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Abstract

In this paper, the entry trajectory optimization problem of lifting type re-entry vehicle with path constraints is solved using Pigeon
Inspired Optimization (PIO). Entry trajectory optimization problem involves finding the control profiles, bank angle, and angle of attack
to guide the vehicle safely to the destination. The proposed approach parametrizes the bank angle to be a linear function of energy while
the angle of attack is considered to be a monotonic function of Mach number. Thus, the problem of finding control profiles is trans-
formed into three parameter search problem. The PIO algorithm is used to find the values of these parameters that minimizes the objec-
tive function. The terminal heading angle offset is minimized using traditional bank reversal logic. A new approach is proposed in which
the bank angle is modulated to eliminate the oscillations observed in the altitude profile of an entry vehicle with a high lift to drag ratio
(L/D). A methodology to satisfy the given load factor constraint is also proposed, as an alternative to traditional penalty factor approach
used for incorporating path constraints in PIO algorithm. The proposed approach is further validated by considering sub-cases with dif-
ferent load factor limits and bank angle as the only control variable. The angle of attack profile obtained from the previous case is con-
sidered as the nominal profile. The proposed trajectory optimization strategy using PIO algorithm is simulated for Common Aero
Vehicle with high L/D ratio (CAV-H) with different load factor constraint limits. The results show that the obtained angle of attack
profile minimizes the peak heat rate experienced by the vehicle and bank angle modulation eliminates the oscillations in the altitude pro-
file as well as makes the entry trajectory satisfy the load factor constraint.
� 2018 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The curiosity towards space exploration has increased
over the years which has led to the development of many
spacecraft and launch vehicles. Some of these vehicles are
required to return Earth safely either to bring back the
astronauts or to facilitate their reuse. Two main aspects
of such vehicles are; the ascent mission and the re-entry
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mission. The re-entry phase of re-entry mission is very cru-
cial for any spacecraft that is returning from space to the
Earth. In this phase, the vehicle is unpowered and there-
fore, the trajectory is governed only by gravity and aerody-
namic forces. The control over the entry trajectory is
obtained by modulating the bank angle and/or angle of
attack. These control commands are to be determined by
the guidance module. Guidance algorithms usually employ
a trajectory planner to generate a feasible trajectory that
satisfies the predefined heat rate, and g-load limits and a
tracker to follow the planned trajectory. The present work
will focus on developing a trajectory planning approach
which generates constrained entry trajectories.
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Re-entry trajectory planning problem is regarded as an
optimal control problem. Optimal control tools can handle
path and terminal constraints while minimizing or maxi-
mizing a specified performance index. These optimal con-
trol problems are solved using numerical methods which
are divided into two major classes: indirect and direct
methods. Indirect methods are based on the Pontryagin
minimum principle which leads to two-point boundary
value problem as given in Pontryagin and Boltyanskii
(1987). Direct methods involve discretizing control time
histories and/or state variable time history, thereby trans-
forming the optimal control problem to a nonlinear pro-
gramming problem (NLP) Betts (2001). Pseudospectral
methods that fall under the category of direct method are
being used extensively for solving trajectory optimization
problems. Bailing and Qun (2011) have implemented a
Legendre pseudospectral method for entry trajectory opti-
mization. Cai et al. (2015) have applied the Chebyshev
pseudospectral method for generating entry trajectories.
However, pseudospectral methods have tuning issues such
as selection of the basis functions and the number of collo-
cation points. Moreover, these algorithms are also sensitive
to initial guess values of the control and state variables.

