

On the basis of assumptions above, in this section, we will first
analyze the convergence and computation complexity, and
then discuss the procedure and make the logic flow of the
proposedQEPIO algorithm.

Convergence and complexity analysis of the quantum-
entanglement pigeon-inspired optimization algorithm
By the basic theory of Markov Chain (Athreya and Ney, 1978)
and definition of global optimal solution set M, we can obtain
that the Markov Chain of the PIO algorithm can converge to
the global optimal solution sets M, i.e. limx!1 PfXðtÞ
2 Mg ¼ 1, where X(t) is the instantaneous coordinate state
(Zhang and Duan, 2017). In our QEPIO algorithm, through
QE merging, we can use equations (4) and (5) to control the
effecting factor for fore iterations with certain rules, rather than
a random figure on potentially high or low value. Accordingly,
it is more easily to reach the appeal point, which means the
QEPIO algorithm can converge to the global optimized
solution setM.
From the mathematical description of compared algorithms,

we can figure out the computation complexity to make further
analysis on the performance of computation cost. For the space
complexity, its memory space is only affected by the number of
variables embodied by the operating manners, regardless of the
number of iterations or the total number of virtual “pigeons”.
In other words, the variables could be almost classified into the
functions of (t) and (t-1) or the optimumwith constant amount
of variables and changing values, instead of a matrix with
continuous increase of variables affected by iterations. Given
this situation, we focusmore on time complexity.
Concerning the basic PIO algorithm, time complexity of the

map and compass operator for one generation isO(DNp), as we
need to update every dimensionality of every “pigeon”. While,
time complexity for the landmark operator on one generation is
O(DNP1NPlog2NP), for the reason that NP is halved on every
new iteration. Thus, the time complexity of basic PIO
algorithm should be O(DNPNC1NCmax2NPlog2NP). Where NC

is the whole number of iterations, andNCmax2 is the number of
iterations for landmark operator.
If we take the degree of QE C into account, we only change

the computing formula instead of the running cycles. In other
words, for QEPIO algorithm, when the convergence property
runs better, the time complexity holds the same as basic PIO,
which sufficiently manifests the comprehensive performance of
QEPIO.
The comparison results on time complexity of four kinds of

algorithms are shown in Table I. Apparently, GA algorithm
shows weakness on time complexity compared with PSO or
derivatives of PIO. While PSO algorithm shows its merit on
time complexity, the converging velocity of PSO in limited

Aerial vehicle path planning

Siqi Li and Yimin Deng

Aircraft Engineering and Aerospace Technology

Volume 91 · Number 1 · 2019 · 171–181

174



iterationsmay be not as expected, which will be discussed in the
6th section in detail.

Procedure of quantum-entanglement pigeon-inspired
optimization algorithm
The core of our QEPIO optimization approach is to replace the
random component in the velocity operation over a period of
iterations by our method of QE merging. The procedure of
QEPIO algorithm is as below.

Initial
� Step 1. Keep the general direction of two independent

iterative process, and set the initial conditions of the
system: Set the number of iterations Ncmax1, Ncmax2, the

number of pigeons N, the system dimension D1, the map
and the compass factor R and the boundary selection,
which are equivalent with the basic PIO. In addition,
select the intrinsic decoherence coefficient and DM
interaction vector parameterD reasonably.

� Step 2. Assign the random figures of initial velocity and
boundary position for each virtual “pigeon”, and compare
the initial fitness of all virtual “pigeons” with the fitness
function. Then, select the current optimal position
coordinate point, as the initial coordinate .

Procedure of map and compass operator
� Step 3. Process of the map and compass operator – the first

stage.

Figure 1 Flow chart of QEPIO algorithm

Start

Parameters initialization

Quantum Entanglement combining method
(formula(4,5,7,12) to update xi(t) and vi(t))

Fitness function to evaluate the position of pigeons

Update xg

t>50%*NCmax1?

t=t+1
Maps and compass operator

Stage 1
(Quantum Entanglement 

combing)

Update xi(t) and vi(t) (formula(4,5,7,12)) 

N

Y

Fitness function to evaluate the position of pigeons

Update xg

t>NCmax1?

t=t+1

N

Update N, xc and xi(t)  (formula(8-11)) 

Fitness function to evaluate the position of pigeons

Maps and compass operator
Stage 2

(Basic algorithm of BIO)

t>NCmax2?

