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a b s t r a c t

In this paper, a novel hybrid learning method is carried out to forecast urban air quality index (AQI).
Wavelet packet decomposition (WPD) is firstly performed to decompose the original AQI data into
lower-frequency subseries. Then, we improve the pigeon-inspired optimization through using the
particle swarm optimization algorithm. The improved pigeon-inspired optimization (IPIO) approach is
applied to optimize the initial weights and thresholds of extreme learning machine (ELM) and then the
modified ELM (MELM) is employed to forecast the subseries respectively. Moreover, multidimensional
scaling and K-means (MSK) clustering methods are utilized to cluster the forecasting outcomes into
high frequency, medium–high frequency, medium–low frequency and low frequency subseries. Finally,
MELM, as an ensemble approach, is applied to ensemble the subseries together and achieve the
final results. To test the predictive precision of the proposed hybrid WPD-MELM-MSK-MELM learning
method, AQI of Harbin in China is adopted to make short-term, middle-term and long-term predictions
separately. Different decomposition approaches are utilized to compare with WPD, and the non-
clustering hybrid model is also compared with the proposed method. The forecasting outcomes indicate
that WPD is more suitable for predicting AQI and the proposed WPD-MELM-MSK-MELM learning
method has better predictive performance on horizontal precision, directional precision and robustness
than some existing methods and benchmark models in this paper.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Recently, air pollution has become a significant issue in earth,
environmental and life sciences. Air quality index (AQI) is an
indispensable index to calculate the quality of the air, which
has a close connection with human life and health. Accurate
prediction of AQI can help the government and environmental
protection agency to effectively control and reduce air pollution
and promote the sustainable development of the nature and
human society.

AQI data are non-stationary, nonlinear and complicated time
series. Classical forecasting approaches like Markov chain [1],
support vector regression [2], boosting tree [3], artificial neural
networks [4–9], convolutional neural network [10] have been
widely adopted to forecast the AQI series. Nowadays, intelligent
meta heuristic learning algorithms have attracted the eyes of
scholars. Wang et al. [11] applied a hybrid approach combin-
ing wavelet neural network and genetic algorithm (GA-WNN)
to forecast the nonlinear series of fine particulate matter and
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carbon monoxide. It was shown that the hybrid GA-WNN method
has higher prediction accuracy than the back propagation neural
network (BPNN). Yang et al. [12] adopted the parallel chaos (PC)
searching algorithm to optimize the initial parameters of extreme
learning machine (ELM). The simulation outcomes illustrate that
the PC-ELM approach has better generalization and optimization
performance than the single ELM method. He et al. [13] adopted
chaotic particle swarm optimization (CPSO) algorithm to opti-
mize the artificial neural networks for predicting the time series
of particulate matter at urban intersection. The hybrid model
has better forecasting performance on air pollution concentra-
tion. Heidari et al. [14] utilized Lévy flight to modify the grey
wolf optimization for enhancing the optimizing efficiency. The
pigeon-inspired optimization (PIO) algorithm is a kind of novel
metaheuristic learning algorithm inspired by the homing behav-
iors of pigeons. Through utilizing the map and compass operator
and the landmark operator in the algorithm, it can find the global
optimal values of the problem [15,16]. Jiang et al. [17] adopted
the PIO algorithm to optimize the original parameters of ELM. The
hybrid model can effectively enhance the predictive precision of
the bulk commodity futures prices. Dou et al. [18] utilized the
PIO algorithm to optimize the unmanned air vehicles controller.
The PIO algorithm is used in model prediction control, which has
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better performance than the particle swarm optimization (PSO)
algorithm.

Due to the wide variety of sources and complicated formative
factors, the AQI series is a nonlinear time series with strong vibra-
tion [19]. Because of the high requirement of forecasting accuracy,
decomposition and ensemble approaches has been utilized to
forecast air pollution concentration [20]. Recently, decomposition
approaches, such as ensemble empirical mode decomposition
(EEMD) [21,22], wavelet packet decomposition (WPD) [23], fast
ensemble empirical mode decomposition (FEEMD) [24] and sin-
gular spectrum analysis (SSA) [25] have been introduced into
the prediction of nonlinear time series. Wang et al. [26] utilized
the variational mode decomposition (VMD) method to decom-
pose the commodity futures price and then utilized the PSO
algorithm to optimize the initial weights and thresholds of the
BPNN. Decomposition approaches can significantly enhance the
predictive accuracy of single forecasting models. Wang et al. [27]
applied the complementary ensemble empirical mode decompo-
sition (CEEMD) and VMD to decompose the AQI data and the ELM
optimized by differential evolution (DE) algorithm is employed to
forecast the subseries respectively. The hybrid CEEMD-VMD-DE-
ELM-ADD model is used to forecast AQI in Beijing and Shanghai.
The hybrid model can effectually enhance the accuracy of DE-
ELM. Hence, the hybrid decomposition-optimization-ensemble
approaches has been widely utilized in the forecasting of different
air pollution concentration.