The meta-heuristic algorithms that mimic natural phe-
nomena fall under the category of direct methods. These
algorithms are simple and involve derivative free approach
of arriving at the optimal solution. Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), Simulated
annealing (SA) are some of the heuristic algorithms. Some
of the latest developments of meta-heuristic algorithms are
Whale optimization, Grasshopper optimization. They are
used for solving optimization problems in various domains
Yu et al. (2017) and Wu et al. (2017, 2018). In recent times,
Duan has proposed a meta-heuristic algorithm that mimics
the homing behavior of pigeons in Duan and Qjao (2014).
Pigeons have special ability to sense the magnetic field of
Earth and measure the altitude of the Sun. This feature is
termed as map and compass operator. They also have the
ability to identify the landmarks, which is termed as a land-
mark operator. These features of PIO algorithm makes it
different from other meta-heuristic approaches and has
potential to solve optimization problems. PIO algorithm
is also modified to address different scenarios such as target
detection task for Unmanned Aerial Vehicles in Li and
Duan (2014), path planning of uninhabited combat aerial
vehicle in Zhang and Duan (2017), image restoration in
Duan and Wang (2016), designing control parameters in
Xue and Duan (2017) and Deng and Duan (2016) and
for solving multi-objective optimization problems in Qiu
and Duan (2015). This paper utilizes basic PIO algorithm
to generate feasible entry trajectories.

Optimal trajectories of a spacecraft are generated using
PSO algorithm in Rahimi et al. (2013). PSO and PIO algo-
rithms are used to generate entry trajectories for hypersonic
gliding vehicle by Zhao and Zhou (2015a,b). Zhao and Zhou
(2015a,b) have considered the control formulation that
requires findingmultiple parameters to get the complete con-
trol profile. However, they have considered only bank angle
as the control variable with a nominal angle of attack profile
and demonstrated few entry cases which involve one or two
bank reversals and cover shorter ranges. The constraints on
load factor are implemented using penalty factor approach.
Moreover, the obtained entry trajectories exhibit oscilla-
tions which increase heat rate, and g-loads. Sushnigdha
and Joshi (2017) have used PIO algorithm to find the bank
angle profile for generating the entry trajectory of CAV-H
vehicle. It is observed that the convergence of PIO is faster
than PSO and Gravitational Search Algorithms (GSA)
when the dimension of the problem is one. It is to be noted
that the entry trajectory obtained using PIO in Sushnigdha
and Joshi (2017) also has undesirable oscillations. This issue
can be solved by incorporating equilibrium glide condition.

This paper presents a constrained entry trajectory opti-
mization problem which is solved using PIO, to find the
control histories which are used to generate the entry tra-
jectories. In the first case, the PIO algorithm is used to find
the bank angle and angle of attack control profiles. These
control variables are parametrized and the problem is for-
mulated as three parameter search problem. PIO algorithm
is used to find these three parameters that minimize the
objective function which consists of peak heat rate and ter-
minal errors. A new scheme that modulates bank angle to
further satisfy equilibrium glide condition and load factor
constraints is incorporated in the problem formulation.
By treating the angle of attack profile obtained from the
first case as the nominal profile, few sub-cases are consid-
ered. In these sub-cases, the trajectory optimization prob-
lem is converted into a single parameter search problem
of finding the bank angle for different load factor con-
straints. Further, few cases and sub-cases to verify the
robustness of the proposed methodology in the presence
of dispersions in the initial entry conditions, parameters
are considered and applicability of the proposed strategy
for different entry missions is also tested.

This paper is organized as follows. In Section 2, details
of the considered re-entry vehicle, its equations of motion,
gravity, atmosphere models, path and terminal constraints
are discussed. The entry trajectory optimization problem,
parametrization of control variables and objective func-
tions are defined in Section 3. Section 4 explains the PIO
algorithm with QEGC and path constraints handling
mechanism. In Section 5, simulation results are discussed.
Section 6 concludes the paper.

2. Mathematical model and details of re-entry vehicle

This section gives an introduction to the re-entry vehicle
CAV-H which is used for the simulations and describes the
equations of motion, gravity model, atmospheric model,
terminal and path constraints.



