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a b s t r a c t

To solve the non-differentiable optimal power flow (OPF) problems with multiple contradictory
objectives, a modified pigeon-inspired optimization algorithm (MPIO) is put forward in this paper.
Combining with the common-used penalty function method (PFM), the MPIO-PFM algorithm is
proposed and applied to optimize the active power loss, emission and fuel cost (with valve-point
loadings) of power system. Eight simulation trials carried out on MATLAB software validate MPIO-
PFM algorithm can obtain superior Pareto Frontier (PF) comparing with the typical NSGA-II algorithm.
Nevertheless, some Pareto solutions obtained by MPIO-PFM algorithm cannot satisfy all system
constraints due to the difficulty in choosing the proper penalty coefficients. Thus, an innovative
approach named as constraint-objective sorting rule (COSR) is presented in this paper. The bi-objective
and tri-objective trials implemented on IEEE 30-node, 57-node and 118-node systems demonstrate
that the Pareto optimal set (POS) obtained by MPIO-COSR algorithm realizes zero-violation of various
system constraints. Furthermore, the generational-distance and hyper-volume indexes quantitatively
illustrate that in contrast to NSGA-II and MPIO-PFM methods, the MPIO-COSR algorithm can determine
the evenly-distributed PFs with satisfactory-diversity. The intelligent MPIO-COSR algorithm provides
an effective way to handle the non-convex MOOPF problems.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Unlike the single-objective optimization, the multi-objective
optimization (MOP) problem takes more than one conflicting
goals into account concurrently. It is impossible to make each goal
achieve the best state at the same time. The mathematical model
of MOP problem, which usually has great computational com-
plexity and obvious non-linear characteristics, is strictly limited
by various constraints [1,2].

The MOP problems are very common in practical fields such
as power systems [3,4]. Electricity with self-evident importance
is the most basic energy in modern society. Research shows
that the multi-objective optimal power flow (MOOPF) problems
have undeniable significance to achieve the safety and economy
operation of power system. Essentially, the MOOPF is a non-linear
minimization problem with high-dimensional feature [5–8].

∗ Corresponding author.
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1.1. Algorithm review and selection

Intelligent algorithms have been successfully applied on han-
dling the nonlinear MOOPF problems with the gradually ma-
turing of computer technology. For instance, the novel quasi-
oppositional modified Jaya algorithm [9], the hybrid DA-PSO op-
timization algorithm [10] and the multi-objective firefly algo-
rithm [11] are capable to deal with the MOOPF problems ef-
fectively. However, there is still much room in the bi-objective
MOOPF optimizations on large-scale systems and the tri-objective
ones.

The basic and improved pigeon-inspired optimization algo-
rithms (PIO) with fast-convergence and strong-robustness have
been applied to various fields such as the fuzzy production
scheduling problems [12] and large-scale traveling salesman prob-
lems [13]. However, the shortcoming of the basic PIO algorithm
that is easy to be trapped into the local optimums cannot be
ignored.
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1568-4946/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2020.106321
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2020.106321&domain=pdf
mailto:zhangzztx@163.com
https://doi.org/10.1016/j.asoc.2020.106321


2 G. Chen, J. Qian, Z. Zhang et al. / Applied Soft Computing Journal 92 (2020) 106321

To effectively solve the complex practical problems, the PIO
algorithm needs to be combined with some appropriate im-
provement strategies. In Ref. [14], the modified PIO algorithm
considering the hierarchical learning behavior is proposed to
handle the UAV distributed flocking problem among obstacles. In
Ref. [15], the cooperative PIO algorithm with distance threshold is
put forward to improve the population-diversity in handling the
multilevel image thresholding problems. And in Ref. [16], the per-
formance of improved PIO algorithm for the air quality prediction
problems has been optimized by integrating the particle swarm
optimization (PSO) algorithm. However, it can be seen from these
literatures that the PIO algorithm is usually plagued by the local
convergence due to the poor diversity. To pertinently improve the
population-diversity and avoid the premature-convergence, the
adaptive-adjusted map factor (Rmapnew) and nonlinearly-adjusted
coefficient (ωdiv) are integrated into the proposed modified PIO
(MPIO) algorithm. The applicability and superiority of MPIO al-
gorithm to deal with the MOOPF problems are verified by eight
simulation experiments implemented in this paper.

1.2. Major contributions

In this paper, the MPIO algorithm and constraint-objective
sorting rule (COSR) as two major contributions are proposed.

First, the MPIO algorithm which adopts the adaptive-adjusted
Rmapnew , nonlinearly-adjusted ωdiv and novel landmark searching
model is put forward to solve the MOOPF problems.

Furthermore, the MOOPF problems are severely restricted by
equality constraints and inequality ones [11,17,18]. The control
variables can be limited within a valid range in the initializa-
tion phase. But the state variables may not meet all inequality
constraints. The penalty function method (PFM), a common tech-
nique to handle the constraints of state variables [11,19], is inte-
grated with the MPIO method to generate the novel MPIO-PFM
algorithm.

Comparing with the non-dominated sorting genetic algorithm-
II (NSGA-II) which is often used as the comparison benchmark to
evaluate the quality of novel algorithms, the proposed MPIO-PFM
has greater potential in exploring superior Pareto frontier (PF).
However, experimental results indicate the MPIO-PFM algorithm
cannot guarantee each solution of obtained Pareto optimal set
(POS) achieves the zero system-constraints violation. The pre-
sented COSR rule, which takes the constraint-violation value as
the screening factor of POS set, can effectively overcome the
above shortcoming of PFM method.

By integrating the MPIO algorithm and COSR sorting strategy,
an effective MPIO-COSR algorithm is put forward in this paper.
Five bi-objective and three tri-objective MOOPF trials which aim
to optimize the active power loss, total emission and fuel cost
are carried out to verify the applicability and superiority of MPIO-
COSR algorithm. In contrast to MPIO-PFM and NSGA-II algorithms,
the suggested MPIO-COSR algorithm can not only find the well-
distributed POS, but also realize the zero constraint-violation of
each power flow solution.

1.3. Structural arrangement

The rest part of this article is set as follows. Section 2 gives
the mathematical model of MOOPF problems including objec-
tive functions and system restrictions. The constraint processing
methods of state variables and the proposed COSR strategy for
seeking the evenly-distributed PF are described in Section 3.
The basic PIO algorithm and the novel MPIO-COSR algorithm
are introduced in Section 4. Section 4 summarizes the applica-
tion of MPIO-COSR algorithm on MOOPF Problems as well. Sec-
tion 5 shows the results of eight MOOPF trials on three different

standard systems. Section 6 measures the optimization perfor-
mance of MPIO-COSR algorithm according to the convergence
analysis, two quantitative evaluation indexes and computational
complexity. Eventually, Section 7 gives the conclusions of this
paper.

2. Mathematization of MOOPF problems

In essence, the MOOPF problem is a minimization mathemat-
ical model whose objective functions and system constraints can
be defined as follows [5,20,21].

minimize Fobj = (f1(s, c), f2(s, c), . . . , fi(s, c), . . . , fM (s, c)) (1)

Ek(s, c) = 0, k = 1, 2, . . . , h (2)

Ip(s, c) ≤ 0, p = 1, 2, . . . , g (3)

where fi(s,c) is the ith objective function. Ek and Ip represent
the kth equality constraint (EC) and the pth inequality constraint
(IC). M(M≥2) is the amount of goals which are optimized syn-
chronously while h and g are, respectively, the numbers of ECs
and ICs. The s and c vectors indicate the sets of state variables
and control ones.

2.1. System restrictions

The constraints of electric system are classified into ECs and
ICs. The best compromise (BC) solution adopted by decision-
makers should meet all system restrictions.

2.1.1. ECs
The ECs, the active and reactive power balance equations

intrinsically, are defined as Eq. (4) and (5). The detail descriptions
of relevant parameters are clarified in Ref. [20,22].

