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This paper presents the application of Pigeon Inspired Optimization (PIO) for designing
a constrained entry trajectory of re-entry vehicles. Bank angle modulation is considered to
be the primary control mechanism during the entry phase. Heading angle offset is reduced
by using traditional bank reversal logic. The complete control profile determination prob-
lem is reduced to a single parameter search problem. The terminal conditions that are to
be satisfied are part of the objective function and the path constraints are incorporated by
penalty factor approach. Simulation results demonstrate the effectiveness of PIO algorithm
over Particle swarm optimization (PSO) and Gravitational search algorithms (GSA).

Nomenclature

r Radial distance from centre of the Earth to the vehicle
V Velocity of vehicle relative to Earth
γ Flightpath angle
ψ Heading angle
θ Longitude
φ Latitude
s Range to go
m Mass
Sref Reference area
L Aerodynamic lift acceleration
D Aerodynamic lift acceleration
g0 Acceleration due to gravity in
R0 Radius of Earth
Ω Angular velocity of Earth
CL Coefficient of lift
CD Coefficient of drag
ρ Atmospheric density

Q̇ Heat rate
a Load factor
q Dynamic pressure

Q̇maxMaximum allowable heat rate
amax Maximum allowable load factor
qmax Maximum allowable dynamic pressure
e Negative of specific mechanical energy
µ Universal gravitational parameter
σ Bank angle
σ0 Initial bank angle
ψLOS Azimuth angle
∆ψ Heading error offset
χ Crossrange parameter
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tf Final time of flight
N Population of the pigeons
D Dimension of the problem
kmax Maximum iterations
kc Iteration corresponding to shift in operator
Xi Array containing position of the pigeons
Vi Array containing velocity of the pigeons
R Map and compass operator
k Current iteration
G Global best position of the pigeon
Np Reduced population of the pigeons
Xc Centre of the pigeons
J Objective function

Subscript
i i th pigeon
0 Initial conditions
f Final conditions

I. Introduction

Re-entry phase is very crucial for any spacecraft, reusable launch vehicle, hypersonic gliding vehicles etc.,
that are returning from space to the Earth. These vehicles rely on entry trajectories to reach the destination
safely. Usually entry trajectories are designed offline and stored onboard before the mission starts. Designing
the entry trajectory is a challenging task as entry dynamics are highly nonlinear, uncertain and with limited
control capability. Such trajectories are also required to be within the entry corridor that is formed by
maximum allowable limits on heat rate, dynamic pressure and load factor.
Entry trajectory design is an optimal control problem whose solution is usually obtained through indirect and
direct methods. Indirect methods are based on the Pontryagin minimum principle which leads to two point
boundary value problem.1 However, direct methods involve discretizing control time histories and/or state
variable time history, thereby transforming the optimal control problem to a nonlinear programming problem
(NLP).2 Pseudospectral methods that fall under the category of direct method have been used extensively
to solve trajectory optimization problems. Legendre pseudospectral method approach has been implemented
for entry trajectory optimization by Tian and Qun Zong.3 Other pseudospectral methods like Gauss, Radau,
Chebyshev have been applied for generating entry trajectories by Jorris et al.,4 K.Kalirajan et al.,5 and Wei
et al.,6 respectively. However, pseudospectral methods have tuning issues, because of requirement of careful
selection of basis functions and the number of collocation points.
Among the direct methods, evolutionary algorithms that mimic natural phenomena have gained popularity
because of their simplicity in the problem formulation. Some of the popular algorithms are genetic algorithm
(GA),7 algorithms based on swarm intelligence like PSO,8 ant-colony optimization.9 Rahimi et al.,10 have
applied PSO to generate optimal trajectories for a spacecraft. In recent times, an evolutionary algorithm
named PIO that mimics the homing behaviour of pigeons has been proposed by Duan.11 Jiang et al.,12,13

have implemented PSO and PIO to generate entry trajectories for hypersonic gliding vehicle using a simple
formulation. They have considered few entry cases with short downrange to be travelled that have one or
two bank reversals. In these problems the control formulation requires finding multiple parameters to get the
complete control profile. However, there are no reported studies on application of PIO for long downrange
missions. Therefore, in this paper, application of PIO has been demonstrated for the entry case that has
long downrange, which is to be covered with one control parameter search operation. To reduce the order
of the problem, the control variable, bank angle; has been parametrized to be linear with respect to energy.
To show the effectiveness of PIO, simulation results have been compared with PSO and gravitational search
algorithms (GSA).
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II. Equations of motion