Fig. 1. Nomenclature used in equations of motion.
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2.1. CAV-H

The Common Aero Vehicle (CAV) is a concept which
describes a space re-entry aeroshell launched into space
on a suitable vehicle. After which, CAV survives atmo-
spheric re-entry, reduces its speed to low Mach numbers
and dispenses a cargo, payload or weapon in the atmo-
sphere of the Earth (Phillips, 2003). There are two types
of common aero vehicles. In this paper, CAV-H is used
for simulations. The mass of the vehicle is 907.2 kg and
the surface area is 0.4839 m2. The maximum L/D ratio
for the vehicle is 3.5.

2.2. Equations of motion

By considering the re-entry vehicle to be a point mass,
the equations of motion of the vehicle gliding over a
spherical, rotating Earth in terms of nondimensional vari-
ables are given as follows (Lu, 2014)

_r ¼ V sin c ð1Þ
_h ¼ V cos c sinw

r cos/
ð2Þ

_/ ¼ V cos c cosw
r

ð3Þ
_s ¼ �V cos c=r ð4Þ

_V ¼�D� sinc
r2

� �
þX2rcos/ sinccos/� coscsin/coswð Þ

ð5Þ

_c ¼ 1

V
L cos rþ V 2 � 1

r

� �
cos c
r

� �
þ 2XV cos/ sinw

�
þX2r cos/ cos c cos/þ sin c cosw sin/ð Þ� ð6Þ

_w¼ 1

V
Lsinr
cosc

þV 2

r
coscsinw tan/

�

�2XV tanccoswcos/� sin/ð Þþ X2r
cosc

sinwsin/cos/

�
ð7Þ

Eqs. (1)–(4) are kinematic equations and Eqs. (5)–(7) are
dynamic equations. The derivatives in the above equations
of motion are with respect to dimensionless time s in the
above mentioned equations of motion. The dimensional

time t is calculated using t ¼ tscales, where tscale ¼
ffiffiffiffi
R0

g0

q
.

The nondimensional distance from the Earth center to
the point mass O that is normalized by the radius of the
Earth R0 ¼ 6378:135 km is denoted by r. The Earth-
relative velocity V is normalized by V scale ¼ ffiffiffiffiffiffiffiffiffiffi

R0g0
p

, where
g0 is the acceleration due to gravity on the surface of the
Earth. h and / are the longitude and latitude, the flight-
path angle c is positive when V is above the horizontal
plane. w is the heading angle of the velocity vector, mea-
sured clockwise in the local horizontal plane from the
north as shown in Fig. 1. The range-to-go s (in radians,
normalized by R0) is defined on the surface of the spherical
Earth along the great circle connecting the current location
of the vehicle and the site of the final destination Lu (2014).
Bank angle r is defined as the clockwise positive rotation of
the lift vector about the velocity vector. X is the dimension-
less angular velocity of the Earth. The nondimensional
aerodynamic lift, L and drag, D accelerations are normal-
ized with g0 ¼ 9:8 m=s2 and are defined as

L ¼ 1

2mg0
qV 2CLSref ð8Þ

D ¼ 1

2mg0
qV 2CDSref ð9Þ

where m is the mass of the vehicle, the surface area of the
wing is Sref , and q is the atmospheric density. The aerody-
namic lift coefficientCL and drag coefficientCD are functions
of the angle of attack and Mach number. The aerodynamic
coefficient details of CAV-H are in Phillips (2003).
2.3. Choice of independent variable and calculation of final

time of flight tf

The entry trajectory optimization problem is solved by
considering an energy like variable e as the independent
variable. It is defined as negative of the specific mechanical
energy used in orbital mechanics as mentioned in Lu
(2014).
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e ¼ l
r
� V 2