In this paper, we present a novel hybrid learning method
based on WPD, multidimensional scaling and K-means (MSK)
clustering approaches and the modified ELM (MELM) for urban
air quality index prediction for enhancing the horizontal and
directional forecasting accuracy of the nonlinear AQI series. In
order to reduce the prediction difficulty and errors, we adopt
WPD to decompose the initial AQI data into several subseries.
Then, we utilize the PSO algorithm to modify the PIO algorithm.
The improved PIO (IPIO) algorithm is used to optimize the original
parameters of ELM. MELM is performed to forecast the sub-
series separately. In order to enhance the predictive precision
and increase the interpretability of the subseries, MSK is ap-
plied to cluster the subseries into high frequency, medium–high
frequency, medium–low frequency and low frequency subseries.
The proposed MELM model, as an ensemble approach, is utilized
to ensemble the four subseries together and achieves the final
results of AQI.

The rest of this paper is organized as below. Related methods
of WPD, IPIO, MELM, MSK and the proposed hybrid learning
framework are detailed in Section 2. The empirical outcomes,
robustness outcomes and comparison results of the proposed
approach and benchmark models are presented in Section 3.
Section 4 discusses the conclusions and the considerations on
future work.

2. Methodologies

In this section, we introduce WPD, the IPIO algorithm, MELM,
the MSK clustering approach respectively and then present a
novel hybrid WPD-MELM-MSK-MELM learning method for urban
AQI prediction.

2.1. Wavelet packet decomposition

WPD is a kind of adaptive and efficient decomposition ap-
proach [28]. WPD can be utilized to decompose the original series
into several lower-frequency subseries, which is an effective ex-
tension of wavelet decomposition (WD). It can make multi-level
divisions of the original signal frequency band and improve the
resolution ratio of signal in time domain and frequency domain.

WD can only divide the original signal into lower-frequency
subseries, however, the WPD algorithm can both partition the
higher-frequency and lower-frequency subseries of the initial
signal [29]. WPD can be adopted to decompose and analyze the
complicated and non-stationary time series signals. WPD has
been widely used in the fields of industry, environmental analysis,
economics and finance [17].

2.2. Improved pigeon-inspired optimization

PIO is a novel intelligent learning method, which has been
widely utilized in industrial engineering and financial analy-
sis [30]. The PIO algorithm imitates the homing behavior of
pigeons. Through using the map and compass operator and the
landmark operator, PIO algorithm can find the global optimal so-
lutions. PSO is also a classical and efficient meta heuristic learning
algorithm. Inspired by the hybrid dragonfly algorithm [31], we
introduce the PSO algorithm into the PIO algorithm and propose
a novel IPIO learning algorithm for enhancing the optimization
ability and global searching ability. The process of the IPIO learn-
ing algorithm is described as follows. The pseudo code of the IPIO
algorithm is displayed in Algorithm 1.

Step 1: Initialize parameters of PSO, utilize PSO for parameter
optimization and introduce the adaptive mutation operation into
PSO. The particles in PSO are initialized with a certain probability
during each interaction. The adaptive mutation operation can
enhance the diversity of the population of PSO and expand the
searching space of particles. The updating formula of velocity and
position in PSO are shown as below.

Vi(t+1) = ω·Vi(t)+l1·rand1·(Pi(t)−Xi(t))+l2·rand2·(Pgb(t)−Xi(t)),

(1)

Xi(t + 1) = Xi(t) + Vi(t). (2)

Here Vi(t) and Xi(t) represent the velocity and position of the
ith particle in the tth iteration. ω is the inertia weight, l1 and l2
represent acceleration factors in PSO, and the values of l1 and l2
are always greater than 0. Pi is the individual best position and
Pgb represents the global best position. rand1 and rand2 are two
random numbers between 0 and 1.

Step 2: Initialize parameters of the PIO algorithm and intro-
duce the global best values of PSO into the PIO algorithm. If the
fitness of the global best values of PSO is better than the initial
values of PIO, the global best values of PSO will be brought into
the PIO algorithm for optimization.

Step 3: PIO is applied for parameter optimization. The inertia
weight is added into the PIO algorithm. The inertia weight can
make a balance between global search and local search in PIO.
The formula of the inertia weight is defined as follows.

w(t) = ws − (ws − we) × t/T . (3)

Here w(t) is the inertia weight in the tth iteration. ws represents
the initial inertia weight and we is the inertia weight when the
iteration stops. T represents the maximum number of iterations.

The PIO algorithm consists two significant operators-the map
and compass operator and the landmark operator. In the map and
compass operator, the updating formula of velocity and location
are displayed as below.

Vj(t + 1) = w(t) · Vj(t) · e−Rt
+ rand3 · (Xg − Xj(t)), (4)

Xj(t + 1) = Xj(t) + Vj(t + 1). (5)

Here Vj(t) and Xi(t) represent the velocity and location of the jth
pigeon in the tth iteration. rand3 is a random number between 0
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Fig. 1. Learning framework of the hybrid WPD-MELM-MSK-MELM approach.

Fig. 2. AQI series of Harbin.

and 1. R is the map and compass factor, whose value is between
0 and 1.

When the map and compass operator reached the maximum
number (T1), the landmark operator starts to find the optimum
solution. The updating formula of pigeons’ location in the land-
mark operator is described as follows.

Nlandmark(t + 1) =
Nlandmark(t)

2
, (6)

Xcen(t) =

∑
Xj(t) · g(Xj(t))

N ·
∑

g(Xj(t))
, (7)

Xj(t + 1) = Xj(t) + rand4 · (Xcen(t + 1) − Xj(t)). (8)

In the process of the landmark operator, the amount of pigeons
decreases by half in each iteration. Nlandmark(t) represents the
number of pigeons in the tth iteration. Xcen is the center location
of the pigeons and g(·) represents the fitness function. rand4 is a
random number between 0 and 1.

