
Applied Soft Computing 126 (2022) 109310

S

m
e
o
s
t
u
o

a
d
e
p
u
m
p
n
F
l
U
n

z

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Pigeon-inspired fuzzymulti-objective task allocation of unmanned
aerial vehicles formulti-target tracking
Chaofang Hu ∗, Ge Qu, Yuting Zhang
chool of Electrical and Information Engineering, Tianjin University, Tianjin, China

a r t i c l e i n f o

Article history:
Received 29 June 2021
Received in revised form 30 June 2022
Accepted 6 July 2022
Available online 16 July 2022

Keywords:
Unmanned aerial vehicles
Task allocation
Multi-target tracking
Multi-objective optimization
Pigeon-inspired optimization

a b s t r a c t

In this paper, a pigeon-inspired fuzzy multi-objective optimization algorithm is proposed for task
allocation of multiple unmanned aerial vehicles tracking multiple ground targets in urban environment.
Firstly, a multi-objective integer programming of task allocation, involving minimum total flight
distance, best task allocation balance and minimum completion time, is established. Secondly, fuzzy
two-phase optimization based on the relaxed order of desirable satisfactory degrees is proposed to
formulate mixed integer programming regarding the linguistic importance preference of objectives.
Then, an adaptive pigeon-inspired algorithm combined with auction mechanism is proposed to solve
the optimization model. The position of pigeon is defined as the bidding price given by unmanned
aerial vehicle for target. To satisfy the constraints and avoid existence of inferior pigeons, the auction
mechanism is designed to decode the pigeon position into a feasible task allocation scheme. Finally, by
comparing with the conventional particle swarm optimization, simulations validate the effectiveness
and efficiency of the proposed method.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Recent years, unmanned aerial vehicle (UAV) has attracted
ore attention and been widely applied in military and civil
ngineering. Especially, tracking ground targets by UAV becomes
ne of the most popular issues [1,2]. However, in many complex
cenarios, it is difficult for single one UAV to complete tracking
ask such that exploring multiple UAVs cooperation ability is
rgent. At present, there are some studies on cooperative tracking
f ground targets by UAVs [3,4].
For multi-target tracking application, target detection, task

llocation and path planning are the key problems. Effective
etection is the basis of tracking ground targets by UAVs, how-
ver, the difficulty is to achieve good accuracy and real-time
erformance. Image processing is the important issue and often
sed in target detection, e.g. background difference [5], template
atching [6], and machine learning [7]. Due to its excellent com-
utation ability, the deep learning methods such as convolutional
eural network (CNN) are widely applied to target detection [8].
or task allocation and path planning, the former is basis of the
atter and can improve the overall task execution performance of
AVs system. However, multi-UAV task allocation problem is a
on-deterministic polynomial hard (NP-hard) programming with
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multiple indices and constraints [9], which results in the difficulty
to obtain the optimal allocation. Various complicated objectives
and constraints make it hard to formulate powerful optimization
model and design the effective algorithm. Moreover, increment
of the numbers of UAVs and targets will cause exponential en-
largement of solution space. Thereafter, finding the best matching
result becomes more difficult.

Mostly, the research on multi-UAV task allocation is taken as
some classical problems, such as vehicle routing [10,11], mul-
tiple traveling salesman [12,13], knapsack problem [14,15], and
dynamic network flow optimization [16,17]. These problems can
be abstracted into the integer programming (IP) model or the
mixed-integer programming (MIP) model [18,19]. The above re-
search focuses on multiple UAVs’ investigation, search and attack,
however, mainly considers task sequence. During multiple UAVs
tracking moving targets, each target must be tracked by at least
one UAV, and several UAVs are allowed to track the same target.
In other words, the number of UAVs must be larger than targets.
Consequently, the aforementioned allocation model cannot be
directly used for the target tracking scenario.

In general, single one objective, e.g. total benefits [20], is used
in task allocation, however, it might result in bad result. Accord-
ingly, many indicators are proposed to comprehensively evaluate
allocation performance such that multi-objective task allocation
(MOTA) optimization model is formulated. For example, Wang
et al. [21] used task execution time and UAV total consumption
as two sub-objectives to build a multiple UAVs reconnaissance
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ask allocation model. Xu et al. [22] proposed a multi-objective
ost model in task allocation of UAVs for plant protection, includ-
ng field allocation, non-operation flight distance, and operation
ime difference. Nevertheless, how to handle multiple objectives
ffectively is not easy. Preference is essential information for
ll objectives and selection of optimal solution [23]. Most ex-
sting work transforms the multi-objective optimization (MOO)
nto a single-objective optimization (SOO) by weighted method,
here the weights are expected to represent the importance of
bjectives and usually given by experience. However, when the
bjective functions are non-convex, the weighted method cannot
uarantee the solution’s optimality. Thus, dealing with multiple
bjectives effectively is a challenging work.
Many approaches have been widely used to solve task al-

ocation, e.g. tabu search [24], artificial neural network [25],
enetic algorithm [26,27], contract network market [28], and auc-
ion [29], etc. Therein, the contract network market and auction
lgorithms are commonly used in distributed systems. Although
hese methods can find a feasible task allocation result, they
ay also easily fall into local optimization. In recent years, the
warm intelligence optimization strategies have been attempted
o task allocation due to its advantages such as fast computation
peed and high optimization accuracy. These advantages benefit
rom imitation of biological evolution and foraging behavior.
or instance, ant colony optimization (ACO) [30] and particle
warm optimization (PSO) [31] are classical swarm intelligence
lgorithms. ACO is positive feedback heuristic optimization in-
pired by ant foraging behavior, and feasible for task allocation
ptimization [32,33]. However, ACO suffers from some defects,
.g. too many parameters and long search time. PSO simulates
he foraging process of birds and has the advantages of fewer
arameters, a simple calculation process and easy implementa-
ion. Therefore, it has attracted more attentions [34,35]. However,
SO is prone to the loss of population diversity and the local
ptimization is often achieved as well.
Pigeon has a natural ability to navigate, which allows them