2
ð10Þ

_e ¼ DV ð11Þ
where l is a gravitational parameter of the Earth, whose
normalized value is 1. e is a monotonically increasing vari-
able as seen in Eq. (11) and is also a function of radial dis-
tance and velocity. The choice of e as an independent
variable reduces the terminal conditions on r and V to a
single constraint. The order of the system is also reduced
by eliminating Eq. (5) and velocity V at any instant is cal-
culated using Eq. (10). The above described equations of
motion are rewritten considering e as independent variable
by using Eq. (11) as dr=de ¼ _r= _e, etc. The equations of
motion are integrated from initial energy e0 to final energy
ef . Energy at entry interface e0 and energy at the end of re-
entry phase ef are calculated using the initial and desired
values of radial distances r0; r� and velocities V 0; V � respec-
tively. The final time of flight tf is obtained as part of the

solution process by including ds
de in the equations of motion.
2.4. Gravity model

The acceleration due to gravity of the vehicle at a radial
distance r from the centre of Earth is given by Eq. (12)

g ¼ l
r2

ð12Þ

The nondimensional value of gravitational parameter l
is 1. This gravity model is considered in the equations of
motion.
2.5. Atmosphere

The U.S. Standard Atmosphere, 1976 is used to model
the atmosphere Anon (1976). The atmospheric density at
an altitude is obtained using Eq. (13)

q ¼ q0e
�b r�1ð ÞÞ ð13Þ

where q0 is the density on the surface of the Earth,
q0 ¼ 1:225 kg=m3 and b ¼ 920 is nondimensional scale
height which is normalized with the radius of the Earth.
Fig. 2. Entry corridor formed by path constraints.
2.6. Path constraints

The vehicle has to travel within the entry corridor

formed by the upper limits of specified heat rate _Qmax, load
factor amax and dynamic pressure qmax in the re-entry phase.
These constraints are termed as path constraints and given
by the following equations.

_Q ¼ 9:4369� 10�5 ffiffiffi
q

p
V 3:15V 3:15

scale 6 _Qmax ð14Þ

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ D2

p
6 amax ð15Þ

q ¼ qV 2V 2
scale

2
6 qmax ð16Þ
These path constraints are to be strictly satisfied.
Equilibrium glide constraint given in Eq. (17) is regarded
as the soft constraint. Equilibrium glide refers to the case
where the aerodynamic lift force balances the gravitational
and centrifugal forces. This equation is obtained by making
the derivative of flight-path angle zero and neglecting the
Earth rotation terms.

Lcosr ¼ 1=r2

 �� V 2=r


 � ð17Þ
During the equilibrium glide condition, flight-path angle

should ideally be constant, however, it varies slowly.
Hence, it is termed as Quasi Equilibrium Glide condition
(QEGC) in Lu (2006). Entry vehicles with high lift to drag
ratio exhibit oscillations in their altitude profiles which lead
to high heat rate and g-loads. These oscillations can be
eliminated when the vehicle satisfies QEGC constraint.

2.6.1. Entry corridor

All the path constraints given by Eqs. (14)–(17) are con-
verted to limits on altitude. By using the equations given
below, these constraints are represented in altitude-
velocity space as shown in Fig. 2.

r P rQ ¼ 1þ 1

b
ln

1:225k2qV
6:3V 6:3

scale

_Q2
max

 !
ð18Þ

r P ra ¼ 1þ 1

b
ln

1:225V 2V 2
scaleSref CD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ D2

p
2amaxmDg0

 !
ð19Þ

r P rq ¼ 1þ 1

b
ln

1:225V 2V 2
scale

2qmax

� �
ð20Þ

r 6 req ¼ 1þ 1

b
log

V 2
scaleV

2q0Sref CL

2mg0 1� V 2

 �

 !
ð21Þ

At any given velocity, the vehicle should fly at altitudes

higher than max rQ; rq; ra
� �

, in order to satisfy the above

mentioned path constraints. These altitudes form the lower
bound in the altitude-velocity space. The equilibrium glide
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constraint forms the upper bound on the altitude. It is seen
that heat rate constraint is active in the initial descent phase
of the entry flight and subsequently load factor and
dynamic pressure constraints become active. Dynamic pres-
sure constraint can be satisfied implicitly by satisfying the
load factor constraint limit as seen in Fig. 2 in some cases.
In such cases, heat rate and load factor constraints only
form the path constraints. The proposed strategies to satisfy
QEGC and load factor constraints make use of the above
mentioned constraint limits on altitude in Section 5.