The re-entry vehicle gliding over a spherical, rotating Earth is considered to be a point mass. The 3-DOF
entry dynamics of the vehicle are given below14

ṙ = V sin γ (1)

V̇ = −D − sin γ

r2
+ Ω2r cosφ(sin γ cosφ− cos γ sinφ cosψ) (2)

θ̇ =
V cos γ sinψ

r cosφ
(3)

φ̇ =
V cos γ cosψ

r
(4)

γ̇ =
1

V

[
L cosσ + (V 2 − 1

r
)(

cos γ

r
) + 2ΩV cosφ sinψ + Ω2r cosφ(cos γ cosφ+ sin γ cosψ sinφ

]
(5)

ψ̇ =
1

V

[L sinσ

cos γ
+
V 2

r
cos γ sinψ tanφ− 2ΩV (tan γ cosψ cosφ− sinφ) +

Ω2r

cos γ
sinψ sinφ cosφ

]
(6)

ṡ = −V cos γ/r (7)

The differentiations in the equations of motion are with respect to dimensionless time τ = t/tscale, where

tscale =
√

R0

g0
. All the above mentioned variables in the entry dynamics are dimensionless. r is the nondi-

mensional distance from the Earth centre to the point mass O that is normalized by the radius of the Earth
R0 = 6378.135km. V is the Earth-relative velocity which is normalized by Vscale =

√
R0g0, θ and φ are

the longitude and latitude, γ is the flight-path angle and is positive when V is above the horizontal plane.
ψ is the heading angle of the velocity vector, measured clockwise in the local horizontal plane from the
north as shown in figure 1. s denotes the range to go (in radians, normalized by R0) on the surface of the
spherical Earth along the great circle connecting the current location of the vehicle and the site of the final
destination.14 g0 is the acceleration due to gravity. Bank angle σ is defined as the clockwise positive rotation
of the lift vector about the velocity vector. Ω is the dimensionless angular velocity of the Earth. L and D
are nondimensional aerodynamic lift and drag accelerations normalized with g0 = 9.8m/s2 and are defined
as

L =
1

2mg0
ρV 2CLSref (8)

D =
1

2mg0
ρV 2CDSref (9)

where m is the mass of the vehicle, Sref is the surface area of the vehicle, ρ is the atmospheric density.
CL and CD are the aerodynamic lift and drag coefficients that are functions of angle of attack and Mach
number.

A. Choice of independent variable and calculation of final time of flight tf

An energy like variable e is used as the independent variable for solving the trajectory optimization problem.
e is defined as negative of the specific mechanical energy used in orbital mechanics as mentioned by Lu.14

e =
µ

r
− V 2

2
(10)

where µ is gravitational parameter for the Earth, whose normalized value is 1. Eq. (11) shows that e is a
monotonically increasing variable and is a function of radial distance and velocity. Therefore, the choice of
e as an independent variable helps to consider the terminal conditions on r and V as a single constraint and
these constraints can be achieved with better accuracy.

de

dτ
= DV > 0 (11)

The equations of motion are integrated from initial energy e0 to final energy ef . ef is calculated using the
desired values of radial distance r∗ and velocity V ∗. Final time of flight tf can be obtained as the part of
the solution by including dτ

de in the equations of motion and integrating it from e0 to ef .
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Figure 1. Nomenclature used in equations of motion.

III. Problem Statement

Trajectory optimization for entry vehicles involves finding the control profiles such that the resulting
entry trajectory satisfies the path and terminal conditions. In this paper, bank angle is considered to be
the only control variable. A fixed angle of attack profile has been considered. To solve this optimal control
problem, bank angle has been parametrized with respect to energy e, as given below.