o find their way home over a long distance. Inspired by this,
uan [36] proposed a new biologically inspired swarm intel-
igence algorithm, i.e. pigeon-inspired optimization (PIO). This
lgorithm possesses more significant biological characteristics
han PSO, and fully considers the influence of Geomagnetism
nd landmarks on the pigeon swarm. PIO shows its excellent
ptimization performance [37,38] and has potential in dealing
ith task allocation. Nevertheless, at present PIO applications

n the UAV field are mainly focused on path planning [39] and
ontroller design [40]. There is little research on task allocation
f multiple UAVs. The conflict between the continuous location
pdate of PIO and the discrete task allocation results brings more
ifficulties. What is more, as the multi-UAV task allocation prob-
em involving strict constraints, the position update of pigeon
ill produce abundant infeasible solutions. This may result in a
ignificant adverse impact on optimization result. Therefore, it is
challenging work to apply PIO to the multi-UAV task allocation
roblem.
Aiming at task allocation of tracking ground targets by UAVs in

rban environment, this paper proposes a PIO-based fuzzy MOO
ethod. In order to achieve optimal tracking performance and
ood task allocation balance, multi-objective integer program-
ing (MOIP) of task allocation with three objective functions is

ormulated. Nevertheless, it is tough to optimize multiple indices
imultaneously. Therefore, according to the linguistic importance
reference, all the objectives are fuzzified, and the linguistic pref-
rence is modeled as the relaxed order of desirable satisfactory
egrees. Correspondingly, a fuzzy MOTA model is established. To
ealize tradeoff between optimization and linguistic preference,
he model is further reconstructed into the two-stage mixed-
nteger programming (MIP). Then, the adaptive PIO algorithm
2

is introduced to solve the optimization model. To handle the
conflict between continuous position updating and discrete task
allocation, the pigeon position is encoded into continuous bid-
ding prices of UAVs. And an auction mechanism is designed in
combination with constraints to decodes each pigeon position
into a feasible task allocation scheme. Finally, the simulation is
implemented to demonstrate the power of the proposed method
by comparing with conventional PSO.

The main contributions of this paper are summarized as fol-
lows:

1. To comprehensively evaluate task allocation result of
multiple UAVs tracking multiple ground targets in urban, three
objective functions are proposed and multi-objective MIP model
of task allocation is established.

2. The objective functions are fuzzified, and the linguistic
preference among objectives is modeled as the relaxed order of
desirable satisfactory degrees. Correspondingly, the two-phase
optimization models are developed to replace the original MOO
model.

3. The adaptive PIO algorithm is introduced. In order to handle
the constraints and enable PIO to be applied to discrete task al-
location, an auction mechanism is designed to decode the pigeon
position into the feasible task allocation scheme.

The remainder of this paper is organized as follows. Section 2
introduces related work. Section 3 describes the task allocation
problem. The fuzzy MOTA model is established in Section 4.
Section 5 presents an adaptive PIO algorithm with an auction
mechanism. Simulations are shown in Section 6. Finally, Section 7
draws conclusion.

2. Related work

2.1. MOTA

Generally, MOTA belongs to MOO problem and there are dif-
ferent formulations in various applications. In UAV clustering,
Zhang et al. [41] constructed a MOTA model by defining allocated
quantity, task execution benefit, resource cost and time cost as
the objective functions. In UAV search and rescue scenario, Zhang
et al. [42] proposed resource consumption, number of UAVs being
used, and task execution time as performance indices of task allo-
cation. For the tracking scenario, in order to ensure good tracking
performance, the balance of allocation result should be consid-
ered. In MOO, preference is essential information and represents
decision maker’s intention. Thereby, how to obtain the preferred
solution in terms of preference becomes a challenging problem.
In preference, importance is the common requirement of decision
maker, and generally the weighted method is used to model
preference. However, it is difficult to directly present the accurate
weights. For decision makers, the more convenient way is to
use linguistic preference to describe importance. Narasimhan [43]
used linguistic values such as ‘‘very important’’, ‘‘relatively im-
portant’’ and ‘‘important’’ to represent the relative importance.
Chen and Tsai [44] used desirable satisfaction to reflect the fuzzy
importance of objectives. On the basis, a two-phase interactive
satisfying optimization method was developed for fuzzy MOO
with linguistic preference to hunt the optimal solution [45]. It
can be seen that satisfactory optimization is potential strategy for
MOTA of UAVs.