PGi − PDi − Vi

∑
j∈Ni

Vj(Gij cos(δi − δj)+ Bij sin(δi − δj)) = 0, i ∈ N (4)

QGi−QDi−Vi

∑
j∈Ni

Vj(Gij sin(δi−δj)−Bij cos(δi−δj)) = 0, i ∈ NPQ (5)

2.1.2. ICs
The ICs, the validity range of system variables, are defined

as follows. Among them, the ICs of state variables are shown in
(6)–(9) and the ICs of control variables are shown in (10)–(13).

• Generator active power at slack node (PG1)

Pmax
G1 ≥ PG1 ≥ Pmin

G1 (6)

• Load node voltage (VL)

Vmax
Lq ≥ VLq ≥ Vmin

Lq , q = 1, 2, . . . ,NPQ (7)

• Generator reactive power (QG)

Qmax
Gw ≥ QGw ≥ Qmin

Gw , w = 1, 2, . . . ,NG (8)

• Apparent power of transmission line (S)

Smax
e − Se ≥ 0, e = 1, 2, . . . ,NL (9)

• Generator active power output at PV node (PG)

Pmax
Gz ≥ PGz ≥ Pmin

Gz , z = 2, 3, . . . ,NG (10)

• Generator node voltage (VG)

Vmax
Gu ≥ VGu ≥ Vmin

Gu , u = 1, 2, . . . ,NG (11)
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• Tap ratios of transformer (T )

Tmax
d ≥ Td ≥ Tmin

d , d = 1, 2, . . . ,NT (12)

• Reactive power injection (QC )

Qmax
Ct ≥ QCt ≥ Qmin

Ct , t = 1, 2, . . . ,NC (13)

where NPQ , NG, NL, NT and NC are the numbers of PQ nodes,
generators, transmission branches, transformers and shunt com-
pensators, respectively.

2.2. Objective functions

The active power loss Fap, the basic fuel cost Fbf , the fuel cost
with valve-point loadings Ff v and the emission Fem [20,23–25], are
studied in this paper.

2.2.1. Active power loss (Fap/MW)

Fap =

NL∑
k=1

con(k)[V 2
i + V 2

j − 2ViVj cos(δi − δj)] (14)

where con(k) represents the conductance of the kth branch that
links the ith node to the jth one. The Vi and δi are the voltage
magnitude and angle of the ith node.

2.2.2. Basic fuel cost (Fbf /$/h)

Fbf =

NG∑
i=1

(ai + biPGi + ciP2
Gi) (15)

where ai, bi and ci indicate the cost coefficients of the ith gener-
ator.

2.2.3. Fuel cost with valve-point loadings (Ff v/$/h)

Ff v =

NG∑
i=1

(ai + biPGi + ciP2
Gi +

⏐⏐di × sin(ei × (Pmin
Gi − PGi))

⏐⏐) (16)

where di and ei represent the cost coefficients. Pmin
Gi indicates the

lower active power at the ith generator node.

2.2.4. Emission (Fem/ton/h)

Fem =

NG∑
i=1

[αiP2
Gi + βiPGi + γi + ηi exp(λiPGi)] (17)

where αi, βi, γi, ηi and λi depict the emission coefficients of the
ith generator.

3. Constraint handling strategies

Proper constraint handling strategies are critical to success-
fully handle the strictly-constrained MOOPF problems.

3.1. Equality constraints processing

The two ECs (4) and (5) are considered as the ending condition
of Newton–Raphson method. In other words, the end of power
flow calculation procedure means that the ECs are satisfied [2,17].

3.2. Inequality constraints processing

The processing of ICs are mainly divided into two aspects: the
processing of ICs on control variables and the processing of ICs
on state variables.

3.2.1. Control variables processing
It is necessary to adopt the effective handling methods of

system constraints when solving the MOOPF problems. The P-
dimensional control variables, also known as the independent
variables of MOOPF problems, can be limited to [cmin, cmax] in
the initialization phase. The unqualified control variables which
violate the ICs can be adjusted according to Formula (18).

ci =

{
cmin
i , ci < cmin

i

cmax
i , ci > cmax

i
(18)

3.2.2. State variables processing
Two approaches of dealing with the ICs on state variables are

studied in this paper. One is the common-used PFM method, and
the other is the constraint-priority dominant strategy.

(1) Penalty function method
The modified objective functions with PFM method are de-

fined as (19). The details and application of PFM method can refer
to literatures [11,22,26].

Fobj−mod = Fobj + penalty (19)

penalty = ζV

NPQ∑
i=1

(VLi − V lim
Li ) + ζQ

NG∑
i=1

(QGi − Q lim
Gi )

+ ζP (PG1 − P lim
G1 ) + ζS

NL∑
i=1

(Si − S limi ) (20)

where ζV , ζQ , ζP and ζS are the penalty coefficients used to adjust
the violation limits of state variables.

The X lim, which represents the boundary value of correspond-
ing variables, can be determined according to Formula (21). For
example, the voltage boundary value of the ith load node (V lim

Li ) is
defined as Formula (22). It should be noted that V lim

Li = VLi when
VLi satisfies Formula (7), which means the valid VLi will not be
punished based on Eq. (20).

X lim
=

{
Xmin if X < Xmin

Xmax if X > Xmax (21)

V lim
Li =

⎧⎨⎩Vmin
Li if VLi < Vmin

Li
VLi if Vmin

Li ≤ VLi ≤ Vmax
Li

Vmax
Li if VLi > Vmax

Li

(22)

In summary, the objective function of these solutions which
violate system constraints will be punished based on PFMmethod.
However, the effectiveness of PFM method is greatly influenced
by penalty coefficients. Improper penalty coefficients may result
in the failure to obtain the feasible POS set with zero constraint-
violation.

(2) Constraint-priority dominant strategy
As the traditional way to deal with the unqualified state vari-

ables of MOOPF problems, the PFM method has two obvious
shortcomings. First, choosing an appropriate penalty coefficient
requires many repeated simulation experiments, which will in-
evitably increase the computational complexity. Then, the PFM
method may find some power flow solutions which violate sys-
tem constraints when dealing with the high-dimensional MOOPF
problems.

The suggested constraint-priority dominant strategy effec-
tively overcomes the imperfections of PFM method. Determining
the dominant relationship between two different power flow
solutions is the basis of using the proposed COSR strategy. In this
paper, the constraint violation (CV ) value is given the highest-
priority. In other word, these solutions with zero-violation or
smaller-violation will be assigned higher adoption priorities.
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There are three dominant relationships between two different
solution sets (W = (w1, w2, . . . , wM ), V = (v1, v2, . . . , vM )). That
is, W dominates V, V dominates W or they do not dominate each
other. For those solutions with the same CV value, the adoption-
priority is determined based on the values of these goals to
be studied. The CV value of W can be calculated according to
Eq. (23).

CV (W ) = Constr_V(W ) + Constr_Q(W ) + Constr_P(W ) + Constr_S(W )

(23)

where Constr_V (W ), Constr_Q (W ), Constr_P (W ) and Constr_S(W ), re-
spectively, represent the absolute violation-value of W solution
on node voltage, generator reactive power output, generator ac-
tive power output at slack node and apparent power of branches.

Based on the constraint-priority dominant strategy, the judg-
ment can be made that the W solution surpasses the V solution
when condition (24) or (25) is satisfied. In other words, the W
solution is a non-inferior solution in contrast to the V one.

CV (W ) < CV (V ) (24)

⎧⎨⎩
CV (W ) = CV (V )
fi(sW , cW ) ≤ fi(sV , cV ), ∀i ∈ {1, 2, . . . ,M}

fj(sW , cW ) < fj(sV , cV ), ∃j ∈ {1, 2, . . . ,M}

(25)

3.3. Proposed COSR rule

To obtain the uniformly-distributed PFs, the non-inferior COSR
rule which concurrently takes the rank indicator (Rank) and the
crowding distance indicator (Cdis) into account is adopted.

3.3.1. Rank index
Inspired by the sorting strategy proposed by Kalyanmoy Deb

[27–29], the Rank index of each solution with constraints-priority
can be determined.