Step 4: When the PIO algorithm achieves the maximum num-
ber of the landmark operator (T2), the PIO algorithm stops and the
location of the global optimal solution (Xgb) is the final outcomes
of parameter optimization.

2.3. Modified extreme learning machine

ELM is an improved machine learning method of single hidden-
layer feed forward neural networks [32–35]. ELM is an efficient
learning algorithm, which can overcome the challenges of slow
training speed and local optimum issues. Initial weights and
thresholds are two indispensable factors in ELM. In the MELM
approach, the IPIO algorithm is adopted to optimize the initial
weights and thresholds of ELM for improving the prediction
performance of ELM. In MELM, the root mean square error (RMSE)
of ELM is set as the fitness function of the IPIO algorithm. The
equation of RMSE is displayed as below. And the final global best
results of the IPIO algorithm are assigned as the initial weights
and thresholds of ELM.

RMSE =

√1
L

L∑
j=1

(ĥ(i) − h(i))2. (9)

Here L is the amount of sample points, h(i) and ĥ(i) represent the
real values and the predicting values respectively.
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Table 1
Calculation formula of statistical indicators.
Statistical indicator Calculation formula

MAE MAE =
1
M

M∑
i=1

⏐⏐ẑ(i) − z(i)
⏐⏐

NRMSE NRMSE =
100
z

√ 1
M

M∑
i=1

(ẑ(i) − z(i))2 × 100%

RMSE RMSE =

√ 1
M

M∑
i=1

(ẑ(i) − z(i))2

Ds Ds =
1
M

M∑
i=2

µ(i) × 100%

2.4. Multidimensional scaling and K-means clustering

Multidimensional scaling (MS) is a kind of analysis approach
to visualize the distribution of high-dimensional data [36]. By
utilizing Euclidean distance and similarities among samples, MS
can build a similar low-dimensional space, in which the distance
among samples can remain as consistent as possible. If the low-
dimensional space is two-dimensional or three-dimensional, the
visual results of high-dimensional data can be plotted.

K-means is a classical prototype clustering method [37]. For a
given sample set Y = {y1, y2, . . . , yk}, the main idea of K-means is

to use a greedy algorithm to calculate an approximate minimum
value of clustering error sum of squares:

Q =

n∑
m=1

∑
y∈Em

∥y − em∥
2
2 , (10)

where E = {E1, E2, . . . , En} is a division of clusters and em =
1

|Em|

∑
y∈Em y is the mean vector of the division Em. The number

of clusters is a significant factor in K-means.
Due to high dimensions of the subseries, it is a difficult issue

to decide the number of clusters. In this paper, MS is used to
decide the number of clusters intuitively and K-means is applied
to cluster the subseries for effectually reducing the complexity of
prediction in this paper.

2.5. Learning framework of the hybrid WPD-MELM-MSK-MELM ap-
proach

We present a novel learning approach of the hybrid WPD-
MELM-MSK-MELM approach to improve the forecasting perfor-
mance of AQI series. Firstly, WPD is applied to decompose the
original AQI series into several lower-frequency subseries, which
can effectively reduce the forecasting difficulty and errors of the
original AQI series. Secondly, the IPIO algorithm is employed to
optimize the initial weights and thresholds of ELM. Thirdly, the
subseries of AQI are predicted by MELM separately. The hybrid
MELM model can have better prediction performance than the
traditional ELM approach. Then, the MSK clustering are adopted
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Fig. 3. Decomposition of original AQI data.

Fig. 4. Horizontal errors of hybrid decomposition models in short-term prediction.

to cluster the forecasting results into high frequency, medium–
high frequency, medium–low frequency and low frequency sub-
series. The clustering approach can increase the interpretability
of the subseries and enhance the forecasting accuracy. Lastly,
MELM, as the ensemble approach, is utilized to calculate the
final forecasting outcomes of the initial AQI data. Fig. 1 displays
the framework of the proposed hybrid WPD-MELM-MSK-MELM
learning method.

3. Empirical analysis

In this section, data description and predictive outcome anal-
ysis are discussed respectively to verify the forecasting accuracy
of the proposed learning method.

3.1. Data description

Hourly AQI data of Harbin in China are applied to test the
accuracy and applicability of the proposed approach. Harbin is
a city in the northeast of China. The developments of heavy
industry and central heating in winter make the air quality in
Harbin become worse and worse. Hourly AQI data of Harbin
with 12504 samples are gained from the website of Ministry of
ecological environment of People’s Republic of China. AQI data of
Harbin are from 0:00 in 1th December 2016 to 23:00 in 5th May
2018. Original AQI data of Harbin are displayed in Fig. 2.

AQI data in Harbin are irregular, non-stationary and nonlinear.
For verifying the proposed hybrid approach in this paper, we
predict AQI series of Harbin of the next one day, next one week
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Fig. 5. Directional errors of hybrid decomposition models in short-term prediction.

Fig. 6. Horizontal errors of non-decomposition learning models in short-term prediction.

Fig. 7. Directional errors of non-decomposition learning models in short-term prediction.

and next one month respectively. For the one-day prediction,
the testing sets are hourly AQI data in 5th May, 2018. For the
one-week prediction, the testing sets are hourly AQI data from
29th April to 5th May of 2018. For the one-month prediction, the
testing sets are hourly AQI data from 6th April to 5th May of 2018.
The rest data are correspondingly assigned as the training sets.