2.2. Swarm intelligence optimization

As task allocation being a NP-hard problem, achieving the best
possible solution is generally very time consuming, and impos-
sible for large-scale scenarios. Therefore, applying swarm intelli-
gence optimization method to this topic is a potential perspective.
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n addition to ACO and PSO, many other swarm intelligence opti-
ization algorithms have been attempted. Krishnanand et al. [46]
roposed an artificial firefly algorithm for the simultaneous com-
utation of multiple multimodal functions, where each firefly
ses the probability mechanism to move to the neighbor with
igher fluorescein. Xu et al. [47] utilized a discrete wolf swarm
lgorithm for the UAV task allocation problem in complex envi-
onment, which imitates the hunting behavior of wolves, such
s wandering, calling and siege. By means of imitating bacte-
ia’s tumbling, skipping, swimming and clustering, Heba kurdi
t al. [48] explored a bacteria-inspired heuristic to solve the
ask allocation problem. Through following the foraging behavior
f multiple frog subgroups in the wetland, Eusuff et al. [49]
eveloped a frog-leaping algorithm based on global collaborative
earch. The artificial bee colony algorithm mainly imitates the
wo basic behaviors of bee foraging: recruiting bees for food
ources and abandoning food sources. Pulikanti et al. [50] com-
ined greedy heuristic with local search and presented a new
rtificial bee colony algorithm for solving the quadratic knapsack
roblem. At present, PSO, ACO, bacterial colony and wolf swarm
ave been addressed in UAV task allocation. However, these
ethods still face defects in convergence and optimality.

.3. PIO

Compared with other swarm intelligence algorithms, the PIO
lgorithm has better performance [51]. So far, it has produced
any variants and has been attempted in many applications.
o complete the low altitude target detection by UAV, Li and
uan [52] designed the hybrid model of edge potential function
nd simulated annealing PIO algorithm. Duan et al. [53] intro-
uced PIO in the training process of echo state networks to obtain
he parameters required for image restoration. Considering the
eakness of random searching system in PIO, Zhang et al. [54]
resented a modified PIO model adopting Gaussian strategy for
he optimal formation reconfiguration problems of multiple or-
ital spacecrafts. All of the above work uses PIO to the continuous
ptimization problems. For the discrete task allocation problem,
he key is to establish the relationship between discrete task allo-
ation scheme and pigeon position. In order to solve the discrete
ulti-dimensional knapsack problem, Bolaji et al. [55] used a
inary encoding strategy to represent pigeon position. For the
roblem that position updating randomly may produce solutions
ot satisfying the constraints, the penalty function method is used
o eliminate the infeasible solutions. However, this strategy will
ead to existence of many inferior pigeons such that premature
onvergence might occur. Accordingly, Bolaji et al. [56] adopted
he cross mutation to improve the binary PIO algorithm and
ancelled the negative impact of inferior pigeons by breeding
ndividuals. However, only when the constraints are considered
uring encoding and decoding, it can be ensured that any pigeon
osition corresponds to a feasible task allocation result, and the
ossibility of inferior pigeons will be decreased.

. Problem statement

In this paper, multiple UAVs are required to track multiple
round moving targets in urban effectively and efficiently. The
est matching between UAVs and targets is crucial, however,
he urban environment is complex such that infrastructure or
bstacles might interfere with the UAVs’ maneuver. Assumptions
re presented in Appendix A.
Based on these assumptions, the constraints of task allocation

re written as:
N

siq ≥ 1,
M∑

siq = 1, siq ∈ {0, 1} (1)

i=1 q=1

3

here siq indicates the matching relationship between UAV i
nd target q. When siq = 1, UAV i is required to track target q.
therwise, UAV i is not assigned to target q.
In task allocation of UAVs, various indices are proposed to

mprove tracking performance as follows:
(1) Minimum total tracking distance: In order to ensure fast

racking and save energy, the shortest total tracking distance of
ll UAVs should be addressed.
(2) Best task allocation balance: Each target will be tracked by

t least one UAV. It is necessary to balance the numbers of UAVs
eing assigned to each target to avoid the case of excessive or too
ew UAVs tracking the same target.

(3) Minimum completion time: The period of UAV from takeoff
o catching up with the target is defined as the completion time.
ach UAV is expected to track one target successfully as soon as
ossible.
In the actual task allocation, the importance of the above three

ndices is different, and it is presented in Appendix B. The most
mportant is that all the UAVs can fly towards the targets in the
hortest path to save energy, so objective (1) is ‘‘very important’’.
hen, in order to ensure the tracking performance, the alloca-
ion balance should be optimized. Therefore, (2) is regarded as
‘somewhat important’’. Finally, it is ‘‘important’’ to minimize the
ompletion time (3) such that the UAV can catch up with the
xpected target as soon as possible.

. Fuzzy MOTA

.1. Objective functions

The objectives functions are formulated in the following:

.1.1. Minimum total tracking distance
In the actual flight, there exist infrastructure or other obstacles

etween UAVs and targets. Hence, the tracking cost cannot be
irectly modeled as the shortest line distance between UAVs and
argets. When there is no infrastructure or obstacle between UAV
nd target, the shortest distance obtained by the geographical
oordinates of UAV and target is taken as the cost. Otherwise, the
ptimal path from UAV to target will be calculated as the cost. In
his paper, the optimal path is obtained by the Rapidly-exploring
andom Tree (RRT) algorithm. The objective function is written
s follows:

in f1 =

N∑
i=1

M∑
q=1

siqciq (2)

where ciq represents the cost of UAV i tracking target q.

4.1.2. Minimum task allocation deviation
In order to balance the tracking distribution of UAVs, the

following function is proposed:

min f2 =

M∑
q=1

(nq − µ)/M (3)

where nq =
∑N

i=1 siq is the number of UAVs tracking target q, and
µ =

∑M
q=1 nq/M is the average size of UAVs tracking each target.