t=t+1

N

Y

Output xg(result(t))

End

Landmark
operator

Y
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First, update the speed and position of all coordinate points.
When the number of iterations t is less than 50 per cent of the
total number of iterations NCmax1 for the first stage, the
operation follows equations (4), (5), (7) and (12) as follows:

vi tð Þ ¼ vi t� 1ð Þ � e�Rt 1C� xg � xi t� 1ð Þ� �
(12)

That is, to retain the original operation of the basic method,
and apply the degree of QE C of current each pigeon with the
current global optimal coordinate point, which replaces the
original rand random number. As the parameter itself (i.e. rand
in former basic PIO method) is to reflect the influence of
current global optimal coordinate on each pigeon, based on the

uncertainty of the second law of general dynamics. In the
quantum system, indeed, the uncertainty like “Schrodinger
cat” is reflected in theQE of the two particles, in the form of the
degree of QE in ourmodel (Wei, 2016).
The figure of 50 per cent of times of iterationsNCmax1 for the

first stage could be considered as a switching point, which
switches the calculating method between merging with the
effect of QE and conventional PIO. The reason why we use 50
per cent as the switching point, is combining both theoretical
assumptions and simulation experiments. Theoretically, by the
assumption of initial state |c (0)i = c|01i1d|10i for QE, the
entanglement degree C will oscillate with attenuation and tend
to decrease to a constant value gradually. Given the equations
(4) and (5), whether the terminal value equal to zero is
determined merely according to the value of the intrinsic
decoherence coefficient g .
However, in the simulation results shown in Figure 4, it turns

out to be more complex. Because of the random initial speed of
all the virtual “pigeons” and the fitness of boundary coordinates
state, the fitness function in the beginning iterations is possible
to tend to a low value (even zero), whichmeans the velocity and
position may tend to a steady state away from the proper values
and get trapped in a local optimum. More details of the
switching point illustrations will be shown in the section of
simulation results. Considering the degree of QE of both the
high impact factor in the early stages of the system and the
consistency in the middle-late stages for a more global
optimum relatively, we reach the agreement on the switching
point at 50 per cent, so that the previous 50 per cent iterations
are for QE combining state.
� Step 4. Process of the map and compass operator - the

second stage.

Figure 2 In the initial state jc 0ð Þi ¼ ffiffiffi
2

p
=2j01i1 ffiffiffi

2
p

=2dj10i, the
evolution at variables of DM (D) and intrinsic decoherence g

Figure 3 In the initial state jc 0ð Þi ¼ ffiffiffi
2

p
=2j01i1 ffiffiffi

2
p

=2dj10i, the time-dependent evolution at variable of intrinsic decoherence g
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When the figure of iterations t reaches 50 per cent of the proposed
iterations NCmax1 in the first operation, the data of each velocity
and coordinate position is updated according to the underlying
PIO algorithm (whichwe havementioned in the 3rd section).
In both Steps 3 and 4, each iteration process will recalculate

the fitness of each virtual “pigeon” and obtain the fitness value
of the current global optimal point for each iteration, denoted
as result(t), which will be reflected in the simulation curve.
� Step 5.Determine whether the current number of iterations t is

greater than the proposed iterations of map and compass
operator NCmax1. If not, then jump to Step4 and cycle the
operation.When it reachesNCmax1 then jump to the next step.

Procedure of landmark operator
� Step 6. In this process, the QEPIO algorithm operates

according to the basic PIO algorithm. After the fitness
calculation, all the virtual “pigeons” will be sorted through

the fitness function, “abandon” the half of the “pigeons”,
and the global best “center” coordinate is obtained
according to the formula (8-11), which is the target location
of the current iteration. All pigeons will be combined with
both their own coordinate components and the vector point
to the target location. Then we will make further
adjustments to the best direction and location point that can
be achieved. Likewise, record the result(t).

� Step 7.Determine whether the current number of iterations t
is greater than the proposed iterations of landmark operator
NCmax2. If less than NCmax2, then jump to Step 6 and cycle
operation; if it is equal toNCmax2, then go on the next step.

Output
� Step 8. Output the result(t) – t in graphical form with

point values, and further analyze the data and curve. End
the algorithmic process (Figure 1).

Figure 4 The comparison on 10 consecutive results of QEPIO algorithms by different switch points
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Simulation results

To investigate the entanglement degree C, switching Point for
QEPIO Algorithm and the convergence and robustness of the
proposed QEPIO approach, a series of simulations are
conducted under several constrained conditions.