3.2. Performance evaluation criteria and parameter settings

We evaluate the prediction performance from two aspects. We
first calculate the forecasting errors and then we make statistical

examinations to test the horizontal and directional precision of
the forecasting models. Four statistical indicators are employed
to calculate the forecasting errors, which are shown in Table 1.
Mean absolute error (MAE), normalized root mean square error
(NRMSE) and RMSE are utilized to calculate the horizontal fore-
casting errors, and directional symmetry (Ds) is used to calculate
the directional errors.

Here M is the amount of sample points, z(i) and ẑ(i) represent
the real values and the predicting values of AQI and z is the mean
value of the real AQI data. If (ẑ(i)− z(i− 1)) · (z(i)− z(i− 1)) > 0,
µ(i) = 1; otherwise, µ(i) = 0.
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Table 2
DM test outcomes of hybrid decomposition models in short-term prediction.
Benchmark
model

Tested model

WPD-
MELM-MELM

WPD-
MELM-ADD

WPD-FEEMD-
MELM-ADD

CEEMDAN-
MELM-ADD

VMD-
MELM-ADD

SSA-
MELM-ADD

FEEMD-
MELM-ADD

WPD-MELM-
MSK-MELM

−1.0805
(0.1456)

−3.7072
(0.0006)

−4.7162
(4.7220e−05)

−2.5186
(0.0096)

−3.1732
(0.0021)

−2.5334
(0.0093)

−6.0470
(1.8120e−06)

WPD-
MELM-MELM

−3.0038
(0.0032)

−4.6371
(5.7500e−05)

−2.5159
(0.0097)

−3.1702
(0.0021)

−2.5317
(0.0093)

−6.0444
(1.8240e−06)

WPD-
MELM-ADD

−4.1100
(0.0002)

−2.4981
(0.0100)

−3.1439
(0.0023)

−2.5169
(0.0096)

−6.0399
(1.8440e−06)

WPD-FEEMD-
MELM-ADD

−2.3971
(0.0125)

−2.9968
(0.0032)

−2.4211
(0.0119)

−5.9693
(2.1830e−06)

CEEMDAN-
MELM-ADD

−0.1622
(0.4363)

−1.0541
(0.1514)

−4.1450
(0.0002)

VMD-
MELM-ADD

−1.1960
(0.1219)

−4.3656
(0.0001)

SSA-
MELM-ADD

−3.5093
(0.0009)

Table 3
DM test outcomes of non-decomposition learning models in short-term prediction.
Benchmark
model

Tested model

PIO-ELM PC-ELM ELM PIO-GRNN PIO-BPNN

MELM −0.3923
(0.3492)

−0.6122
(0.2732)

−0.6122
(0.2732)

−1.1710
(0.1268)

−0.2376
(0.4071)

PIO-ELM −0.4487
(0.3289)

−1.0320
(0.1564)

−0.1794
(0.4296)

−1.3301
(0.0983)

PC-ELM −0.4501
(0.3284)

−0.1152
(0.4546)

−1.1901
(0.1231)

ELM −0.0350
(0.4862)

−1.1375
(0.1335)

PIO-GRNN −0.8922
(0.1908)

Table 4
PT test outcomes of hybrid decomposition models in short-term prediction.

WPD-MELM-
MSK-MELM

WPD-
MELM-MELM

WPD-
MELM-ADD

WPD-FEEMD-
MELM-ADD

CEEMDAN-
MELM-ADD

VMD-
MELM-ADD

SSA-
MELM-ADD

FEEMD-
MELM-ADD

Statistics
(p-value)

7.8856
(3.1086e−15)

8.2663
(2.2204e−16)

9.0854
(0.0000)

9.0854
(0.0000)

3.4449
(0.0006)

3.3891
(0.0007)

6.5663
(5.1580e−11)

2.7548
(0.0059)

Table 5
PT test outcomes of non-decomposition learning models in short-term prediction.

MELM PIO-ELM PC-ELM ELM PIO-GRNN PIO-BPNN

Statistics
(p-value)

0.8910
(0.3729)

0.9202
(0.3575)

−0.1808
(0.8565)

0.9837
(0.3253)

−0.7423
(0.4579)

0.4754
(0.6345)

In order to examine the horizontal and directional prediction
ability, we also adopt Diebold–Mariano (DM) statistical test [38]
and Pesaran–Timmermann (PT) statistical test [39]. DM statistical
test is used to test whether the predicting accuracy between test
models and benchmark models has significant difference. The
square of predicting error is set as the loss function and the null
hypothesis is that the benchmark model is more accurate than
the test model. PT statistical test is adopted to test whether the
models can predict the variation directions accurately and the
null hypothesis is the test model cannot predict the variation
directions accurately.

To test the forecasting performance of the proposed method
synthetically, a series of predicting models are set as comparison
models. The comparison models are divided into non-
decomposition learning models and hybrid decomposition mod-
els. Non-decomposition learning models contain MELM, PIO-ELM,
PC-ELM, generalized regression neural network optimized by
PIO (PIO-GRNN), PIO-BPNN and ELM. Complementary ensemble
empirical mode decomposition with adaptive noise (CEEMDAN),

is also a kind of classical decomposition approach. Hybrid decom-
position models include WPD-MELM-MELM, WPD-MELM-ADD,
WPD-FEEMD-MELM-ADD, CEEMDAN-MELM-ADD, VMD-MELM-
ADD, SSA-MELM-ADD and FEEMD-MELM-ADD.