To sustain the diversity of POS, the external archive set (EAS)
which is conducive to store the elite solutions is employed. A
hybrid solution set (HSS) is composed of the parent solution set
(PSS) and the EAS set which both contain N alternative solutions.
In order to improve the optimization efficiency, the deletion op-
eration of repeated individuals, as one of the innovative measures
in this paper, is performed on the HSS population. The Rank index
of remaining HSS population with size of Nn(N < Nn ≤ 2N) can
be defined as follows.

(i) Based on the constraint-priority dominant strategy shown
in (24) and (25), these solutions which are not dominated by the
other solutions in HSS are marked as Rank = 1.

(ii) Regardless of the solutions with Rank = 1, the current non-
inferior solutions are found based on the same dominant rule and
marked as Rank = 2.

(iii) Repeat the previous steps to make the Nn solutions in HSS
population have their corresponding Rank index.

3.3.2. Cdis index
In order to select a favorable POS set composed of N solutions

from the HSS set, the Rank index is prioritized. Then, the Cdis index
is considered for the different solutions with the same Rank. The
key of calculating the Cdis value can be generalized as Eq. (26).

Cdis(i) =

N∑
j=1

fj(s, ci−1) − fj(s, ci+1)
f max
j − f min

j
(26)

where f max
j and f min

j , respectively, are the maximum and mini-
mum values of the jth goal. The fj(s, ci−1) and fj(s, ci+1) depict the

jth objective values on the (i − 1)th individual and the (i + 1)th
one.

Considering the Rank and Cdis indexes comprehensively, the
adoption-priority of each solution can be determined. When con-
dition (27) or (28) is satisfied, it can be concluded that the ith
solution predominates the jth one, that is to say, the jth solution
ranks behind the ith one.

Rank(i) < Rank(j) (27)

{
Rank(i) = Rank(j)
Cdis(i) > Cdis(j)

(28)

In general, the smaller Rank index means the smaller constraint-
violation or objective-function values, while the larger Cdis index
means the better solution-diversity. Consequently, the N top-
ranked solutions in HSS population are the ultimate POS obtained
by the proposed COSR strategy.

Different from the classical way of solving the many-objective
optimizations by assigning different priority-factors [30–32], the
COSR method proposed in this paper can more objectively deter-
mine the feasible POS set of MOOPF problems and meet the var-
ious needs of decision-makers. Furthermore, the presented COSR
strategy overcomes the deficiency that the traditional method is
not suitable for the multi-objective cases with unknown priori-
ties.

In addition, the relationship between the COSR strategy and
the published COFS strategy [17], which are both effective to
select the qualified POS set of MOOPF problems, are clarified. The
COSR and COFS strategies have different evaluation criteria for
these power flow solutions with the same Rank index. The COFS
strategy prefers the solution with a larger fuzzy dominant fitness
(Fudf ) value, while the COSR strategy prefers the solution with
a larger Cdis value. It can be seen from Ref. [17] that the Fudf
index of COFS strategy is calculated based on the (2N-1) candidate
solutions while the Cdis index of COSR strategy can be obtained
based on only two adjacent solutions. Therefore, although the
two mentioned selection strategies are both effective for MOOPF
problems, the proposed COSR method with lower computational
complexity is more advantageous on the operational efficiency.

4. Multi-objective algorithms

The basic PIO algorithm generates a random solution set in
the initial stage and searches the optimal solution by iterative
operation [33–35]. The unique characteristic is that PIO algorithm
will perform the map searching and landmark searching to locate
the optimal solution pobest .

4.1. Basic PIO algorithm

The map searching model updates the position and speed of
pigeon population during the each iteration based on the geo-
magnetic field. The speed spi and position poi of the ith pigeon
are modeled mathematically as Formulas (29)–(30) [13,33,34,36].

spi(t + 1) = spi(t) ∗ e−Rmapt + ξ1 ∗ (pobest − poi(t)) (29)

poi(t + 1) = poi(t) + spi(t + 1) (30)

where Rmap is the map factor and ξ1 indicates a random number
which is limited between 0 and 1.
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Fig. 1. Flow chart of MPIO algorithm.

The landmark searching model makes the pigeons fly freely
based on the guidance of nearby pigeons or experience of them-
selves. The landmark searching model can be described as For-
mulas (31)∼(33) [13,35].

Nl(t + 1) = Nl(t)/2 (31)

pol = (
Nl(t)∑
i=1

poi(t) ∗ fitness(poi(t)))/(Nl(t) ∗

∑
fitness(poi(t))) (32)

poi(t + 1) = poi(t) + ξ2 ∗ (pol − poi(t)) (33)

where Nl is the number of pigeons involved in the landmark
searching and ξ2 (ξ2∈(0, 1)) is a random number. The fitness(poi(t))
depicts the quality evaluation value of the ith pigeon.

4.2. Proposed MPIO-COSR algorithm

The suggested MPIO algorithm integrating the COSR strategy
extends the application field from single-objective optimizations
to multi-objective ones. The standard PIO algorithm is improved
from the following three aspects.

4.2.1. Adaptive-adjusted Rmapnew
The adaptive-adjusted Rmapnew is more beneficial to balance

the optimization-accuracy and convergence-speed than a fixed
Rmap value. In initial state, the small Rmapnew means the fast-
convergence and enhanced search-ability. The gradual increase
of Rmapnew to Rmap(max) facilitates the completion of map search-
ing. The updated map factor with the adaptive-adjusted Rmapnew
is modified as (34). The effective range of Rmapnew is set to
(Rmap(min), Rmap(max)).

Rmapnew(t) = (Rmap(min) − Rmap(max))

∗ (t − itemax 1)/(1 − itemax 1) + Rmap(max) (34)

4.2.2. Nonlinearly-adjusted ωdiv
The speed update model of PIO algorithm is improved by

a nonlinearly-adjusted coefficient ωdiv , which is propitious to
enhance the solution variability. The ωdiv coefficient is defined as
(35).

ωdiv(t + 1) = ωmax
div − ξ3(ωmax

div − ωmin
div )

+ ξ4(ωdiv(t) − ξ5 ∗ (ωmax
div + ωmin

div )) (35)

where ωmax
div and ωmin

div are the maximum and minimum of ωdiv . The
ξ3 and ξ4 are two random numbers within (0,1) while ξ5 = 0.5.
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Fig. 2. PFs with different Rmapnew .

After integrating Rmapnew and ωdiv , the sp term of MPIO algo-
rithm is modified as Formula (36).

spi(t+1) = ωdiv(t+1)∗spi(t)∗e−Rmapnew t
+ξ1∗ (pobest −poi(t)) (36)

4.2.3. Novel landmark searching model
The original PIO algorithm will perform the landmark search-

ing after completing the map searching. However, the MPIO al-
gorithm proposed in this paper performs the landmark search-
ing after each map searching. The novel landmark searching
model helps to explore a higher-quality solution near the current
optimal solution and reduce the restriction of local optimum.

To successfully solve the MOOPF problems, the Formula (32) of
single-objective PIO algorithm is modified to Formula (37) which
can handle the multi-objective problems.

pol = (
Nl(t)∑
i=1

poi(t) ∗ sat(poi(t)))/(Nl(t) ∗

∑
sat(poi(t))) (37)

For MOOPF problems, the poi represents the P-dimensional
control variables of the ith power flow solution. The sat(poi),
which is the quality evaluation value of the ith pigeon, indicates
the total satisfaction value of the ith solution defined as Formula
(38). Generally speaking, the larger the sat value is, the better
the performance of the corresponding power flow solution has.
The BC solution of MOOPF problem is actually the one with the
highest sat value of final POS set [20,37].

sat(i) =

∑M
j=1 Fsj(i)∑N

i=1
∑M

j=1 Fsj(i)
(38)

where Fsj(i) indicates the satisfaction function of the ith solution
on the jth objective which can be defined as (39). The f max

j is the
maximum of the jth goal and f min

j is the minimum one.