2.7. Terminal constraints

At the end of entry phase, the vehicle needs to achieve a
radial distance r�, range-to-go s� and velocity V � as per the
requirement of the Terminal Area Energy Management
(TAEM) phase. The heading angle offset Dwf at the end

of entry phase should be less than the desired heading angle
offset Dw� as given in Eq. (22).

Dwf 6 Dw�j ð22Þ
3. Entry trajectory optimization problem

Trajectory optimization of entry vehicles involves find-
ing the control profiles such that the resulting entry trajec-
tory satisfies the path and terminal conditions. In cases 1, 2,
and 3 both bank angle and angle of attack are considered
to be the control variables. To solve this optimal control
problem, bank angle is parametrized with respect to energy
e and angle of attack is considered to be a monotonic func-
tion of Mach number, as given below.

3.1. Angle of attack parametrization

The angle of attack profile is considered to be a mono-
tonic function of Mach number M as shown in Fig. 3. A
constant angle of attack is considered when the vehicle is
at high Mach numbers. After Mach number M < mpio,
Fig. 3. Monotonic angle of attack profile.
angle of attack is monotonically decreasing with a chosen
slope of 0.1 as defined by Eq. (23).

a Mð Þ ¼
apio; M P mpio

apio � 0:1 M � mpio


 �2
; M < mpio

(
ð23Þ

In Eq. (23), the Mach number mpio and the angle of attack
apio are the parameters to be found in order to get the com-
plete angle of attack profile.

3.2. Bank angle parametrization

The control variable, bank angle is considered to be a lin-
ear function of current energy e, based on piecewise linear
approximation. Its magnitude is calculated from Eq. (24)

r eð Þ ¼ r0 þ e� e0
ef � e0

rf � r0


 �
 ð24Þ

where e0 and ef are energies at entry interface and terminal
points respectively. r0 P 0 is the parameter to be found
that minimizes the given objective function. rf is the prede-
fined terminal bank angle and rf ¼ 60� is chosen for the
simulations. The sign of bank angle is obtained from a
bank reversal logic as described by in Shen and Lu
(2004). This bank reversal logic is used to reduce the termi-
nal heading error offset.

3.3. Objective function

The objective function for PIO based trajectory opti-
mization problem is defined here. In the first three cases,
the decision variables to be found are bank angle r0, angle
of attack apio and Mach number mpio. In the remaining sub-
cases, the decision variable to be found is one i.e. bank
angle r0. The angle of attack profiles obtained in the first
three cases are considered to be the nominal angle of attack
profiles for corresponding sub-cases. The objective func-
tions for different cases and sub-cases are given below:

3.3.1. Objective function for different cases

Trajectory optimization problem is stated as;
Find the decision variables r0;mpio and apio that mini-

mize peak heat rate and terminal constraint errors as
described in J, given below

MinJ ¼ max _Q

 �

105
þ js ef


 �� s�j � R0

103

þ jr ef

 �� r�j � R0

1000
þ jV ef


 �� V �j � V scale

100
ð25Þ

subject to
Equations of motion, quasi equilibrium glide constraint

given by Eq. (17) and load factor constraint in Eq. (15).
In the objective function,‘‘�” indicates the desired termi-

nal states as defined by the TAEM phase. The terms in the
objective function are dimensional, range-to-go term is in
m, radial distance term is in km and velocity in m/s and
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the terms are multiplied with some weights to bring them to
the same order of magnitude as given in Eq. (25).