In the PIO algorithm, the amount of the pigeons is set as 40,
the map and compass factor is assigned as 0.3. The global search
algebra is set as 90, and the local search algebra is set as 30.
For the comparison models, the number of hidden layer neurons
is assigned as 60. And the PIO and PC algorithm is utilizing to
optimize the weights and thresholds of ELM. The spread coef-
ficient of GRNN and the weights and thresholds of BPNN are
also optimized by the PIO algorithm. And the number of hidden
layer neurons is assigned as 10. The hourly AQI series are decom-
posed into eight subseries. And the subseries are supposed to be
clustered into four categories-high frequency subseries, medium–
high frequency subseries, medium–low frequency subseries and
low frequency subseries.
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Fig. 8. Horizontal errors of hybrid decomposition models in middle-term prediction.

Fig. 9. Directional errors of hybrid decomposition models in middle-term prediction.

3.3. Forecasting result analysis

In this subsection, based on different predictive models, short-
term prediction analysis, mid-term prediction analysis and long-
term prediction analysis are discussed respectively.

3.3.1. Short-term prediction analysis
Hourly AQI series in Harbin are decomposed into eight lower-

frequency subseries by WPD. Subseries of original AQI are dis-
played in Fig. 3. Subseries 1 represents the overall trend of the
original AQI data in Harbin. Through utilizing the MSK clus-
tering method, eight subseries are supposed to be clustered
into four categories-high frequency subseries, medium–high fre-
quency subseries, medium–low frequency subseries and low fre-
quency subseries. In order to enhance the predicting precision, we
utilize the AQI data of the first five hours to forecast the AQI data
in the sixth hour. The forecasting errors of hybrid decomposition
models and non-decomposition learning models in short-term
prediction are displayed in Figs. 4–7. The outcomes of DM and
PT test are shown in Tables 2–5, and the values in brackets are p-
values. Comparing the prediction errors of short-term prediction,
we can come to the following conclusions: (1) The hybrid WPD-
MELM-MSK-MELM approach has the best prediction performance
on both horizontal and directional accuracy. MAE of the proposed
method is 0.03 and the Ds value of the proposed method is
91.30%. The hybrid WPD-MELM-MSK-MELM approach has the

best predictable precision among hybrid decomposition models.
(2) In non-decomposition learning models, the forecasting accu-
racy of MELM is higher than other non-decomposition models
and PIO-BPNN has the worst forecasting precision in short-term
prediction. (3) The horizontal forecasting errors of PIO-ELM are
less than PC-ELM, and the Ds values of PIO-ELM and PC-ELM
are 60.87% and 52.17% respectively. It demonstrates that the PIO
algorithm is more suitable for optimizing the thresholds and
weights of ELM than the PC searching algorithm. (4) Among
hybrid approaches, FEEMD-MELM-ADD has the largest errors. The
MAE, NRMSE and RMSE values of FEEMD-MELM-ADD are 6.26,
11.13% and 7,07 separately. It shows that WPD can effectively
decompose the original AQI data. (5) Hybrid models can predict
the variation directions accurately; however non-decomposition
learning models have bad performance on directional prediction
according to the PT test results.

3.3.2. Middle-term prediction analysis
For verifying the forecasting performance of the proposed

method, we also make the middle-term prediction analysis of
hourly AQI data in Harbin. The prediction errors of hybrid de-
composition models and non-decomposition learning models in
middle-term predictions are shown in Figs. 8–11, and DM and PT
test results are displayed in Tables 6–9. The conclusions are as be-
low: (1) The proposed hybrid method has the highest forecasting



F. Jiang, J.Q. He and T.H. Tian / Applied Soft Computing Journal 85 (2019) 105827 9

Fig. 10. Horizontal errors of non-decomposition learning models in middle-term prediction.

Fig. 11. Directional errors of non-decomposition learning models in middle-term prediction.

accuracy in both short-term prediction and middle-term predic-
tion. The MAE, NRMSE and RMSE errors of WPD-MELM-MSK-
MELM are 0.17, 0.40% and 0.21 separately. (2) Comparing the hor-
izontal errors among WPD-MELM-ADD, CEEMDAN-MELM-ADD,
VMD-MELM-ADD, SSA-MELM-ADD and FEEMD-MELM-ADD,
WPD-MELM-ADD has the best forecasting performance and
FEEMD-MELM-ADD has the worst predicting performance. Mean-
while, the predictive capability of VMD-MELM-ADD is better than
SSA-MELM-ADD and CEEMDAN-MELM-ADD. (3) The forecasting
precision of WPD-MELM-MSK-MELM is better than WPD-MELM-
MELM and WPD-MELM-ADD, which shows that the hybrid en-
semble approach can enhance the prediction accuracy, and the
hybrid ensemble approach is also more suitable than the classical
add ensemble approach. (4) The Ds value of WPD-MELM-MSK-
MELM is 91.02% and the Ds value of MELM is only 59.28%. It
illustrates that the decomposition and ensemble method can im-
prove the forecasting capability of non-decomposition models. (5)
The outcomes of DM tests are the same as the forecasting errors.
The proposed hybrid WPD-MELM-MSK-MELM method is better
than the other learning models. (6) According to the PT test, all
hybrid models can predict the changing directions accurately.
Among non-decomposition models, PIO-ELM cannot predict the
variation directions precisely and MELM can forecast the chang-
ing directions accurately. It shows that the IPIO algorithm is
better than the PIO algorithm in optimizing the parameters of
ELM.