Fsj(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 fj ≤ f min

j

f max
j − fj

f max
j − f min

j
f min
j < fj < f max

j

0 fj ≥ f max
j

,

i = 1, 2, . . . ,N j = 1, 2, . . . ,M (39)

Based on the above improvements, the novel MPIO algorithm
is generated and its flow chart is shown in Fig. 1.

Fig. 3. PFs with different ωdiv .

4.3. Application of MPIO-COSR algorithm on MOOPF problems

For MOOPF problems, the each pigeon indicates a P-
dimensional control variables set of power system. It is worth
pointing out that P = 24 in IEEE 30-node system, P = 33 in IEEE
57-node system and P = 128 in IEEE 118-node system. The larger
dimensions caused by the complex structure mean that it is more
difficult to solve the MOOPF problems.

To validate the great advantages of MPIO-COSR algorithm,
eight MOOPF trials have been carried out in this paper. In detail,
the pseudo code of MPIO-COSR algorithm on MOOPF problem is
summarized in Table 1.

5. Trials and results

In contrast to NSGA-II and MPIO-PFM algorithms, the pro-
posed MPIO-COSR algorithm can not only find the uniformly-
distributed PF, but also realize that each non-inferior solution of
POS to meet all system restrictions.

In order to verify the effectiveness of MPIO-COSR algorithm,
eight MOOPF trials shown in Table 2 are simulated in this paper.
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Table 1
Pseudo code of MPIO-COSR algorithm.
input: the initial parameters of MPIO-COSR algorithm and the N pigeon individuals
(N randomly generated P-dimension sets of control variables)
begin
ite1 = 1
while ite1 < itemax1
for i = 1,2,. . . ,N
update the sp and po of ith power flow solution based on (36) and (30)
calculate the power flow to clarify the objective function value f (s,c) and the constraints violation value CV
end
determine the current POS set based on the non-inferior COSR rule and the current pobest solution based on sat value;

ite2 = 1
Nl=N
while ite2 < itemax2
Nl=max(ceil(Nl/2),10)
for i = 1,2,. . . , Nl
update the po of ith power flow solution based on (37) and (33)
calculate the power flow

end
determine the current POS set and the current pobest solution
ite2 = ite2+1;
end while

ite1 = ite1+1
end while

end
output: the control variables set of the pobest solution

Fig. 4. PFs with different itemax .

All testing cases are conducted on the MATLAB 2014a software in
a PC with Intel(R) Core(TM) i5–7500 CPU @ 3.40 GHz with 8 GB
RAM.

5.1. Algorithm parameters

To optimize the performance of MPIO-COSR algorithm in han-
dling the MOOPF problems, it is critical to set the reasonable
ranges of two added Rmapnew and ωdiv coefficients. A bi-objective
case considering both Fbf and Fap is taken as an example to
determine a relatively-optimal combination of parameters.

Firstly, the effect of Rmapnew on optimization quality is dis-
cussed. Fig. 2 shows the PFs based on different range of Rmapnew ,
indicating that the more desirable PF is achieved when the Rmapnew
range is set to (0.10, 0.95). Meanwhile, the influence of different
ωdiv ranges on the optimization performance is discussed as well.
Fig. 3 shows the obtained PFs based on different ωdiv , which

clearly states that the more superior PF can be achieved when the
valid range of ωdiv is set to (0.4, 0.9). Besides, Fig. 3 also indicates
that the diversity and distribution-uniformity of obtained PFs are
significantly worse when the ωdiv coefficient is set to a fixed value
of 0.4 or 0.9, which proves the effectiveness of introducing the
nonlinearly adjusted ωdiv coefficient.

Consequently, the valid Rmapnew and ωdiv are respectively lim-
ited within (0.10, 0.95) and (0.4, 0.9). To obtain the high-quality
PF, it is also important to set a suitable itemax. Fig. 4 shows the
PFs with different itemax, indicating that there is no significant
difference in the solution-diversity of obtained PFs. However, the
itemax1 = 200 and itemax2 = 15 achieves a relatively-best PF ac-
cording to the Pareto dominance rule. Then, based on the Rmapnew ,
ωdiv and itemax set above, the availability of MPIO-COSR algorithm
in solving the MOOPF problems with different population sizes is
studied. Fig. 5 shows the obtained PFs when the population size is
set as 30, 50, 75 and 100, which demonstrates that the proposed
MPIO-COSR algorithm is capable to find the well-distributed PFs
in different population sizes. Undoubtedly, the larger N is, the
more difficult it is to solve the MOOPF problems. The N is set
as 100 for all MOOPF simulation experiments studied in this
paper to comprehensively evaluate the performance of the novel
MPIO-COSR algorithm.

It should be noted that the itemax of five trials on IEEE 30-node
system is set as itemax1 = 200 with itemax2 = 15 while the itemax1
of other three trials on IEEE 57-node and 118-node systems is
increased appropriately. Besides, the detail parameters of three
involved algorithms are shown in Table 3.

5.2. Trials on IEEE 30-node system

Three bi-objective and two tri-objective cases are performed
on IEEE 30-node system. The structure and details such as the
effective range of control variables are provided in literatures [20,
22,38].

5.2.1. Trial 1 : Fbf and Fap
In Trial 1, the Fbf and Fap are optimized simultaneously by

NSGA-II, MPIO-PFM and MPIO-COSR approaches. The PFs of Trial
1 are shown in Fig. 6 and the control variables of BC solutions
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Fig. 5. PFs with different population sizes.

Table 2
Objective combination.
Combination Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8

Fap ✓ ✓ ✓ ✓ ✓

Fbf ✓ ✓ ✓ ✓ ✓ ✓

Ff v ✓ ✓

Fem ✓ ✓ ✓ ✓ ✓ ✓

System IEEE 30 IEEE 30 IEEE 30 IEEE 30 IEEE 30 IEEE 57 IEEE 57 IEEE 118

Table 3
Algorithm parameters.
Parameters Trial 1∼Trial 5 Trial 6∼Trial 7 Trial 8

NSGA-II MPIO-PFM/
MPIO-COSR

NSGA-II MPIO-PFM/
MPIO-COSR

NSGA-II MPIO-PFM/
MPIO-COSR

N 100 100 100 100 100 100
Size of EAS 100 100 100 100 100 100
itemax1 – 200 – 350 – 500
itemax2 – 15 – 15 – 15
itemax−NSGA 300 – 500 – 500 –
ωmax

div 0.90 0.90 0.90
ωmin

div 0.40 0.40 0.40
Rmap(max) – 0.95 – 0.95 – 0.95
Rmap(min) – 0.10 – 0.10 – 0.10
Mutation index/percentage 20/1 – 20/1 – 20/1 –
Crossover index/percentage 20/0.1 – 20/0.1 – 20/0.1 –

are shown in Table 4. It is not difficult to find that the BC
solution with 5.1085 MW of Fap and 831.5576 $/h of Fbf , which
is achieved by the suggested MPIO-COSR algorithm, dominates
the BC solutions obtained by NSGA-II and MPIO-PFM methods.
In 30 independent trials for Trial 1, the number of feasible so-
lutions that do not violate any system restriction is shown in
Fig. 7. Fig. 7 visually indicates that the NSGA-II and MPIO-COSR
algorithms can guarantee all obtained solutions satisfy the system
constraints while the PF of MPIO-COSR algorithm realizes higher
standard.

Besides, Table 5 gives the comparison results in other pub-
lished literatures of Trial 1. It indicates that the BC solution of
the novel MPIO-COSR algorithm dominates the ones of MOHS,
NSGA-III, MOPSO and NHBA-CPFD algorithms. In addition, MPIO-
COSR algorithm is not inferior to the other algorithms shown in
Table 5. Consequently, MPIO-COSR algorithm has great potential
and advantages in determining the better BC solutions.