4.1.3. Minimum completion time
It is expected that the maximum tracking cost of all UAVs is

decreased as much as possible. Thereby, minimization of maxi-
mum cost is defined as minimum completion time, as follows:

min f = max s c (4)
3 iq iq
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.2. MOTA model

The MOTA model of UAVs can be formulated as follows:

min f1 =

N∑
i=1

M∑
q=1

siqciq

min f2 =

M∑
q=1

(nq − µ)/M

min f3 = max siqciq

.t.
N∑
i=1

siq ≥ 1,
M∑

q=1

siq = 1

iq ∈ {0, 1}

(5)

he linguistic importance of the three objectives is described as:
a. f1 is very important
b. f2 is somewhat important
c. f3 is important
Obviously, the allocation model (5) is a complex 0/1 MOIP with

inguistic preference.

.3. Fuzzy MOTA model

For MOO problem, the traditional weighted method possi-
ly leads to the weak optimal solution or the result not being
ble to reflect the importance requirement. Moreover, it is hard
o use the weighted method to quantify the linguistic impor-
ance. Therefore, fuzzy optimization is introduced, where all the
bjectives are fuzzified and linguistic preference is modeled.
If decision maker can give desirable values of three objec-

ive functions priori, then the corresponding MOO with fuzzy
bjectives can be expressed as follows:

ind x
uch that fi(x) → f ∗

i , i = 1, 2, 3 (6)

here f ∗

i is the goal value of the ith objective. ‘‘→’’ repre-
ents three types of fuzzy relationships, that is ‘‘≤̃’’, ‘‘≥̃’’ and
‘=̃’’, denoting fuzzy minimization, fuzzy maximization and fuzzy
quality.
‘‘≤̃’’ indicates that the objective function is approximately less

han or equal to the perspective value.
‘‘≥̃’’ represents that the objective value is approximately

reater than or equal to its goal value.
‘‘=̃’’ represents that the objective function is approximately

qual to the expected value. The value of membership function
s called a satisfactory degree.

Commonly, linear membership functions are defined for fuzzy
elations. Since the three objective functions f1, f2 and f3 of task
llocation are all minimization, the following formula is used as
heir membership functions:

fi (x) =

⎧⎨⎩
1 fi(x) ≤ f ∗

i

1 −
fi(x)−f ∗i
fimax−f ∗i

f ∗

i ≤ fi(x) ≤ fimax

0 fi(x) ≥ fimax
(7)

In practice, it is difficult for the decision maker to directly
present the desirable value and limits of the objective. The payoff
table is utilized to calculate them.

For linguistic preference, the concept of desirable satisfactory
degree is introduced to formulate the following constraint [44]:

µfi ≥ µ∗

fi
, i ∈ {1, 2, 3} (8)

where µ∗

fi
represents the desirable satisfactory degree of objective

fi. This inequality means that the optimal satisfactory degree
should be superior to the desirable satisfactory degree.
 r

4

In this paper, the desirable satisfactory degree is treated as an
optimization variable. The order of desirable satisfactory degree is
proposed to establish the importance level of the objectives. For
example, the objective f1 is ‘‘very important’’, and f2 is ‘‘somewhat
important’’. The crisp comparison relation is formulated as:

µ∗

f2 ≤ µ∗

f1 (9)

The above formula is too strict to find a feasible solution.
Therefore the slack variable γ is introduced to relax the order of
desirable satisfactory degrees. There is:

µ∗

f2 − µ∗

f1 ≤ γ (10)

hen γ ≤ 0, the basic importance requirement (linguistic terms
rder) is followed. Otherwise, when γ > 0, the fuzzy importance
reference is violated.
Combining the relaxed order of desirable satisfactory degrees,

he fuzzy MOTA model can be rewritten as follows:

ax (µf1 , µf2 , µf3 )
.t. membership functions (7)

µf1 ≥ µf1
∗, µf2 ≥ µf2

∗, µf3 ≥ µf3
∗

µf2
∗
− µf1

∗
≤ γ

µf3
∗
− µf2

∗
≤ γ

N∑
i=1

siq ≥ 1,
M∑

q=1

siq = 1, siq ∈ {0, 1}

(11)

here µf1 , µf2 , µf3 , µf1
∗, µf2

∗, µf3
∗, γ are real decision variables,

nd siq is 0/1 integer variable. Thereby the model (11) is MIP.

.4. Two-phase models

In order to realize the tradeoff between objective optimiza-
ion and linguistic preference, the MOTA model (11) is decom-
osed into two-phase formulations. The purpose of the first phase
odel is to optimize all objective functions by max–min criterion

egardless of linguistic preference. The second phase model aims
t maximizing the importance difference among objectives as
uch as possible on the basis of the first phase optimization.
The first phase model is preliminary optimization without

reference information. In this paper, the max–min criterion is
tilized for solution. There is:
ax λ

.t. µfi ≥ λ

µfi ≤ 1, i = 1, 2, 3
membership functions (7)
N∑
i=1

siq ≥ 1,
M∑

q=1

siq = 1, siq ∈ {0, 1}

(12)

he optimal solution λ∗ is called the maximum comprehensive
atisfactory degree, which means that all the objectives, even the
orst objective, are optimized regardless of preference.
Apparently, the feasible region of preliminary optimization is

educed greatly. There might not be a satisfactory solution. In
rder to obtain the preferred solution, it is necessary to present
ppropriate tolerance to maximum comprehensive satisfactory
egree to expand the feasible region. The degree of relaxation
epends on the satisfaction of decision maker. Consequently, the
ptimal solution λ∗ of preliminary model is reckoned as the initial
ondition of further optimization, and the following equation is
roposed.