3.3.2. Objective function for sub-cases

The angle of attack profile obtained in the first case is
considered to be the nominal profile and only bank angle
variable r0 is to be found. Each term in Eq. (26) is dimen-
sional as described in the case 1. Minimum peak heat rate
depends on the angle of attack profile. As the angle of
attack profile is same as the previous cases, the term corre-
sponding to peak heat rate is eliminated in the current
objective function, which is;

MinJ ¼ js ef

 �� s�j � R0

103
þ jr ef


 �� r�j � R0

1000

þ jV ef

 �� V �j � V scale

100
ð26Þ

subject to
Equations of motion, quasi equilibrium glide constraint

given by Eq. (17) and load factor constraint in Eq. (15).

4. Pigeon inspired optimization

Pigeons have special ability to locate themselves relative
to their destination by being able to sense the magnetic field
of the Earth. They have the ability to adjust their flying
direction using altitude of the Sun. They also have the abil-
ity to recognize landmarks and can fly directly towards the
destination. This PIO algorithm mimics the homing behav-
ior of pigeons and the features of pigeons are classified as
map and compass operator, and landmark operator. It is
observed that pigeons use map and compass operator dur-
ing their initial phase of the journey and then use land-
marks to reach the destination. Details of these operators
are given below.

4.1. Map and compass operator

Initialize the total population of the pigeons N. Set the
maximum number of iterations kmax and define the dimen-
sion D of the problem based on the number of unknown
variables to be found. Specify the search range for each
dimension. In the first iteration, initial set of pigeons are
randomly generated in the given search range. The position
of the pigeon i is given by Eq. (27).

X i ¼ xi1; xi2; . . . ; xiD½ � where i ¼ 1; 2; 3 . . .N ð27Þ
The velocity of the pigeon i is given by Eq. (28).

V i ¼ vi1; vi2; . . . ; viD½ � where i ¼ 1; 2; 3 . . .N ð28Þ
where xiD and viD are the position and velocity components
of each dimension D. Each pigeons position vector X i rep-
resents a possible solution and corresponds to an objective
function. The position and velocities of the pigeons are
updated in each iteration k as per the following update
logic

V i kð Þ ¼ V i k � 1ð Þ:e�Rk þ rand: G k � 1ð Þ � X i k � 1ð Þð Þ
ð29Þ

X i kð Þ ¼ X i k � 1ð Þ þ V i kð Þ ð30Þ
whereG k � 1ð Þ is the best position of the pigeon correspond-
ing to the minimum objective function achieved till the cur-
rent iteration. The random number rand is in the range [0,1],
which helps in exploring the search space. R is the map and
compass operator. In this operator, all the pigeons adjust
their position and try to follow the pigeon that corresponds
to the best objective function value i.e. minimum objective
function value for a minimization problem. The term
V i k � 1ð Þ:e�Rk gives the pigeons former flying direction.
The influence of previous velocity V i k � 1ð Þ in the current
updating step is governed by the term e�Rk.With the increase
in the number of iterations, the influence of V i k � 1ð Þ in the
current updating step decreases, leading to greater exploita-
tion and faster convergence towards the best solution.

4.2. Landmark operator

Pigeons shift their operator to landmark operator as
they approach their destination. Few pigeons that can iden-
tify the landmarks fly directly to their destinations while
the remaining pigeons follow them to reach the destination.

The iteration number kc which is less than kmax, indicates
the shift in the operator. The landmark operator is initiated
when the current iteration k becomes equal to kc. kc is cho-
sen to be 75% of kmax as given in Duan and Qjao (2014). In
this operator, half of the pigeons with positions close to
G k � 1ð Þ are selected. The centre of these pigeons is found
using Eq. (31).