5.2.2. Trial 2: Fap and Ff v
In Trial 2, the performance of three involved algorithms for

optimizing Fap and Ff v is considered. The PFs of Trial 2 are illus-
trated in Fig. 8 and the control variables of BC solutions are given
in Table 4. Table 4 clearly states that the BC solution obtained by
MPIO-COSR algorithm with 5.6459 MW of Fap and 865.9780 $/h
of Ff v dominates both the BC solution obtained by NSGA-II with
5.7754 MW of Fap and 868.6378 $/h of Ff v and the BC solution
obtained by MPIO-PFM with 5.6621 MW of Fap and 867.3608 $/h
of Ff v . Besides, the BC solution of MPIO-COSR algorithm is also
more superior to the BC of NHBA method composed by 5.6761
MW of Fap and 869.9526 $/h of Ff v .

Compared with NSGA-II algorithm, MPIO-PFM algorithm has
clear superiority in exploring better PFs. However, Fig. 9 shows
that there is some solutions obtained by MPIO-PFM algorithm
do not satisfy all inequality constraints. The presented MPIO-
COSR algorithm is capable to overcome the above shortcoming
effectively.
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Table 4
The control variables of BC solutions for Trial 1 and Trial 2.
Variables Trial 1 Trial 2

NSGA-II MPIO-PFM MPIO-COSR NSGA-II MPIO-PFM MPIO-COSR NHBA [39]

PG2 (MW) 52.6103 53.6818 47.7971 46.8927 46.5133 43.8208 52.3984
PG5 (MW) 29.8274 32.8854 30.8934 33.6199 32.7137 29.8216 31.9677
PG8 (MW) 34.3296 35.0000 35.0000 34.9469 34.6203 34.0807 34.6347
PG11 (MW) 27.7208 24.8533 29.1416 24.4436 22.7827 25.6364 19.6335
PG13 (MW) 25.9714 22.8184 23.6042 15.7963 19.0848 21.4943 20.2407
VG1 (p.u.) 1.0787 1.1000 1.1000 1.0954 1.1000 1.1000 1.0992
VG2 (p.u.) 1.0680 1.0893 1.0874 1.0847 1.0866 1.0912 1.0922
VG5 (p.u.) 1.0478 1.0710 1.0614 1.0632 1.0649 1.0703 1.0697
VG8 (p.u.) 1.0645 1.0836 1.0721 1.0741 1.0780 1.0773 1.0804
VG11 (p.u.) 1.0899 1.0738 1.0914 1.0150 1.1000 1.1000 1.0972
VG13 (p.u.) 1.0870 1.0952 1.1000 1.0397 1.0839 1.0958 1.0707
T11 (p.u.) 1.0494 1.0391 1.0172 1.0346 1.0122 1.0492 1.0257
T12 (p.u.) 0.9132 0.9023 0.9060 1.0187 0.9716 0.9010 0.9754
T15 (p.u.) 0.9814 1.0045 0.9835 1.0566 1.0067 1.0021 0.9818
T36 (p.u.) 0.9803 0.9940 0.9613 1.0285 0.9929 0.9792 0.9868
QC10 (p.u.) 0.0059 0.0132 0.0282 0.0319 0.0061 0.0217 0.0276
QC12 (p.u.) 0.0152 0.0192 0.0401 0.0217 0.0155 0.0039 0.0277
QC15 (p.u.) 0.0305 0.0384 0.0469 0.0455 0.0427 0.0341 0.0242
QC17 (p.u.) 0.0103 0.0339 0.0351 0.0500 0.0256 0.0390 0.0256
QC20 (p.u.) 0.0363 0.0240 0.0252 0.0177 0.0211 0.0321 0.0397
QC21 (p.u.) 0.0409 0.0119 0.0427 0.0351 0.0189 0.0481 0.0310
QC23 (p.u.) 0.0288 0.0300 0.0256 0.0176 0.0429 0.0226 0.0315
QC24 (p.u.) 0.0120 0.0359 0.0316 0.0146 0.0089 0.0235 0.0269
QC29 (p.u.) 0.0249 0.0317 0.0181 0.0397 0.0445 0.0340 0.0205
Fbf ($/h) 833.5363 832.2274 831.5576 – – – –
Ff v ($/h) – – 868.6378 867.3608 865.9780 868.9526
Fap (MW) 5.3483 5.1270 5.1085 5.7754 5.6621 5.6459 5.6761

Table 5
Comparison results of Trial 1.
Algorithms Size itemax Fap (MW) Fbf ($/h)

NSGA-II 100 300 5.3483 833.5363
MPIO-PFM 100 200–15 5.1270 832.2274
MPIO-COSR 100 200–15 5.1085 831.5576
MOEA/D [37] 100 500 4.9099 835.36
MOABC/D [40] 100 30000 function evaluations 5.2451 827.636
MOHS [41] 20 1000 5.3143 832.6709
ESDE-MC [42] 20 200 5.2270 827.1592
NSGA-III [20] 100 300 5.1775 836.8076
MOPSO [20] 100 300 5.2310 852.8083
MOMICA [43] 120 500 4.5603 848.0544
NHBA-CPFD [39] 100 300 5.1096 831.8513

Fig. 6. PFs of Trial 1.

5.2.3. Trial 3: Fem and Fbf
The MPIO-COSR and two comparison algorithms are tested for

optimizing the Fem and Fbf concurrently in Trial 3. Fig. 10 and

Fig. 7. The number of feasible solutions for Trial 1.

Table 6 give the obtained PFs and the control variables of BC
solutions, respectively. Table 6 suggests that based on the values
of Fem and Fbf , the BC solution achieved by MPIO-COSR algorithm
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Fig. 8. PFs of Trial 2.

Fig. 9. The number of feasible solutions for Trial 2.

with 0.2351 ton/h of Fem and 832.4655 $/h of Fbf can dominate
the BC solutions achieved by NSGA-II and MPIO-PFM methods.
Besides, Fig. 11 shows the number of available solutions which
do not offend any system constraint. It turns out that the MPIO-
COSR algorithm can obtain a more preponderant PF and achieve
the zero-violation of all non-inferior solutions.

In addition, Table 7 gives the comparison results of Trial 3 from
other published results. It intuitively states MPIO-COSR algorithm
is more advantageous than most algorithms shown in Table 7
such as ESDE, MOEA/D, BSA and NHBA algorithms. Based on the
obtained BC solutions, the presented MPIO-COSR algorithm and
these algorithms such as ESDE-EC, MODFA do not dominate each
other. In general, the dominant position of MPIO-COSR algorithm
in seeking satisfactory BC solutions cannot be ignored.

5.2.4. Trial 4: Fem, Fbf and Fap
In contrast to bi-objective optimization, the tri-objective one is

a more complex problem with higher-dimension, which can mea-
sure the performance of MPIO-COSR method more comprehen-
sively. In Trial 4, the Fem, Fbf and Fap are optimized simultaneously.
The PFs of Trial 4 are illustrated in Fig. 12, which clearly shows
that three mentioned algorithms can obtain evenly-distributed
PFs when the MPIO-COSR algorithm obtains a better one.

Table 6 shows the control variables of BC solutions found by
three algorithms and it indicates that the BC solution obtained

Fig. 10. PFs of Trial 3.

Fig. 11. The number of feasible solutions for Trial 3.

by MPIO-COSR algorithm with 0.2126 ton/h of F em, 4.3177 MW
of F ap and 863.9503 $/h of F bf can dominate the ones achieved
by NSGA-&#x2161; and MPIO-PFM methods. Compared with the
MOFA-PFA algorithm in Ref [11], MPIO-COSR algorithm achieves
the smaller F bf and F em when the F ap is not much different.

Fig. 13 visually states that based on the number of feasible
solutions, the NSGA-II and MPIO-COSR algorithms surpass MPIO-
PFM method. Furthermore, the MPIO-COSR algorithm is superior
to NSGA-II method in the high-quality of BC solutions and the
uniform-distribution of PFs.