A. Control profile parametrization

The bank angle is considered to be a linear function of current energy e, based on piecewise linear approxi-
mation. Its magnitude is calculated from Eq. (12)

|σ(e)| = σ0 +
e− e0
ef − e0

(σf − σ0) (12)

where e0 and ef are energies at entry point and terminal points respectively. σ0 ≥ 0 is the parameter to
be found that minimizes the applicable objective function J in Eq. (16). σf is the terminal bank angle.
σf = 60◦ has been chosen for the simulations. The sign of bank angle is obtained from a bank reversal logic
as described by Shen.15

1. Bank reversal logic

The main aim of bank reversal logic is to reduce the heading offset ∆ψ of the vehicle, defined below,

∆ψ = ψ − ψLOS (13)

where ψ is the current actual heading angle and ψLOS is the azimuth angle at current location along great
circle connecting the current location (θ, φ) and the final destination (θf , φf ).

ψLOS = sin−1

[
sin(θf − θ) cosφf

sin(s)

]
(14)

According to Shen,15 heading error exhibits fast variations with respect to range as the vehicle approaches
the TAEM phase. Hence, a crossrange parameter χ that varies almost linearly with range is defined in
Eq. (15) to command the bank reversal.

χ = sin−1[sin(s) sin ∆ψ] (15)

where, s is range to go as defined earlier. If the crossrange parameter χ exceeds the deadband ∆azmth(V ),
the sign of bank angle is commanded to change to reduce | ∆ψ |. ∆azmth(V ) is sometimes held constant or
is varied as a linear function of velocity.
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B. Objective Function

Trajectory optimization problem is stated as follows

Min J = |s(ef )− s∗|+ |r(ef )− r∗|+ |V (ef )− V ∗| (16)

subject to constraints
Q̇ = 9.4369× 10−5√ρV 3.15 ≤ Q̇max (17)

a =
√
L2 +D2 ≤ amax (18)

q = (g0R0ρV
2)/2 ≤ qmax (19)

The maximum allowable limits on the heat rate Q̇, dynamic pressure q and aerodynamic load factor a, form
the boundaries of the entry corridor and hence appear as constraints to the optimal control problem.14 The
entry trajectory should be within the entry corridor. These constraints together form the path constraints.
The entry trajectory should also satisfy the terminal conditions on altitude, velocity and range to go that
are part of the objective function Eq. (16). In the objective function, “∗” indicates the desired terminal
states as defined by the Terminal Area Energy Management (TAEM) phase and the state variables are
nondimensional as described in section II.

IV. Pigeon Inspired Optimization

PIO has been proposed by Duan11,16 and has been successfully applied to various research problems.
PIO is one of the methods based on swarm intelligence. It mimics the movement of a flock of pigeons who
exhibit excellent homing behaviour. They navigate using two operators, called map and compass operator,
landmark operator. Pigeons use map and compass operator during their initial phase of journey and later
shift to landmark operator as they approach the destination.

A. Map and Compass Operator

Pigeons can locate themselves relative to their destination by being able to sense Earth’s magnetic field. This
is termed as map operator. They adjust their flying direction using altitude of the Sun, which is regarded
as the compass operator. The basic algorithm is evolved as follows
Let the total population of the pigeons be N . Set the maximum number of iterations kmax. Define the
dimension of the problem based on the number of unknown variables to be found. Let D denote the
dimension of the problem. Define the search range for each dimension. Initial set of pigeons are randomly
generated in the given search range. Position of the pigeon i is given by Eq. (20).

Xi = [xi1, xi2, ..., xiD] where i = 1, 2, 3...N (20)

The velocity of the pigeon i is given by Eq. (21).