fi ≥ µ∗

fi ≥ λ∗
− ∆δ, i = 1, 2, 3 (13)

here ∆δ is the slack parameter. The constraint (13) plays a key
∗
ole in adjustment of the desirable satisfactory degree µfi
.
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To satisfy the linguistic importance requirement of multiple
objectives, the second phase model, i.e. the linguistic preference
optimization, is formulated as:

min γ

s.t. µfi ≥ µ∗

fi
≥ λ∗

− ∆δ, i = 1, 2, 3
µf2

∗
− µf1

∗
≤ γ

µf3
∗
− µf2

∗
≤ γ

membership functions (7)
µfi ≤ 1
−1 ≤ γ ≤ 1
N∑
i=1

siq ≥ 1,
M∑

q=1

siq = 1, siq ∈ {0, 1}

(14)

In model (14), different relaxation ∆δ will produce various
solutions, reflecting different tradeoff between optimization and
importance.

5. PIO design

5.1. Adaptive PIO

Since models (12) and (14) are MIP, the PIO algorithm is
introduced for their solution, due to its fast convergence and
strong optimization abilities.

In the solution space, the pigeon has two attributes: moving
speed and position. The position of each pigeon represents a
potential solution, and the pigeon nest represents the optimal
solution. In other words, the homing behavior of pigeon shows
the convergence process of the global optimal solution. The PIO
algorithm includes two parts: the map and compass operator and
the landmark operator. They are respectively used to simulate the
navigation in different flight stages.

Through the map and compass operator, the optimal position
is taken as the reference to lead the pigeons towards the optimal
direction. The pigeon speed V and position X are updated by map
and compass operator, expressed as follows [36]:

Vi(n1) = Vi(n1 − 1) ∗ e−R∗n1

+rand ∗ (Xgbest − Xi(n1 − 1))
Xi(n1) = Xi(n1 − 1) + Vi(n1)

(15)

where R is the map and compass operator, n1 is the current
iteration number, and Xgbest is the current global optimal position.

Commonly, the standard PIO algorithm easily traps in the
local optimal solution. To balance the local and global search, the
nonlinear dynamic inertia weight coefficient (i.e. adaptive weight
coefficient) is introduced into the map and compass operator to
improve the efficiency of solving task allocation. The adaptive
weight coefficient is calculated as [57]:

ω(n1) =

⎧⎨⎩ωmin −
(ωmax−ωmin)∗(f (xi(n1))−fmin)

(favg−fmin)
, f (xi(n1)) ≤ favg

ωmax, f (xi(n1)) > favg
(16)

here ωmin and ωmax represent the minimum and maximum
values of the inertia weight coefficient. f (.) is the fitness function,
favg is the average fitness value of all pigeons, and fmin is the
inimum fitness value.
Consequently, the map and compass operator with adaptive

eight coefficient can be expressed as:

i(n1) = ω(n1) ∗ Vi(n1 − 1) − Vi(n1 − 1) ∗ e−R∗n1

+rand ∗ (Xgbest − Xi(n1 − 1))
i(n1) = Xi(n1 − 1) + Vi(n1)

(17)

ith the iteration of map and compass operator, the pigeon
ositions gradually approach the optimal position.
 s

5

Suppose there are NP pigeons looking for their way home.
hrough the landmark operator, pigeons modify their positions
ccording to the positions of dominant pigeons. The initial dom-
nant population is the whole population. At each iteration, ac-
ording to the fitness values of the dominant pigeon group, the
igeons with poor quality (far from the destination) are dis-
arded, and the size of dominant pigeon group is reduced in half.
he remaining pigeons are taken as the current dominant pigeon
roup, and each pigeon in the original pigeon group is guided by
he central position of the dominant pigeon group. The positions
f pigeons are updated by the landmark operator, written as:

p(n2) =
[
Np(n2 − 1)/2

]
c(n2) =

∑ xi(n2)∗f (xi(n2))
Np(n2)∗f (xi(n2))

Xi(n2) = Xi(n2 − 1)
+rand ∗ (Xc(n2) − Xi(n2 − 1))

(18)

here [.] is the round function, n2 is the current iteration number
f landmark operator, Xc(n2) is the center position of dominant
igeon group in the n2th iteration and represents the landmark
nformation during actual flight.

By means of the above two operators, the optimal solution can
e found quickly.
PIO is used to solve the two-phase models. Since the first

hase optimization problem is maximization, the fitness value is
efined as:

= λ (19)

he second phase optimization problem is minimization, so the
itness value f is:

= 1/γ (20)

.2. Decoding of pigeon position by auction mechanism

In the preliminary optimization model, the optimization vari-
bles are siq, µf1 , µf2 , µf3 and λ. While in the linguistic preference
odel, the optimization variables become siq, µf1 , µf2 , µf3 , µf1

∗,

f2
∗, µf3

∗ and γ . When the tracking relationship siq between
AVs and targets is known, the other variables can be obtained
ndirectly. Hence, when using the adaptive PIO algorithm to op-
imize the two-stage models, only siq needs to be solved directly.
orrespondingly, the pigeon position will correspond to the task
llocation scheme of multiple UAVs. However, if the pigeon po-
ition is directly encoded into task allocation scheme, a rounding
peration has to be added after position updating. In addition,
f the constraints are not considered in the process of encoding
nd position updating, a large number of inferior pigeons will
e generated, which probably results in reduction of accuracy.
herefore, this paper proposes a special definition of pigeon po-
ition and designs an auction mechanism for the constraints to
ecode pigeon position as a feasible task allocation scheme.
For N UAVs tracking M targets, the number of UAVs is taken

s the dimension of solution space. The ith element, i ∈ 1, . . . ,N
f pigeon position X j is defined as the bidding price xji given by
AV i. Hence, the pigeon position X j