5.2.5. Trial 5: Fem, Fap and Ff v
The performance of three involved algorithms for optimizing

the Fem, Fap and Ff v synchronously is studied in Trial 5. The PFs
of Trial 5 are illustrated in Fig. 14 and the control variables of BC
solutions are given in Table 8.

Table 8 indicates that the BC solution obtained by MPIO-
COSR algorithm with 0.2234 ton/h of Fem, 4.8659 MW of Fap and
910.6654 $/h of Ff v can dominate the ones achieved by NSGA-II
and MPIO-PFM methods. The comparing results of Trial 5 are also
shown in Table 8. Although MPIO-COSR algorithm cannot directly
dominate MOFA-PFA and MOFA-CPA algorithms, it achieves the
relatively-better BC solution with smaller Ff v and Fem values
among the three stated goals.
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Table 6
The control variables of BC solutions for Trial 3 and Trial 4.
Variables Trial 3 Trial 4

NSGA-II MPIO-PFM MPIO-COSR NSGA-II MPIO-PFM MPIO-COSR MOFA-PFA [11]

PG2 (MW) 59.4325 59.3460 59.6975 68.7162 64.5985 68.0089 57.890
PG5 (MW) 27.1332 32.8673 30.8573 38.6107 39.9652 34.3260 36.290
PG8 (MW) 33.8130 26.6984 32.9071 29.7645 31.7062 34.4931 35.000
PG11 (MW) 24.8982 22.2277 22.2523 24.1976 25.0777 27.0861 29.271
PG13 (MW) 25.6253 26.3319 25.6386 29.4938 28.4935 30.7136 40.000
VG1 (p.u.) 1.0229 1.0684 1.0888 1.0995 1.0984 1.1000 1.0985
VG2 (p.u.) 1.0004 1.0548 1.0800 1.0931 1.0946 1.0893 1.0869
VG5 (p.u.) 0.9655 1.0325 1.0556 1.0565 1.0698 1.0701 1.0625
VG8 (p.u.) 0.9808 1.0312 1.0577 1.0802 1.0801 1.0747 1.0767
VG11 (p.u.) 1.0645 1.0771 1.0860 1.0567 1.0334 1.0748 1.0857
VG13 (p.u.) 0.9926 1.0532 1.0555 1.0719 1.0515 1.0877 1.0386
T11 (p.u.) 0.9774 0.9791 1.0271 1.0271 1.0052 1.0752 1.0860
T12 (p.u.) 1.0787 1.0724 0.9985 0.9370 1.0647 0.9193 0.9930
T15 (p.u.) 0.9541 0.9903 0.9900 1.0393 1.0493 1.0156 1.0520
T36 (p.u.) 0.9372 0.9720 0.9604 0.9709 0.9986 0.9787 1.0770
QC10 (p.u.) 0.0121 0.0327 0.0149 0.0191 0.0320 0.0383 0.0140
QC12 (p.u.) 0.0312 0.0304 0.0152 0.0317 0.0201 0.0274 0.0220
QC15 (p.u.) 0.0139 0.0100 0.0334 0.0445 0.0365 0.0485 0.0080
QC17 (p.u.) 0.0357 0.0384 0.0336 0.0364 0.0185 0.0494 0.0250
QC20 (p.u.) 0.0073 0.0428 0.0274 0.0385 0.0448 0.0427 0.0390
QC21 (p.u.) 0.0169 0.0450 0.0349 0.0140 0.0318 0.0473 0.0270
QC23 (p.u.) 0.0037 0.0157 0.0269 0.0174 0.0158 0.0218 0.0100
QC24 (p.u.) 0.0455 0.0247 0.0440 0.0417 0.0478 0.0457 0.0170
QC29 (p.u.) 0.0239 0.0142 0.0381 0.0079 0.0126 0.0415 0.0500
Fbf ($/h) 833.2605 833.1703 832.4655 866.0169 866.0601 863.9503 879.91
Fap (MW) – – – 4.5583 4.4474 4.3177 4.2179
Fem (ton/h) 0.2367 0.2397 0.2351 0.2165 0.2160 0.2126 0.2165

Fig. 12. PFs of Trial 4.

In 30 independent trials for Trial 5, the number of solutions
that achieve none-violation is shown in Fig. 15. Fig. 14 and Fig. 15
indicate that although the NSGA-II and MPIO-COSR algorithms
both guarantee every obtained solution achieve zero constraint-
violation, the MPIO-COSR algorithm is more advantageous in
handling the high-dimensional MOOPF problems.

5.3. Trials on IEEE 57-node system

To extend the study of MOOPF problems, the bi-objective and
tri-objective optimizations are performed on the IEEE 57-node
system with larger-scale and higher-dimension. The structure and
details of IEEE 57-node system are provided in [20,22].

Fig. 13. The number of feasible solutions for Trial 4.

5.3.1. Trial 6: Fem and Fbf
In Trial 6, the NSGA-II, MPIO-PFM and MPIO-COSR algorithms

are tested for optimizing the Fem and Fbf concurrently. Fig. 16
and Table 9 give the obtained PFs and the control variables of
BC solutions, respectively.

Fig. 16 clearly states that all three algorithms can obtain the
PFs with relative uniform-distribution while the MPIO-COSR al-
gorithm can achieve the best one. Table 9 indicates that the BC
solution obtained by MPIO-COSR algorithm with 1.2314 ton/h of
Fem and 43131.2743 $/h of Fbf can dominate both the BC solution
obtained by NSGA-II algorithm with 1.2466 ton/h of Fem and
43351.1353 $/h of Fbf and the BC solution obtained by MPIO-PFM
algorithm with 1.2386 ton/h of Fem and 43205.8477 $/h of Fbf . Be-
sides, MPIO-COSR algorithm also surpasses the published MODFA
algorithm composed of 1.2679 ton/h of Fem and 43174.5740 $/h
of Fbf .
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Table 7
Comparison results of Trial 3.
Algorithms Fbf ($/h) Fem (ton/h)

NSGA-II 833.2605 0.2367
MPIO-PFM 833.1703 0.2397
MPIO-COSR 832.4655 0.2351
ESDE [42] 833.4743 0.2540
ESDE-EC [42] 831.0943 0.2510
ESDE-MC [42] 830.7185 0.2483
MOEA/D [37] 833.72 0.2438
BSA [44] 835.0199 0.2425
AGSO [45] 843.5473 0.2539
MODFA [20] 831.6652 0.2432
NSGA-III [20] 832.5323 0.2483
MOPSO [20] 833.7139 0.2492
NHBA [39] 832.6471 0.2375

Fig. 14. PFs of Trial 5.

Fig. 15. The number of feasible solutions for Trial 5.

Besides, Fig. 17 gives the number of feasible solutions of Trial
6. In contrast to NSGA-II and MPIO-PFM methods, the proposed
MPIO-COSR algorithm has obvious advantages to seek the supe-
rior POS that satisfies all inequality constraints in the complex,
large-scale power systems.

Fig. 16. PFs of Trial 6.

Fig. 17. The number of feasible solutions for Trial 6.

5.3.2. Trial 7: Fbf , Fem and Fap
The Trial 7 aims to optimize Fbf , Fem and Fap at the same

time on the IEEE 57-node system. Fig. 18 gives the PFs ob-
tained by NSGA-II and MPIO-COSR methods. Meanwhile, Fig. 19
gives the PFs obtained by MPIO-PFM and MPIO-COSR methods. It
clearly states that the PFs of NSGA-II and MPIO-PFM are much
more distributed than the one of MPIO-COSR algorithm. The
number of feasible solutions with zero system-contravention for
Trial 7 is shown in Fig. 20 while the control variables of BC
solutions are tabulated in Table 9. It can be seen from Table 9
that the BC solutions obtained by MPIO-COSR algorithm includes
42133.3305 $/h of Fbf , 1.4360 ton/h of Fem and 11.7711 MW of
Fap and it can dominate the BC solutions obtained by NSGA-II and
MPIO-PFM algorithms. Fig. 20 clearly indicates that the proposed
MPIO-COSR algorithm has great advantages to achieve more zero-
violation Pareto solutions especially in tri-objective optimization
of larger-scale IEEE 57-node system.