3.3.3. Long-term prediction analysis
In the long-term prediction, the predictive errors of hybrid

decomposition models and non-decomposition learning models
are displayed in Figs. 12–15, and the DM and PT test outcomes are
shown in Tables 10–13. Based on the prediction results of hybrid
decomposition models and non-decomposition learning models
in long-term prediction, it can be concluded that: (1) In non-
decomposition learning models, MELM has the best forecasting
performance on the horizontal and directional accuracy. MELM
also has excellent performance among the short-term predic-
tion, middle-term prediction and long-term prediction. The MAE,
NRMSE and RMSE values of the MELM approach are 9.89, 20.40%
and 16.97 respectively. However, the PIO-BPNN has the worst
performance on both horizontal and directional accuracy. The Ds
value of PIO-BPNN is 36.16%, which is nearly half of MELM. It
shows that the IPIO learning algorithm can effectively improve
the PIO algorithm for parameter optimization. (2) In hybrid de-
composition models, the proposed WPD-MELM-MSK-MELM ap-
proach still has the best forecasting capability in the long-term
prediction. The MAE, NRMSE, RMSE and Ds values of WPD-MELM-
M-K-MELM are 0.45, 0.74%, 0.61 and 90.69% respectively, which
are the lowest among the whole hybrid models. (3) WPD has
better decomposition capability than VMD, SSA, CEEMDAN and
FEEMD. The forecasting errors of WPD-MELM-MSK-MELM are
also lower than WPD-FEEMD-MELM-ADD. It demonstrates that
the two-layer decomposition can become a reason of over-fitting
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Table 6
DM test outcomes of hybrid decomposition models in middle-term prediction.
Benchmark
model

Tested model

WPD-
MELM-MELM

WPD-
MELM-ADD

WPD-FEEMD-
MELM-ADD

CEEMDAN-
MELM-ADD

VMD-
MELM-ADD

SSA-
MELM-ADD

FEEMD-
MELM-ADD

WPD-MELM-
MSK-MELM

−2.4204
(0.0119)

−4.7418
(4.4300e−05)

−4.9843
(2.4240e−05)

−3.2916
(0.0016)

−2.6562
(0.0071)

−2.7268
(0.0060)

−5.1126
(1.7650e−05)

WPD-
MELM-MELM

−3.2937
(0.0016)

−4.7131
(4.7580e−05)

−3.2836
(0.0016)

−2.6499
(0.0072)

−2.7231
(0.0061)

−5.1112
(1.7710e−05)

WPD-
MELM-ADD

−4.2993
(0.0001)

−3.2739
(0.0017)

−2.6379
(0.0074)

−2.7167
(0.0062)

−5.1057
(1.7950e−05)

WPD-FEEMD-
MELM-ADD

−3.1644
(0.0022)

−2.5040
(0.0010)

−2.6502
(0.0072)

−5.0749
(1.9370e−05)

CEEMDAN-
MELM-ADD

0.2774
(0.6080)

−1.5072
(0.0727)

−4.4082
(0.0001)

VMD-
MELM-ADD

−1.5693
(0.0651)

−4.5093
(7.9080e−05)

SSA-
MELM-ADD

−4.0244
(0.0003)

Table 7
DM test outcomes of non-decomposition learning models in middle-term prediction.
Benchmark
model

Tested model

PIO-ELM PC-ELM ELM PIO-GRNN PIO-BPNN

MELM −0.6146
(0.2724)

0.1573
(0.5618)

0.2426
(0.5948)

−0.7424
(0.2327)

−1.6030
(0.0613)

PIO-ELM 0.4282
(0.6638)

1.1294
(0.8648)

−0.7224
(0.2387)

−1.5866
(0.0631)

PC-ELM −0.0413
(0.4837)

−1.0799
(0.1457)

−1.8815
(0.0363)

ELM −0.8631
(0.1985)

−1.6920
(0.0521)

PIO-GRNN −1.5585
(0.0664)

Table 8
PT test outcomes of hybrid decomposition models in middle-term prediction.

WPD-MELM-
MSK-MELM

WPD-
MELM-MELM

WPD-
MELM-ADD

WPD-FEEMD-
MELM-ADD

CEEMDAN-
MELM-ADD

VMD-
MELM-ADD

SSA-
MELM-ADD

FEEMD-
MELM-ADD

Statistics
(p-value)

19.0827
(0.0000)

19.0827
(0.0000)

19.1548
(0.0000)

15.4988
(0.0000)

8.3064
(0.0000)

9.2839
(0.0000)

10.2339
(0.0000)

4.6053
(4.1187e−06)

Table 9
PT test outcomes of non-decomposition learning models in middle-term prediction.

MELM PIO-ELM PC-ELM ELM PIO-GRNN PIO-BPNN

Statistics
(p-value)

3.2471
(0.0012)

2.3188
(0.0204)

1.9620
(0.0498)

2.7864
(0.0053)

−1.8253
(0.0680)

−2.9823
(0.0029)

and WPD is more suitable for decomposing the AQI data. The out-
comes of DM and PT tests are also the same as the error analysis
results. It illustrates that the MELM and the WPD-MELM-MSK-
MELMmethods have the best predictable performance among the
non-decomposition learning models and hybrid decomposition
models.