Vi = [vi1, vi2, ..., viD] where i = 1, 2, 3...N (21)

Each pigeons position represents a possible solution and corresponds to an objective function given in Eq.
(16). In this operator, all the pigeons adjust their position and will try to follow the pigeon that corresponds
to the best objective function value i.e minimum objective function. The position and velocities of the
pigeons are updated in each iteration k as per following update logic

Vi(k) = Vi(k − 1).e−Rk + rand. (G(k − 1)−Xi(k − 1)) (22)

Xi(k) = Xi(k − 1) + Vi(k) (23)

where G(k − 1) is the position of the pigeon corresponding to the best objective function achieved so far.
rand is random number in [0,1]. R is the map and compass operator. The term Vi(k − 1).e−Rk gives the
pigeons former flying direction. Figure 2, describes the steps for executing map and compass operator.
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Figure 2. Flowchart for map and compass operator

B. Landmark operator

As pigeons approach their destination, they use landmark operator. Few pigeons can identify the landmarks
and can fly directly to their destinations. The remaining pigeons follow them and reach the destination.
Let kc be the iteration number that indicates the shift in the operator. kc is chosen to be less than kmax.
When the iteration k exceeds kc, landmark operator is initiated. In this operator, half of the pigeons with
positions nearer to G(k − 1) are selected. The centre of these pigeons is found using Eq. (24).

Xc(k) =

∑
Np(k)

Xi(k − 1).fitness(Xi(k − 1))

Np(k)
∑
Np(k)

fitness(Xi(k − 1))
(24)

where fitness() is the objective function value corresponding to the given pigeons position and Np is the
current reduced population as given below

Np(k) =
Np(k − 1)

2
(25)
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Using Xc(k), the positions of the pigeons is updated as follows

Xi(k) = Xi(k − 1) + rand. (Xc(k)−Xi(k − 1)) (26)

In the landmark operator, pigeons that are not familiar with the landmarks, adjust their positions and
follow the centre of the pigeons that are familiar with the landmarks. Finally, at the end of iterations
pigeon corresponding to minimum objective function value will be the pigeon with best position. Flowchart
describing the landmark operator is in figure 3. PIO algorithm as applied to the current problem is presented
in the flowchart discussed in figure 4.

Figure 3. Flowchart for landmark operator

C. Constraints handling mechanism

The path constraints are handled by adding a high penalty factor to the objective function J , whenever
they are violated. The presence of constraints further reduces the search space. If the maximum heat rate
corresponding to a pigeon i violates the constraint, then the corresponding objective function Ji is given a
high penalty. Ji = 100000000 has been considered for the simulations. Thus, this pigeon i is not eligible to
become the pigeon with the best objective function.
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Figure 4. Flowchart of PIO for solving entry trajectory optimization problem

V. Simulation Results

Trajectory optimization using PIO has been applied to Common aero vehicle (CAV-H) with high L/D
ratio. The aerodynamic coefficient data is given by Phillips.17 A fixed angle of attack profile with Mach
number is considered from Ping Lu.14 The initial conditions used for the simulation are given in table 1
and the desired terminal conditions are in table 2. The path constraints considered for the simulation are
Q̇max = 7.5MW/m2, qmax = 100kPa and amax = 2.3g. These values are broadly based on the guidelines
provided in Chen.20 The longitude and latitude of the final destination are θf = 65.7 deg, φf = 31.6 deg.
During the initial phase of entry, the bank angle σ is considered to be zero, till the vehicle attains a load
factor greater than 1.5184m/s2. This is because the vehicle is at higher altitudes where the density is very
small, this results in zero lift irrespective of the presence of bank angle. The velocity dependent deadband
∆azmth(V ) that has been considered for bank reversal is as given in Eq. (27). This bank reversal logic has
resulted in final heading offset |∆ψ(tf )| < 5 deg.

∆azmth



= 2 deg, V ≥ 6000m/s

= 3 deg, V2 < V < 6000m/s

= 3− 0.1
( V − V2
V3 − V2

)
deg, V3 ≤ V ≤ V2

= 0.1 deg, V < V3

(27)

where V ∗ = 2000m/s, V2 = V ∗ + 1000 and V3 = V ∗ + 200 The parameters required for simulating PIO
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Table 1. Initial entry conditions21

r0 (km) V0
(m/s)

θ0
(deg)

φ0
(deg)

γ0
(deg)

ψ0

(deg)
s0
(nm)

121.52+R0 7400 -72.42 38.99 -1 35 6000

Table 2. Final conditions to be acheived21

r∗

(km)
V ∗

(m/s)
s∗

(nm)
∆ψf ≤
(deg)

28+R0 2000 50 ± 10

algorithm are set as N = 20, kmax = 25, D = 1, kc = 15, R = 0.2. The dimension of the problem is
D = 1, as σ0 is the only parameter to be found. The range of search space for σ0 is given as |σmin| = 0◦ and
|σmax| = 90◦.