= (xj1, x
j
2, . . . , x

j
N ) involves

he bidding prices from all UAVs. The initial bidding price, i.e., the
nitial position of pigeon, is defined as the difference between
he revenue and the distance from the nearest target to the UAV.
ssuming that the revenue of UAVs tracking targets is β , and the
inimum tracking distance of UAV i corresponding to all targets

s written as cmin
i . Then the initial value of xji is β − cmin

i . Then
he initial position of pigeon is written as X j

= (xj1, x
j
2, . . . , x

j
N ) =

β − cmin
1 , β − cmin

2 , . . . , β − cmin
N ), j = 1, 2, . . . ,NP .

In this paper, an auction mechanism is introduced. The prin-
iple that the UAV with a higher bidding price has a higher
election priority holds. By maximizing individual benefit during
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idding, the UAV selects the target with the shortest tracking
istance. What is more, constraint (1) is considered to ensure that
he pigeon position decoding is a feasible task allocation scheme.
n order to ensure

∑M
q=1 siq = 1, each UAV can only select one

arget for tracking. To ensure
∑N

i=1 siq ⩾ 1, that is, all targets
need to be tracked, the UAVs with the top M bidding prices
cannot track the same target. The designed auction mechanism
is summarized as follows:

a. The UAV with higher bidding price has higher priority. In
light of the priority order, tasks of UAVs are assigned in turn.

b. The target with the shortest distance to UAV i is selected as
the matching object.

c. Each UAV can only select one target. To ensure all targets
being tracked, the UAVs with top M bidding prices cannot track
the same target, while the other UAVs can directly choose the
nearest from the rest targets as their objects.

The procedure of pigeon position decoded into task allocation
scheme is shown in Fig. 1. In terms of the bidding price infor-
mation given by each UAV, UAVs are is ranked from high to low,
and xjmax is the highest bidding price and xjmin is the lowest bidding
price of jth pigeon. The UAV with a higher biding price has higher
priority, and then each UAV will select the tracking target in turn
according to auction mechanism ‘b’ and ‘c’. Thereafter, the pigeon
position is decoded into a task allocation scheme.

To better illustrate the initial position of pigeons and decoding
process, an example is given below. Table 1 shows the distance
cost when 5 UAVs track 3 targets. Assume that the revenue
of all UAVs is 100, the minimum tracking distances of these
UAVs are 10, 20, 30, 25, 15, and the initial positions of pigeons
are (90, 80, 70, 75, 85). UAV 1 has the highest bid price, so the
nearest target 1 is assigned to UAV 1 and cannot be selected by
other UAVs. Similarly, target 3 is assigned to UAV 5, and target
2 is assigned to UAV 2. UAV 3 and UAV 4 are taken as partners
for tracking target 3 and target 1 respectively. Then decoding is
completed.

The flowchart of the proposed PIO algorithm with auction
decoding is summarized as Algorithm 1 and shown in Fig. 2.

After decoding the pigeon positions by auction mechanism,
the three objective functions (1), (2) and (3) can be calculated
by the matching relationship siq. Then individual minimum and
maximum values of each objective can be figured out by ap-
plying the proposed PIO method to payoff table. Consequently,

the membership functions of all three objectives can be built.

6

Table 1
Distance cost for 5 UAVs tracking 3 targets.

Target 1 Target 2 Target 3

UAV 1 10 20 30
UAV 2 30 40 20
UAV 3 50 40 30
UAV 4 25 30 40
UAV 5 40 50 15

Algorithm 1 Optimization Algorithm of the proposed PIO

Input: Np: the population size; N: the number of UAVs; M: the
number of targets;

Output: optimal matching
1: Initialize each pigeon speed and position;
2: Determine the iteration number N1 of the map and com-

pass operator and the iteration number N2 of the landmark
operator;

3: n1 = 0;
4: repeat
5: Use the adaptive map and the compass operator (17) to

update the speed and position of pigeon;
6: Decode pigeon position into task allocation scheme by

auction mechanism;
7: Calculate the fitness value of each pegion, and get the

current global optimal position;
8: n1 = n1 + 1;
9: until n1 = N1

10: n2 = 0;
11: repeat
12: Use the landmark operator (18) to modify the current

pigeon position;
13: Decode pigeon position into task allocation scheme by

auction mechanism;
14: Calculate the fitness value of each pigeon;
15: n2 = n2 + 1;
16: until n2 = N2

The other optimization variables such as µf1 , µf2 , µf3 and the
bjective functions of the two-phase models can be calculated
orrespondingly by using the proposed PIO approach. In this
ethod, the pigeon positions are updated iteratively. And the
onstraints in (12) and (14) are dealt with after auction decoding.
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Fig. 2. Flowchart of the proposed PIO.

.3. Computational complexity

For the map and compass operator, the evolution cost of each
teration is o(NpN). The computational complexity can be figured
ut using auction mechanism and evolution at each iteration,
ritten as o(NpN + NpN logN ). Therefore, the complexity of the

adaptive map and compass operator combining with auction
mechanism is o(N1(NpN + NpN logN )). While for the landmark
operator, the computational complexity using auction and evo-
lution at each iteration is o(NpN + NplogNp ). Correspondingly,
the overall complexity of the landmark operator is o(N2(NpN +

NpN logN +NplogNp )). Thus, the total computational complexity of
the proposed PIO is o(N1(NpN +NpN logN )+N2(NpN +NpN logN +

NplogNp )).