3.4. Robustness and discussion

In order to test the compare the predictive capability of the
proposed hybrid WPD-MELM-MSK-MELM approach, robustness
analysis and comparison analysis are discussed respectively. For
testing the robustness of the proposed method, AQI data of
Wuhan from 0:00 in 1th December 2016 to 23:00 in 5th May
2018 are utilized to make the short-term prediction, middle-term
prediction and long-term prediction separately. We calculate
the forecasting errors of the hybrid method, and the prediction
errors are displayed in Table 14. According to the forecasting
errors in Table 14, it is clearly that the proposed hybrid can
predict the AQI data in Wuhan accurately. It illustrates that the

proposed WPD-MELM-MSK-MELM model has good performance
on robustness.

For verifying the forecasting ability of the proposed method,
we also compare the predictive accuracy with the approach pre-
sented in [26] and [27]. We utilize the methods to make short-
term, middle-term and long-term predictions of AQI in Harbin.
The forecasting errors of the two comparison models are shown
in Tables 15–16. Compared with the two hybrid models proposed
in 2017, we can find that the horizontal prediction errors of WPD-
MELM-MSK-MELM is much smaller than VMD-PSO-BPNN-ADD
and CEEMD-VMD-DE-ELM-ADD. The Ds values of WPD-MELM-
MSK-MELM in short-term prediction, middle-term prediction and
long-term predictions are 91.30%, 91.02% and 90.96% respectively.
The maximum Ds values of the two compared models is 79.00%.
It shows that the proposed WPD-MELM-MSK-MELM method has
better performance on both horizontal accuracy and directional
accuracy.

4. Conclusions

We present a novel hybrid WPD-MELM-MSK-MELM learning
approach for predicting AQI. In the proposed method, WPD is
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Fig. 12. Horizontal errors of V1 in long-term prediction.

Fig. 13. Directional errors of hybrid decomposition models in long-term prediction.

Fig. 14. Horizontal errors of non-decomposition learning models in long-term prediction.

applied to decompose the AQI data, PIO is modified by PSO
and then IPIO is utilized to optimize the parameters of ELM,
MELM is employed to forecast and ensemble the subseries and
MSK are adopted to cluster the forecasting outcomes. For further

testing the predictive capability of the proposed WPD-MELM-
MSK-MELM method, we make the short-term, middle-term and
long-term predictions of the hourly AQI data in Harbin and com-
pare with five kinds of decomposition approaches. The forecast-
ing outcomes illustrate that the hybrid WPD-MELM-MSK-MELM
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Fig. 15. Directional errors of non-decomposition learning models in long-term prediction.

Table 10
DM test outcomes of hybrid decomposition models in long-term prediction.
Benchmark
model

Tested model

WPD-
MELM-MELM

WPD-
MELM-ADD

WPD-FEEMD-
MELM-ADD

CEEMDAN-
MELM-ADD

VMD-
MELM-ADD

SSA-
MELM-ADD

FEEMD-
MELM-ADD

WPDMELM-
MSK-MELM

−2.5098
(0.0098)

−1.1373
(0.1336)

−2.5580
(0.0088)

−3.0155
(0.0031)

−3.0848
(0.0026)

−2.0596
(0.0255)

−2.0258
(0.0273)

WPD-
MELM-MELM

3.1544
(0.9978)

−2.3530
(0.0138)

−3.0079
(0.0031)

−3.0565
(0.0028)

−2.0596
(0.0255)

−2.0133
(0.0280)

WPD-
MELM-ADD

−2.5389
(0.0092)

−3.0233
(0.0030)

−3.0859
(0.0026)

−2.0606
(0.0254)

−2.0254
(0.0273)

WPD-FEEMD-
MELM-ADD

−3.0669
(0.0027)

−3.0766
(0.0027)

−2.0411
(0.0264)

−2.0067
(0.0283)

CEEMDAN-
MELM-ADD

−1.0427
(0.1540)

−1.6838
(0.0529)

−1.5896
(0.0628)

VMD-
MELM-ADD

−0.6015
(0.2767)

−1.6502
(0.0563)

SSA-
MELM-ADD

−1.1304
(0.1350)

Table 11
DM test outcomes of non-decomposition learning models in long-term prediction.
Benchmark
model

Tested model

PIO-ELM PC-ELM ELM PIO-GRNN PIO-BPNN

MELM 1.2208
(0.8827)

0.6304
(0.7327)

1.5885
(0.9371)

−0.7475
(0.2312)

−1.6123
(0.0603)

PIO-ELM 0.1358
(0.5534)

0.5727
(0.7138)

−0.9206
(0.1834)

−1.6967
(0.0516)

PC-ELM 0.1499
(0.5589)

−0.9174
(0.1842)

−1.7118
(0.0502)

ELM −0.9412
(0.1782)

−1.6893
(0.0523)

PIO-GRNN −1.9637
(0.0309)

Table 12
PT test outcomes of hybrid decomposition models in long-term prediction.

WPD-MELM-
MSK-MELM

WPD-
MELM-MELM

WPD-
MELM-ADD

WPD-FEEMD-
MELM-ADD

CEEMDAN-
MELM-ADD

VMD-
MELM-ADD

SSA-
MELM-ADD

FEEMD-
MELM-ADD

Statistics
(p-value)

38.8219
(0.0000)

38.4430
(0.0000)

38.8693
(0.0000)

34.4523
(0.0000)

19.6879
(0.0000)

18.5137
(0.0000)

20.0011
(0.0000)

9.7511
(0.0000)

Table 13
PT test outcomes of non-decomposition learning models in long-term prediction.