Xc kð Þ ¼
P

Np kð ÞX i k � 1ð Þ:fitness X i k � 1ð Þð Þ
Np kð ÞPNp kð Þfitness X i k � 1ð Þð Þ ð31Þ

where fitnessðÞ is the objective function value correspond-
ing to the given pigeons position and Np is the current
reduced population as given below

Np kð Þ ¼ Np k � 1ð Þ
2

ð32Þ

The positions of the pigeons is updated using X c kð Þ as
follows

X i kð Þ ¼ X i k � 1ð Þ þ rand: X c kð Þ � X i k � 1ð Þð Þ ð33Þ
In this operator, the pigeons that are unfamiliar with the

landmarks adjust their positions and follow the center of
the pigeons that are familiar with the landmarks. Towards
the end of iterations, pigeon corresponding to minimum
objective function value will be the pigeon with the best
position.
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4.3. Method to incorporate quasi equilibrium glide constraint

This section utilizes the slope of altitude limit corre-
sponding to QEGC shown in Fig. 2, to modulate the bank
angle and to make the entry trajectory satisfy QEGC con-
straint. Quasi Equilibrium glide condition corresponds to
_c ¼ 0 in Eq. (6) and is obtained by ignoring the terms
related to rotation of the Earth as given by Eq. (34).

L cos rþ V 2 � 1

r

� �
cos c
r

� �
¼ 0 ð34Þ

In the above equation, r is constant and is chosen to be 0
and r � 1 and c � 0. Then the resulting equation is

Lþ V 2 � 1

 � ¼ 0 ð35Þ

Note that the above equation has nondimensional quan-
tities. By substituting lift acceleration given by Eq. (8) in
the above equation gives

qV 2CLSref

2mg0
þ V 2 � 1 ¼ 0 ð36Þ

Atmospheric density q is an exponential function of
radial distance r given by Eq. (13). This expression of den-
sity is substituted in Eq. (36), results in

q0e
�b r�1ð ÞÞV 2CLSref

2mg0
þ V 2 � 1 ¼ 0 ð37Þ

By using the above equation, the relationship between
altitude and velocity can be derived as given below

req ¼ 1þ 1

b
log

V 2
scaleV

2q0Sref CL

2mg0 1� V 2

 �

 !
ð38Þ

Eq. (38), gives the altitude required to satisfy equilibrium
glide condition at any given velocity. On differentiating the
above equation with respect to velocity results in Eq. (39)

dreq
dV

¼ 1

bV 2 1� V 2

 � ð39Þ

Eqs. (1) and (5) from the equations of motion are used to
equate the above Eq. (39) as given below

Vsinc
�D� sin c=r2ð Þ ¼

1

bV 2 1� V 2

 � ð40Þ

From the above Eq. (40), flight-path angle required to fly
the vehicle at equilibrium glide condition is obtained as

sincQEGC ¼ �D

bV 3 1� V 2

 �þ 1=r2ð Þ ð41Þ

The above expression for cQEGC can be used to find the alti-

tude rate required to fly the vehicle at QEGC. The altitude
variation with respect to energy to fly at QEGC is

drQEGC
de

¼ sincQEGC
D

ð42Þ

The current variation of altitude with respect to energy
is given by
dr
de

¼ sinc
D

ð43Þ

The vertical component of lift force is modulated by

using the altitude compensation term k dr
de �

drQEGC
de

� �
, given

in Eq. (44).

L cos rcmd ¼ L cos rbase � k1
dr
de

� drQEGC
de

� �
ð44Þ

where rbase is the bank angle at current energy obtained
using Eq. (24). k1 > 0 is the gain which is scheduled as a lin-
ear function of velocity. Bank angle rcmd is used to inte-
grate the equations of motion and the objective function
is evaluated. This bank angle rcmd eliminates the oscilla-
tions observed when QEGC is not satisfied. In cases which
demand constraint on load factor or dynamic pressure to
be satisfied, the rcmd is further modified to satisfy the
required constraints and rcmd in Eq. (44) is referred to as
rQEGC.