Evolution of entanglement degree C
In Figure 2, it bases on the initial entangled state of
c ð0Þi ¼ ffiffiffi

2
p

=2j01i þ ffiffiffi
2

p
=2dj10i, when the entanglement

varies with the intrinsic decoherence factor g andD. It is shown
that whenD is a nonzero constant, the increase of g will lead to
the rapid increase on the decay rate of the system
entanglement. In other words, the system will tend to zero in a
short time, that is, the simulation results of time-independent
evolution demonstrate the theoretical derivation process.
From equation (5), we can find that in this initial state, the

entanglement degree C of the quantum system is related to the
time-dependent evolution of S (and the time tis explicit in the S
equation), that is, the degree of interaction with the D in the
formula has significant relationship with intrinsic decoherence
coefficient g , while unrelated with the applied magnetic field B
and the anisotropy parameter D. When D is non-zero, the
system is oscillating and decreasing with the enhancement ofD.
Finally, when D increases to a sufficient degree, the
entanglement tends to a nonzero steady-state value (as shown
in Figure 3). Therefore, by appropriately controllingD, we can
obtain the required stable entangled state.

Analysis of switching point for quantum-entanglement
pigeon-inspired optimization algorithm
Based on the preliminary analysis of the switching point in the
section of QEPIO, in this section, the simulations of different
switching points are operated under the same initial
parameter settings below. The simulation results could give
sufficient support for the switching point selected for 50
per cent in detailed illustrations.
According to the QEPIO model establishment and

optimization process, we assume that the number of iterations
NCmax1 is 25, NCmax2 is 15, the total number of virtual
“pigeons” N is 30, the dimension D1 equals to 2, the map and
the compass factor R equals to 0.2, and the boundary is
[0,100]. In the QEPIO fusion model, we set the intrinsic
decoherence coefficient g = 0.25, the DM interaction vector
parameter D1 = 10, and J = 1. As we set the target planning
point (65,100) in fitness function, we obtain that fitness (x(t))=
(x(i,1)-65)21(x (i,2)-100)2, that is, through several iterative
process tomake the terminal value of fitness close to zero.
According to the simulation results of different switching

points in Figure 4, it can be concluded that for QEPIO, the 50
per cent of switching point is the relative best choice. In
Figure 4(a), when the switching point is 25 percent, the
simulation results show that the initial convergence is relatively
not good, which is similar to the conventional PIO. When the
switching point is 50 percent, shown in Figure 4(b), it indicates
a good initial convergence, meanwhile, the final value of fitness
function can basically tend to zero. As it can be converted to the
conventional PIO when the entanglement influence is almost
attenuated. it may be less likely to fall into a local optimum. In
Figure 4(c), when the switching point is 75 per cent, it

illustrates good initial convergence, but for the reason that the
random number plays little role on influence, it is easy to get
trapped in a local optimum. More than half of the simulation
times cannot result in the consistency of fitness function (for
the tendency to zero). In Figure 4(d), the situation for the 100
per cent switching point is even worse, that is, in the map and
compass operator, all are replaced by the fusion of QE theory. It
can be signified that with an approximate degree of initial
convergence compared to 50 and 75 per cent, the results of
switching point of 100 per cent is more serious in local
optimum issues. Given the conclusions above, we obtain that
the switching point of 50 per cent is the proper value relatively,
which shows good features of both initial convergence and
global optimum.

Analysis of convergence velocity for quantum-
entanglement pigeon-inspired optimization algorithm
By the analysis for the switching point of the first stage of
QEPIO algorithm, we obtain the 50 per cent as the critical
point, which will represent the performance for QEPIO in the
following explanations. Meanwhile, the settings of initial
parameters remain unchanged as the former section.
Figure 5 shows the comparison of QEPIO optimization

algorithm with GA, particle swarm algorithm (PSO) and
traditional PIO algorithm in convergence velocity, that is, the
number of iterations required when the fitness close to zero.
As shown in Figure 5, the curve of QEPIO algorithm in the

third times of iterative process has a significant attenuation.
After ten times of iterative process, the fitness function closes to
the expected value, i.e. 0. Similarly, we can analyze the GA,
PSO, PIO algorithm by finding out the iteration points that
achieve a large degree of attenuation or almost zero. Compared
with GA algorithm, PSO and pigeon-derived algorithms have
obvious improvement. Furthermore, the proposed QEPIO
algorithm shows more effectiveness than the traditional PIO
algorithm (by comparing both the attenuation point and the
zero reaching point), so that we can win more time in

Figure 5 Comparison of QEPIO with GA, PSO and PIO Algorithm in
convergence velocity
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independent navigation and other issues for application, which
will bementioned in the summary.