MELM PIO-ELM PC-ELM ELM PIO-GRNN PIO-BPNN

Statistics
(p-value)

7.3323
(2.2626e−13)

7.3776
(1.6120e−13)

6.1441
(8.0418e−10)

6.7780
(1.2185e−11)

−4.2228
(2.4129e−05)

−7.6978
(1.3843e−14)

method have excellent performance on horizontal accuracy, di-
rectional accuracy and robustness and WPD is more suitable

than VMD, SSA, CEEMDAN and FEEMD to decompose AQI. The
empirical results also show that the proposed approach has good
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Table 14
Forecasting errors of AQI in Wuhan.

MAE NRMSE (%) RMSE Ds (%)

Short-term prediction 0.1531 0.3139 0.1823 100.0000
Middle-term prediction 0.2344 0.5229 0.3308 93.4132
Long-term prediction 0.2888 0.6138 0.5470 90.1252

Table 15
Forecasting errors of VMD-PSO-BPNN-ADD [26].

MAE NRMSE (%) RMSE Ds (%)

Short-term prediction 2.2237 4.9920 3.1720 73.9130
Middle-term prediction 2.9655 6.7453 3.8368 76.6467
Long-term prediction 3.9896 6.9102 5.7471 78.9986

Table 16
Forecasting errors of CEEMD-VMD-DE-ELM-ADD [27].

MAE NRMSE (%) RMSE Ds (%)

Short-term prediction 3.3884 7.0888 4.5043 73.9130
Middle-term prediction 5.2650 12.0424 6.8498 62.2754
Long-term prediction 7.9901 14.4952 12.0553 71.6273

predictable precision on short-term prediction, middle-term pre-
diction and long-term prediction. In future studies, we will uti-
lize the deep learning models and multi-objective optimization
methods or other optimization approaches to improve the fore-
casting precision. Meanwhile, we will also take the seasonality,
weather, holiday and other factors into account for the prediction
of air pollution concentrations. We can also adopt the proposed
method to predict other air pollution concentrations, wind speed,
electricity price and other nonstationary time series.
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Appendix. List of abbreviations

Here, all terms mentioned in this paper and their definitions
are listed in alphabetical order:
AQI — air quality index
BPNN — back propagation neural network
CEEMD — complementary ensemble empirical mode decompo-
sition
CEEMDAN — complementary ensemble empirical mode decom-
position with adaptive noise
CEEMDAN-MELM-ADD — the method utilizing CEEMDAN as the
decomposition approach, MELM as the predicting approach and
ADD as the ensemble approach
CEEMD-VMD-DE-ELM — the method utilizing CEEMD and VMD
as the decomposition approaches, DE as the optimization ap-
proach, ELM as the predicting approach and ADD as the ensemble
approach
CPSO — chaotic particle swarm optimization
DE — differential evolution

DM — Diebold–Mariano
Ds — directional symmetry
EEMD — ensemble empirical mode decomposition
ELM — extreme learning machine
FEEMD — fast ensemble empirical mode decomposition
FEEMD-MELM-ADD — the method utilizing FEEMD as the decom-
position approach, MELM as the predicting approach and ADD as
the ensemble approach
GA-WNN — the hybrid approach combining wavelet neural net-
work and genetic algorithm
GRNN — generalized regression neural network
IPIO — improved pigeon-inspired optimization
MAE — Mean absolute error
MELM — modified extreme learning machine
MSK — multidimensional scaling and K-means
MSK — Multidimensional scaling
NRMSE — normalized root mean square error
PC — parallel chaos algorithm
PC-ELM — the forecasting method utilizing the PC algorithm to
parameters of ELM
PIO — pigeon-inspired optimization
PIO-BPNN — the forecasting method utilizing the PIO algorithm
to parameters of BPNN
PIO-ELM — the forecasting method utilizing the PIO algorithm to
parameters of ELM
PIO-GRNN — the forecasting method utilizing the PIO algorithm
to parameters of GRNN
PSO — particle swarm optimization
PT — Pesaran–Timmermann
RMSE — root mean square error
SSA — singular spectrum analysis
SSA-MELM-ADD — the method utilizing SSA as the decomposi-
tion approach, MELM as the predicting approach and ADD as the
ensemble approach
VMD — variational mode decomposition
VMD-MELM-ADD — the method utilizing VMD as the decompo-
sition approach, MELM as the predicting approach and ADD as the
ensemble approach
VMD-PSO-BPNN-ADD — the method utilizing VMD as the decom-
position approach, PSO as the optimization approach, BPNN as the
predicting approach and ADD as the ensemble approach
WD — wavelet decomposition
WPD — wavelet packet decomposition
WPD-FEEMD-MELM-ADD — the method utilizing WPD and
FEEMD as the decomposition approaches, MELM as the predicting
approach and ADD as the ensemble approach
WPD-MELM-ADD — the method utilizing WPD as the decompo-
sition approach, MELM as the predicting approach and ADD as the
ensemble approach
WPD-MELM-MELM — the method utilizing WPD as the decom-
position approach, MELM as the predicting approach and MELM
as the ensemble approach
WPD-MELM-MSK-MELM — the method utilizing WPD as the
decomposition approach, MELM as the predicting approach, MSK
as the clustering approach and MELM as the ensemble approach
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