5.4. Optimality test

The definition for the optimal solution of MOO problem is
presented as follow.

Definition 1 (M-Pareto Optimal Solution). A point x∗ is M-Pareto
optimal solution if and only if there does not exit another solution
x, such that µfi (x) ≥ µfi (x

∗) for all i, (i = 1, 2, 3) and µfh (x) >

µfh (x
∗) for at least one h, h ∈ {1, 2, 3}.

Although the purpose of models (12) and (14) is to achieve
the expected satisfaction, the actual optimal solution may not
conform to the M-Pareto optimality. Thereby, the following test
7

model is proposed to ensure the M-Pareto optimality.

max ε1 + ε2 + ε3
s.t. membership functions (7)

µfi (x) − εi = µfi (x
∗), i = 1, 2, 3

εi ≥ 0
N∑
i=1

siq ≥ 1,
M∑

q=1

siq = 1, siq ∈ {0, 1}

(21)

where ε1, ε2, ε3 is the error vector. Let x∗ denotes the optimal
solution of (12) and (14), and x̄ denotes the optimal solution of
(21). The theorem of M-Pareto optimality is given as:

Theorem. x∗ is M-Pareto optimal solution, when ε1, ε2, ε3 are all
equal to zero. Otherwise, if at least one εh, h ∈ {1, 2, 3} is not zero,
x̄ must be the M-Pareto optimal solution.

Proof. Assuming x∗ is not M-Pareto optimal when ε1, ε2, ε3 are all
zero, x̄ must be the M-Pareto optimal. According to the definition
of M-Pareto optimal, µfi (x̄) ≥ µfi (x

∗), (i = 1, 2, 3) must hold, and
µfh (x̄) > µfh (x

∗) for at least one h, h ∈ {1, 2, 3}. In other word,
there must exist at least one non-zero εh, which is contrary to
the fact that ε1, ε2, ε3 are zero. So x∗ is M-Pareto optimal when
all ε are zero.

If at least one εh is not zero and x̄ is not the M-Pareto optimal
solution, there will exist another M-Pareto optimal solution x̃
which must be the optimal solution of (21). It is contrary to the
fact that x̄ is the optimal solution. Hence, x̄ must be the M-Pareto
optimal solution when at least one εh is not zero.

5.5. Algorithm steps

The steps of the proposed method are listed as follows:
Step 1: Build the MOTA model;
Step 2: Calculate the distance cost ciq: when there is no ob-

stacle between the UAV and the target, the shortest distance is
selected directly; otherwise, the path length is determined using
the RRT algorithm;

Step 3: Apply the adaptive PIO method with auction to the
payoff table to formulate membership functions and build the
fuzzy MOTA model;

Step 4: Transform the model into two-phase models;
Step 5: Solve these two models using the proposed PIO algo-

rithm;
Step 6. Guarantee M-Pareto optimality using the test model.

6. Simulations

To validate the effectiveness and efficiency of the proposed
method, a series of simulations are implemented by comparing
with the conventional PSO algorithm. The three-dimension (3D)
urban environment is presented in Fig. 3. Various cases are con-
sidered, involving numbers of UAVs and targets, and different
initial positions.

The initial parameters of the proposed PIO algorithm are given
as: population size Np = 20, iteration numbers N1 = 40, N2 = 5,
R = 0.5, ωmax = 0.7, ωmin = 0.4. The PSO algorithm are also
applied to models (12) and (14).

6.1. 5 UAVs and 3 targets

6.1.1. Case 1
The initial position of UAVs and targets are listed in Table 2,

and the matching relationship between UAVs and targets is listed
in Table 3. The RRT algorithm is used for path planning of ob-

stacles. Figs. 4 and 6 show the task allocation result and the
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Fig. 3. Urban environmental model.
Table 2
The initial positions of UAVs and targets in Case 1.
UAV 1 2 3 4 5

X 940 708 44 656 36
Y 488 800 964 936 244
Z 3 3 3 3 3

Target 1 2 3

X 92 580 240
Y 516 360 816
Z 0 0 0

Table 3
Matching between UAVs and targets in Case 1.

PIO UAV 1 2 3 4 5
Target 2 2 3 1 1

PSO UAV 1 2 3 4 5
Target 2 2 3 3 1

tracking path in the two-dimension (2D) urban environment us-
ing our PIO and PSO, respectively (The triangle symbol represents
UAV, and the dot represents target. The purple line denotes the
matching relationship between UAV and corresponding target,
and the orange line is the tracking path). Figs. 5 and 7 are their 3D
tracking path. The satisfactory degrees of three objectives using
the proposed PIO are (1, 1, 1), while they are (0.8055, 0.9985,
0.9239) using PSO, shown in Fig. 8. The satisfactory degree of
each objective by PIO is bigger than that by PSO. Obviously, the
performance of our PIO is better than PSO.

6.1.2. Case 2
The sizes of UAVs and targets are the same as in Case 1, but

he initial position of UAVs and targets of Case 2 are different.
igs. 9 and 10 show the assignment results by our PIO and PSO.
he satisfactory degrees of objectives are (1, 1, 1) and (0.2909,
, 0.5504), as shown in Fig. 11. The proposed PIO shows better
erformance.