5.4. Trials on IEEE 118-node system

In Trial 8, the Fbf and Fem are optimized simultaneously on
the IEEE 118-node system. The details of IEEE 118-node sys-
tem are provided in [17,20]. The PFs obtained by NSGA-II and
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Table 8
The control variables of BC solutions for Trial 5.
Variables NSGA-II MPIO-PFM MPIO-COSR MOFA-PFA [11] MOFA-CPA [11]

PG2 (MW) 64.0830 65.2618 66.4521 59.497 61.750
PG5 (MW) 36.2881 36.1904 30.2492 31.945 30.736
PG8 (MW) 28.8384 29.6200 34.5049 34.633 35.000
PG11 (MW) 21.9934 21.9466 25.3537 30.000 29.457
PG13 (MW) 28.7908 28.1961 26.7809 27.781 27.389
VG1 (p.u.) 1.0998 1.0983 1.0992 1.0920 1.0965
VG2 (p.u.) 1.0900 1.0899 1.0901 1.0848 1.0904
VG5 (p.u.) 1.0717 1.0734 1.0679 1.0642 1.0687
VG8 (p.u.) 1.0742 1.0755 1.0754 1.0744 1.0743
VG11 (p.u.) 1.0839 1.0829 1.0948 1.0901 1.0892
VG13 (p.u.) 1.0767 1.0751 1.0967 1.0413 1.0517
T11 (p.u.) 1.0483 1.0459 0.9918 1.0730 1.0760
T12 (p.u.) 0.9451 0.9458 0.9783 1.0030 0.9400
T15 (p.u.) 0.9806 0.9815 0.9704 1.0400 0.9650
T36 (p.u.) 1.0054 1.0065 0.9723 1.0200 0.9890
QC10 (p.u.) 0.0397 0.0394 0.0401 0.0160 0.0460
QC12 (p.u.) 0.0436 0.0441 0.0067 0.0110 0.0020
QC15 (p.u.) 0.0490 0.0489 0.0291 0.0000 0.0470
QC17 (p.u.) 0.0328 0.0322 0.0163 0.0210 0.0410
QC20 (p.u.) 0.0251 0.0255 0.0317 0.0040 0.0340
QC21 (p.u.) 0.0211 0.0211 0.0420 0.0310 0.0290
QC23 (p.u.) 0.0365 0.0361 0.0284 0.0130 0.0060
QC24 (p.u.) 0.0264 0.0257 0.0239 0.0360 0.0240
QC29 (p.u.) 0.0443 0.0428 0.0063 0.0420 0.0220
Ff v ($/h) 914.3344 915.4396 910.6654 918.57 916.59
Fap (MW) 4.9074 4.8839 4.8659 4.7949 4.7780
Fem (ton/h) 0.2259 0.2250 0.2234 0.2323 0.2322

Fig. 18. PFs of NSGA-II and MPIO-COSR for Trial 7.

MPIO-COSR algorithm is shown in Fig. 21. It is worth noting

that the MPIO-PFM method cannot obtain the qualified PF which

achieves zero constraints-violation due to the high-dimension

and complex-structure of IEEE 118-node system.

Fig. 21 also indicates the NSGA-II method finds 1.85 ton/h

of minimal Fem and 56827.89 $/h of minimal Fbf . The suggested

MPIO-COSR method finds 1.83 ton/h of minimal Fem and 56885.22

$/h of minimal Fbf . Besides, Table 10 intuitively states that the BC

solution of MPIO-COSR algorithm which includes 58697.61 $/h of

Fbf and 2.56 ton/h of Fem is in a dominant position than that of

traditional NSGA-II algorithm.

Fig. 19. PFs of MPIO-PFM and MPIO-COSR for Trial 7.

6. Comprehensive analysis

The performance of MPIO-COSR algorithm in solving the
MOOPF problems is analyzed based on the convergence, com-
putational complexity, generational distance (GD) and hyper-
volume (HV) evaluation indexes.

6.1. Convergence analysis

Trial 1 and Trial 6, respectively, carried out on IEEE 30-node
and 57-node systems are adopted to demonstrate the advantage
of MPIO-COSR algorithm in fast-convergence.

Fig. 22 gives the PFs in iteration process of Trial 1. The NSGA-II,
MPIO-PFM and MPIO-COSR algorithms, respectively, realize zero
constraints-violation at the 59th, 97-15th and 33-15th iteration.
Besides, Fig. 22 also indicates NSGA-II method achieves the rela-
tively uniformly-distributed PF around the 150th iteration while
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Table 9
The control variables of BC solutions for Trial 6 and Trial 7.
Variables Trial 6 Trial 7

NSGA-II MPIO-PFM MPIO-COSR MODFA [20] NSGA-II MPIO-PFM MPIO-COSR

PG2 (MW) 98.6492 99.6650 100.0000 99.9703 96.3769 67.7035 88.7122
PG3 (MW) 86.8695 91.7559 85.5144 88.2975 53.7609 67.0055 72.3392
PG6 (MW) 99.9425 100.0000 99.7250 99.9135 77.7030 91.5160 99.6767
PG8 (MW) 362.0020 362.0245 348.8135 343.6324 360.5024 306.2448 366.8565
PG9 (MW) 100.0000 99.9343 98.8729 99.9138 99.9403 93.6950 99.6824
PG12 (MW) 297.9466 299.1797 306.1420 310.8878 406.8049 410.0000 366.3118
VG1 (p.u.) 0.9809 1.0118 1.0793 1.0600 1.0007 1.0485 1.0964
VG2 (p.u.) 0.9789 1.0092 1.0768 1.0544 0.9850 1.0402 1.0963
VG3 (p.u.) 0.9824 1.0137 1.0716 1.0467 0.9675 1.0498 1.0963
VG6 (p.u.) 1.0278 1.0216 1.0903 1.0500 0.9752 1.0605 1.0954
VG8 (p.u.) 1.0658 1.0150 1.0879 1.0558 0.9885 1.0555 1.0964
VG9 (p.u.) 1.0433 1.0098 1.0651 1.0433 0.9871 1.0380 1.0923
VG12 (p.u.) 1.0080 0.9967 1.0460 1.0332 0.9929 1.0429 1.0852
T19 (p.u.) 0.9498 0.9212 1.0312 0.9916 1.0154 0.9822 1.0899
T20 (p.u.) 0.9329 1.0102 1.0520 0.9805 0.9194 1.0046 0.9706
T31 (p.u.) 1.0263 1.0939 0.9862 0.9972 1.0891 1.0638 1.0295
T35 (p.u.) 1.0399 0.9523 0.9439 0.9693 1.0387 1.0609 1.0961
T36 (p.u.) 1.0159 1.0884 1.0043 0.9646 1.0096 1.0053 0.9578
T37 (p.u.) 1.0754 1.0571 1.0161 0.9788 1.0275 1.0083 1.0249
T41 (p.u.) 0.9481 0.9632 1.0041 0.9570 0.9081 1.0082 1.0245
T46 (p.u.) 1.0483 0.9715 1.0109 0.9741 1.0386 1.0029 0.9303
T54 (p.u.) 0.9091 1.0519 0.9165 1.0310 0.9122 0.9442 1.0035
T58 (p.u.) 0.9077 0.9055 0.9596 0.9523 0.9025 0.9615 1.0094
T59 (p.u.) 0.9580 0.9330 0.9588 0.9452 0.9000 0.9271 0.9971
T65 (p.u.) 0.9964 0.9520 0.9773 1.0045 0.9226 0.9425 1.0076
T66 (p.u.) 0.9909 1.0150 0.9573 0.9344 0.9032 0.9000 0.9473
T71 (p.u.) 0.9488 0.9042 0.9922 0.9481 0.9007 0.9405 0.9786
T73 (p.u.) 1.0334 1.0711 1.0562 0.9621 1.0725 1.0098 1.0282
T76 (p.u.) 1.0567 0.9418 0.9812 0.9587 0.9871 1.0601 1.0444
T80 (p.u.) 1.0292 1.0203 1.0582 0.9703 0.9765 0.9898 1.0236
QC18 (p.u.) 0.0108 0.1988 0.2283 0.1896 0.1584 0.0680 0.0992
QC25 (p.u.) 0.2006 0.1539 0.1166 0.1191 0.1829 0.1041 0.1625
QC53 (p.u.) 0.2091 0.0821 0.1542 0.0331 0.0660 0.1703 0.1389
Fbf ($/h) 43351.1353 43205.8477 43131.2743 43174.5740 42187.9327 43133.9896 42133.3305
Fem (ton/h) 1.2466 1.2386 1.2314 1.2679 1.5765 1.5027 1.4360
Fap (MW) – – – – 13.4586 11.7899 11.7711