Analysis of robustness for quantum-entanglement
pigeon-inspired optimization algorithm
In today’s tech development, the total time of operation is
extremely important in military applications and other fields.
Thus, it is necessary to think over the issue of robustness
optimization because of the random initial condition and
irresistible disturbance.
The robustness reflected in the following figures [Figure 6

(a), (b), (c) and (d)], fitness - the number of iterations), is an
inherent problem of the GA, PSO and PIO-derived algorithms
found in the simulation process, in particular, the fitness curves
obtained after several successive runs (in our simulation we
form 10 consecutive results). Compared with the curves of
multiple discontinuities operation, the former is more random,

which reflected in the actual results. And it is this point that is
not conducive to the autonomous system in an ultra-short time
with high-intensity operation.
From Figure 6, we obtain that the robustness of GA

algorithm in Figure 6 (a) is relatively poor, and some curves
cannot be stabilized after iteration for 40 times. Compared to
GA, PSO, basic PIO and QEPIO algorithm in Figure 6 (b), (c)
and (d) improve their robustness to great extent. Comparing
Figure 6 (b) with (c), the PSO algorithm shown in (b) tends to
zero in the range of 5 to 40 times (sometimes more than 40
iterations), which shows the large interval coverage and
unstable robust performance, while the PIO algorithm shown
in (c) ameliorates the fitness that strictly equals to zero, with the
fundamental cause that the PIO algorithm processes the
landmark operator at the end of the iteration and further
corrects the compass operator. Meanwhile, when Figure 6. (d)
is compared with (c), the fitness for QEPIO algorithm of the

Figure 6 The comparison on 10 consecutive results of GA, PSO, PIO and QEPIO algorithms
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foremost iterations is advanced shown in (d), and the number
of iterations is reduced, on the condition that the steady-state
fitness value still approach to zero. The results above manifest
the better robustness of QEPIO algorithm.
TheQEPIO optimization algorithm proposed in this paper is

based on the QE Theory to improve robustness. However,
because the various extensions of PIO or PSO hold strong
randomness in basic theory, QEPIO algorithm is still not
possible to change the absolute robustness of each operation
radically. Therefore, we can only make a relative comparison
between QEPIO and other extending algorithms, and we will
lead to the direction of further research in the conclusion.

Conclusion

In this paper, QEPIO algorithm is proposed for the flight
planning issues. We first introduce the QE dynamics theory of
the two-particle Heisenberg system XXZ model, and the
general idea of the traditional PIO algorithm. Then, we
combine the QE of system with basic PIO to devise the QEPIO
optimization model, analyze the theoretical and experimental
choice of switching point, convergence and complexity and
make the logic flow. Eventually, the simulation results manifest
that QEPIO has improved the convergence velocity and
robustness to some extent, compared to GA, PSO and
traditional PIO algorithm.
Meanwhile, there is still room for further research for

promoting. First, we assume every UAV as a particle, rather
than a specified individual constructed by dynamic model.
Factually, flight planning needs to take flight control system
model (including three-axis attitude control system, stability
and maneuverability, etc.) into account. Second of possible
improvements is the robustness of derivative extending
algorithms. The improvement of QEPIO algorithm in
convergence speed and robustness will be reflected in both
breadth and depth of its application. Despite precise guidance
in the field of military, there is also a broad prospect in the civil
field. For the conditions of special regions impossible for GPS
navigation, and the unaffordable price of the whole
independent inertial navigation system for ordinary people,
quantum communication and navigation will occupy a lot of
market space, andQEPIO is proposed for its civil navigation on
the research direction.
Furthermore, in this paper, the method of QE merging into

basic PIO algorithm is based on the entanglement process
between two qubits, which are the QE effect of the coordinates
of the current operation and the current global optimal
position. If we can discuss the basic problems of PIO in
multiple qubits way and make improvements, the map and
compass operator parts can be thoroughly modified to the
multi-qubit system in the first part of iterations.
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