.2. 12 UAVs and 5 targets

.2.1. Case 3
12 UAVs and 5 targets have different original positions. Fig. 12

hows the position and matching relationship between UAVs and
argets using PIO. The simulation result by PSO is shown in Fig. 13.
rom Fig. 14, the satisfactory degrees are (0.9057, 0.9991, 0.8071)
sing the proposed PIO and those are (0.6625, 0.6661, 0.6913)
sing PSO. It is apparent that our PIO is better than PSO.
8

6.2.2. Case 4
The initial locations of UAVs and targets are changed and

the results are shown in Figs. 15 and 16. Fig. 17 compares the
satisfactory degrees of PIO and PSO, which are (0.9103, 0.4998,
1) and (0.2488, 0.2499, 0.8303) respectively. The performance of
PIO is still better than PSO in this case.

6.3. 20 UAVs and 10 targets

6.3.1. Case 5
Figs. 18 and 19 show the task allocation results by two meth-

ods. And the satisfactory degrees are (0.8333, 0.8329, 0.739) using
PIO and (0.4569, 0.5831, 0.3899) using PSO (Fig. 20). The power
of PIO is validated.

6.3.2. Case 6
Similarly, the UAVs and targets have different original posi-

tions in this case. The task allocation results are shown in Figs. 21
and 22. From Fig. 23, it can be seen that the satisfactory degrees of
the proposed PIO are higher than PSO, which are (0.8463, 0.6996,
0.8625) and (0.7608, 0.5997, 0.2954).

From Figs. 4–26, it can be seen that the proposed PIO and
PSO can both complete the task assignment of tracking multiple
targets. However, Figs. 8, 11, 14, 17, 20 and 23–26 show the
satisfactory degrees of these objective functions in all the cases
using PIO are greater than or equal to by PSO. Apparently, all the
objectives have better optimization performance by PIO. Thereby,
it can be concluded that our PIO is superior to PSO in solving
the formulated MIP. In addition, although it seems the order
of satisfactory degrees in some cases does not conform to the
linguistic importance, in reality the order of desirable satisfactory
degrees meets the fuzzy importance requirement. By formulating
multiple objective functions, not only tracking performance is
realized, but also allocation balance is considered. In summary,
the proposed PIO method has a good optimization ability to deal
with multi-objective MIP.

7. Conclusion

This paper addresses the task allocation problem of tracking
multiple targets using multiple UAVs in the urban environment. A
pigeon-inspired fuzzy optimization method is proposed for MOTA
of UAVs with linguistic preference. The model with multiple ob-
jectives, including total tracking distance, task allocation balance,
and completion time, is established. For linguistic importance
preference, the relaxed order of desirable satisfactory degrees
is introduced, and the two-phase fuzzy models are formulated
correspondingly. The enhanced PIO algorithm is designed by com-
bining with adaptive PIO and auction mechanism to solve the
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Fig. 4. 2D UAV task allocation result and tracking path using our PIO in Case 1.

Fig. 5. 3D UAV tracking path using our PIO in Case 1.

Fig. 6. 2D UAV task allocation result and tracking path using PSO in Case1.
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Fig. 7. 3D UAV tracking path using PSO in Case 1.

Fig. 8. Satisfactory degrees of three objective functions in Case 1.

Fig. 9. 2D UAV task allocation result using our PIO in Case 2.
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Fig. 10. 2D UAV task allocation result using PSO in Case 2.

Fig. 11. Satisfactory degrees of three objective functions in Case 2.

Fig. 12. 2D UAV task allocation result using our PIO in Case 3.
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Fig. 13. 2D UAV task allocation result using PSO in Case 3.

Fig. 14. Satisfactory degrees of three objective functions in Case 3.

Fig. 15. 2D UAV task allocation result using our PIO in Case 4.
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Fig. 16. 2D UAV task allocation result using PSO in Case 4.

Fig. 17. Satisfactory degrees of three objective functions in Case 4.

Fig. 18. 2D UAV task allocation result using our PIO in Case 5.
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Fig. 19. 2D UAV task allocation result using PSO in Case 5.

Fig. 20. Satisfactory degrees of three objective functions in Case 5.

Fig. 21. 2D UAV task allocation result using our PIO in Case 6.

14
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Fig. 22. 2D UAV task allocation result using PSO in Case 6.

Fig. 23. Satisfactory degrees of three objective functions in Case 6.

Fig. 24. Satisfactory degree of total flight distance.

15
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Fig. 25. Satisfactory degree of task allocation balance.
Fig. 26. Satisfactory degree of completion time.
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wo-phase MIP models. A series of simulations are implemented,
nd the effectivity and efficiency of the proposed method are
alidated. This paper assumes that UAVs possess all target states.
n fact, target information is unknown and should be obtained
y sensor measurement and the advanced computation method
e.g. CNN). That will be the future focus.
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ppendix A. Assumption of task allocation

ssumption 1. The UAVs are homogeneous and the tracking
equirement for all UAVs and targets are same. That is each UAV
an track arbitrary target.

ssumption 2. Each UAV can track just one target, and each
arget can be tracked by at least one UAV. The number of UAVs
s more than that of targets.

ssumption 3. The movement of targets are known for UAVs in
his paper.
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ppendix B. Linguistic importance preference

The following linguistic preference terms are generally used to
escribe the fuzzy importance of goals.
a. ‘‘very important’’
b. ‘‘somewhat important’’
c. ‘‘important’’
d. ‘‘general’’
e. ‘‘unimportant’’
f. ‘‘somewhat unimportant’’
g. ‘‘very unimportant’’
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