Table 10
The special solutions for Trial 8.
Algorithms BC Boundary solution-1 Boundary solution-2

Fbf Fem minimal Fbf Fem Fbf minimal Fem
NSGA-II 58804.23 2.58 56827.89 4.01 61811.41 1.85
MPIO-COSR 58697.61 2.56 56885.22 3.94 61344.67 1.83

Fig. 20. The number of feasible solutions for Trial 7.

MPIO-COSR algorithm can achieve ideal PF around the 75-15th
iteration. However, it is more difficult for MPIO-PFM method to
find the satisfactory PF than NSGA-II and MPIO-COSR methods.

Furthermore, Fig. 23 shows the PFs in iteration process of
Trial 6 which is implemented on the IEEE 57-node system. It
can be seen from Fig. 23 that the NSGA-II, MPIO-PFM and MPIO-
COSR algorithms find the qualified PF at the 166th, 174-15th
and 126-15th iteration in turn. Fig. 23 also states that the pro-
posed MPIO-COSR algorithm finds the uniformly-distributed PF
at the 180-15th iteration, which outperforms the NSGA-II and
MPIO-PFM algorithms.

In summary, the MPIO-COSR algorithm is more advantageous
in the optimization-performance and fast-convergence.

6.2. GD Index

To measure the distance between the obtained PF and the real
one, the index of GD defined as Eq. (40) is employed [20,39,46]. It
is worthy to note that GD=0 indicates all generated non-inferior
solutions are completely consistent with the real PF. Therefore, a
smaller value of GD index represents the better convergence to
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Fig. 21. PFs of Trial 8.

true PF.

GD =

√∑N
i=1 Euc

2
i

N
(40)

where Euc i is the Euclidean distance between the ith non-inferior
solution and the nearest solution of the reference PF. In this

Table 11
The average and deviation values of GD index.
GD index NSGA-II MPIO-PFM MPIO-COSR

Trial 1 Average 0.0777 0.0792 0.0738
Standard deviation 0.0149 0.0158 0.0146

Trial 2 Average 0.0887 0.0797 0.0754
Standard deviation 0.0185 0.0154 0.0146

Trial 3 Average 0.0825 0.0854 0.0669
Standard deviation 0.0179 0.0194 0.0129

Trial 6 Average 0.4872 0.4886 0.4614
Standard deviation 0.0944 0.1200 0.0902

Trial 8 Average 0.5466 – 0.4039
Standard deviation 0.1500 – 0.0931

paper, the reference PF is actually the obtained PF corresponding
to the final BC solution.

As a common statistical tool, the boxplot technology is used to
analyze the average, standard deviation and outlier-distribution
of GD indicator for five bi-objectives optimization trials (Trial
1∼Trial 3, Trial 6 and Trial 8).

Fig. 24 shows the boxplots of GD criteria and it clearly shows
that the MPIO-COSR algorithm achieves the closer boxplots in 30
separate studies. In detail, Table 11 gives the mean and deviation
values of all bi-objective cases. The minimal average and devi-
ation values of GD index quantitatively show that MPIO-COSR
method is superior to NSGA-II and MPIO-PFM methods in the
convergence and distribution of obtained PFs.

Fig. 22. Iterative process of Trial 1.



16 G. Chen, J. Qian, Z. Zhang et al. / Applied Soft Computing Journal 92 (2020) 106321

Fig. 23. Iterative process of Trial 6.

6.3. HV Index

Besides the GD index, HV index as the widely-used diversity
metric is also adopted in this paper. The HV metric is defined
as Eq. (41) [20]. The HV value is actually the volume of space
covered by obtained PF. The larger HV value usually means that
the diversity of the corresponding PF is more preferable.

HV = volume

(
N⋃
i=1

vi

)
(41)

Fig. 25 shows the boxplots of HV index while Table 12 gives
the mean and deviation values of five involved bi-objective cases.
It indicates that MPIO-COSR algorithm gets the larger average
value of HV index on these trials of IEEE 30-node system. Al-
though the HV index of suggested MPIO-COSR algorithm is not
the best in the more complex Trial 6 and Trial 8, there is not much
difference with the maximum value. What is more notable is that
the MPIO-COSR algorithm obtains the smallest deviation value of
HV metric in all five experiments, which undoubtedly proves the
superiority of MPIO-COSR algorithm in operational stability.

6.4. Computational complexity

Finally, the computational complexity of three algorithms rep-
resented by the average running time of 30 independent trials is
discussed. The mean CPU time of eight involved trials are sum-
marized in Table 13. It clearly suggests that the MPIO-PFM and
MPIO-COSR algorithms need more CPU time due to the searching
process of landmark comparing with NSGA-II method. In the

Table 12
The average and deviation values of HV index.
HV index NSGA-II MPIO-PFM MPIO-COSR

Trial 1 Average 820.4107 965.0256 987.0964
Standard deviation 26.1843 37.6850 14.6959

Trial 2 Average 1212.3191 1072.5836 1237.9271
Standard deviation 39.8316 31.7375 13.5627

Trial 3 Average 14.3574 15.9851 17.7299
Standard deviation 0.7071 0.4996 0.2134

Trial 6 Average 5722.3041 6983.9397 6286.3466
Standard deviation 1056.8106 170.5493 112.1408

Trial 8 Average 7362.7959 – 7356.2989
Standard deviation 661.9132 – 409.5993

future, the improvement of pigeon-inspired algorithm will focus
on improving the search efficiency and reducing the running
time.

7. Conclusion

A novel MPIO algorithm and an innovative COSR strategy are
proposed in this paper to handle the MOOPF problems with
multiple objectives and strict constraints. Eight simulation cases
of optimizing the active power loss, the emission and the fuel
cost (with valve-point loadings) are performed on three differ-
ent scale power systems. Numerous results powerfully demon-
strate that the presented MPIO-COSR algorithm is more con-
ducive than NSGA-II and MPIO-PFM methods in seeking the su-
perior PFs with evenly-distribution and the qualified BC solu-
tions with zero constraint-violation. The preferable advantages



G. Chen, J. Qian, Z. Zhang et al. / Applied Soft Computing Journal 92 (2020) 106321 17

Fig. 24. GD index of five bi-objective trials.

Table 13
The mean running time.
Algorithm The mean CPU time (second)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8

NSGA-II 204.7 212.7 203.5 280.8 307.7 506.1 518.6 1740.5
MPIO-PFM 221.6 232.2 220.1 297.4 319.8 540.8 551.0 1814.7
MPIO-COSR 215.5 219.6 214.6 287.6 311.7 512.6 526.5 1788.9

of proposed MPIO-COSR algorithm in high-dimensional optimiza-
tion are verified by three trials carried out on the IEEE 57-
node and 118-node systems. Additionally, the GD and HV eval-
uation indexes also validate that the MPIO-COSR algorithm is
capable to obtain preferable PFs with favorable-diversity and
superior-convergence, even in the complex large-scale electric
systems.

Consequently, the novel MPIO-COSR algorithm is competent
to solve the security-constrained MOOPF problems.
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Fig. 25. HV index of five bi-objective trials.
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