A. Performance comparison

The results of PIO are compared with Particle swarm optimization and Gravitational Search algorithm
(GSA).18 These algorithms have the same initialization mechanisms. For comparison, the maximum number
of iterations and the population of agents are considered to be same in all the three optimization algorithms.
All the three algorithms have been run each 5 times. Comparative results have been displayed in the table
3. From the table, PIO shows the minimum objective function value with a mean of 0.00076071. Figure 5
shows the comparative curves corresponding to the best objective functions mentioned in the table 3. From
figure 5, it can be concluded that PIO converges quickly to the minimum objective function value in lesser
number of iterations as compared to PSO and GSA.

Table 3. Comparative results

Algorithms Best objective
function

Best parameter
(Bank angle
deg)

Mean objective
function

PIO 0.0007607 71.62246 0.000760

PSO 0.0018434 71.59842 0.00789

GSA 0.0101234 71.41737 0.14902

0 5 10 15 20 25
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0.05

0.1

0.15

0.2

0.25

0.3

0.35
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Iterations

O
bj
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n

 

 
PIO
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Figure 5. Comparative curves corresponding to best objective function
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Further corresponding to the optimal bank angle σ0 = 71.6224 deg obtained from PIO, the terminal
errors in altitude, velocity and range-to-go are 1.2 km, 7 m/s, 0.0632 nmi respectively. These errors are
within the tolerance limits according to Dukeman.19 The corresponding entry trajectories are given in
figures below. Figures 12, 13, 14 show that the path constraints are strictly met. The bank angle profile
is shown in the figure 6. Series of bank reversals have minimized the terminal heading offset to 3.654 deg.
This ensures that the vehicles terminal heading angle is aligned with the destination. After the initial
descent, the vertical component of lift does not balance the gravitational and centrifugal forces, resulting in
oscillations in flightpath angle as seen in figure 7. These variations in flightpath angle led to oscillations in
the altitude profile observed in figure 8. Since the atmospheric density changes according to altitude, there
are corresponding oscillations in the values of heat rate, dynamic pressure and load factors as in figures 12,
14, 13. Figures 10 and 9, show that the terminal conditions on velocity and range-to-go are accurately met.
Figure 11, shows the variation of latitude with longitude.
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Figure 6. Bank angle profile
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Figure 7. Variation of flightpath angle with time
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Figure 8. Variation of altitude with time

The optimal bank angle obtained using PSO has the terminal errors in altitude, velocity and range-to-go
as 1.2067 km, 4.4175 m/s, 3.7883 nmi respectively. Although, errors are within the tolerance limit, PSO has
taken many iterations to converge compared to PIO. The terminal errors obtained using GSA algorithm are
1.082 km, 3.8162 m/s, 32.61 nmi. Clearly, error in range-to-go is not within the tolerance limit. It can be
concluded that PIO has faster convergence to the minimum objective function compared to PSO and GSA.
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Figure 9. Altitude variation with respect to velocity
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Figure 10. Variation of altitude with range-to-go
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Figure 12. Variation of heat rate with time
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Figure 13. Variation of dynamic pressure with time
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Figure 14. Variation of load factor with time

VI. Conclusion

The entry trajectory that satisfies the path and terminal constraints has been generated using PIO. The
performance comparison show that the mean of objective function is minimum for PIO when compared to
PSO and GSA. It also converges quickly in less number of iterations. It can be concluded that, PIO is better
than PSO and GSA in solving the trajectory optimization problem. However, more studies are necessary to
establish the performance of PIO in different cases.
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