4.4. Incorporating constraints on load factor

The constraints on load factor and dynamic pressure are
converted to limits on altitude as given in Eqs. (19) and (20)
respectively. The slope of altitude-velocity curve formed
due to constraint on load factor is given below

dra
dV

¼ 2

bV
ð45Þ

Using Eqs. (1) and (5) from equations of motion and
equating it with Eq. (45) results in the equation given below

Vsinc
�D� sin c=r2ð Þ ¼

2

bV
ð46Þ

From the above Eq. (46), flight-path angle required to sat-
isfy the constraint on load factor is obtained as

sin ca ¼
�2D

b V 2 þ 2=br2ð Þ
 � ð47Þ

This flight-path angle is used to obtain the altitude vari-
ation with respect to energy to satisfy load factor
constraints.

dra
de

¼ sinca
D

ð48Þ

The current variation of altitude with respect to energy
is given by

dr
de

¼ sinc
D

ð49Þ

To follow QEGC along with load factor constraint, The
bank angle rcmd can be obtained using Eq. (50)

L cos rcmd ¼ L cos rQEGC � k2
dr
de

� dra
de

� �
ð50Þ

where rQEGC is the bank angle at the current energy
obtained using Eq. (44). k2 ¼ 70 is a constant gain used



Fig. 4. PIO algorithm with QEGC and load factor constraints.
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Table 1
Initial entry conditions.

Cases r0 (km) V 0 (m/s) h0 (deg) /0 (deg) c0 (deg) w0 (deg) s0 (km)

Case 1 121.52 7400 �72.42 38.99 �1 35 11,112
Case 2 123.74 7369.7 �72.42 38.99 �1.2 37 11,112
Case 3 119.27 7430.4 �72.42 38.99 �0.8 33 11,112

Table 2
Final conditions to be achieved Lu (2014).

r� (km) V � (m/s) s� (km) Dw� 6 degð Þ
28 2000 92.6 �10

Table 3
Parameters used in PIO for solving cases and sub-cases.

CasesnParameters N D kmax kc R

Cases 40 3 25 15 0.2
Sub-cases 10 1 25 15 0.2

Table 4
Parameters used in PSO algorithm for solving cases.

Parameters Values

Population size 40
Acceleration constants (c1 and c2) 1.4, 2.6
Inertia constants (wmax and wmin) 1, 0.4

Maximum iterations 25
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in the above equation. This Eq. (50) is used only when the
load factor constraint is violated and this bank angle rcmd is
used to integrate the equations of motion. If the load factor
constraint is not violated, bank angle obtained from Eq.
(44) is only used to integrate equations of motion without
any further modifications. The proposed methodology for
incorporating QEGC and load factor constraints is
included in the prediction process of PIO algorithm so that
the obtained entry trajectory satisfies the path constraints.
4.5. PIO algorithm with QEGC and load factor constraint

The path constraints, QEGC and load factor constraints
are included as part of the prediction process in the PIO
algorithm. In each iteration, each pigeon represents a bank
angle r0. By using each r0, bank angle at each instant is
obtained using Eq. (24). This instantaneous bank angle is
taken as rbase and is modified to satisfy the QEGC using
Eq. (44). The commanded bank angle that satisfies QEGC
is obtained as rcmd from Eq. (44). Using this commanded
bank angle with its sign from bank reversal logic, the equa-
tions of motion are integrated from e0 to ef . At any instant
if the load factor constraint is violated, bank angle rcmd

obtained from Eq. (44) is referred to as rQEGC and is mod-
ified using Eq. (50). The bank angle rcmd obtained using Eq.
(50) satisfies both QEGC and load factor constraints. On
using this bank angle command with its sign from bank
reversal logic, equations of motion are integrated and the
objective function is evaluated using Eq. (25) or Eq. (26)
depending on the considered case. At the end of each iter-
ation of PIO algorithm, pigeon with the best objective
function is obtained. Based on the path constraint limits
amax; qmax considered for the simulations, it is seen that if
the vehicle travels at altitudes higher than the altitude limit
formed by load factor constraint, vehicle automatically sat-
isfies the constraint on dynamic pressure. In cases where
the dynamic pressure constraint at any instant is violated,
the same rcmd obtained from Eq. (50) is to be used. This
is because the slope dr=dV of load factor and dynamic pres-
sure curves in altitude-velocity space are the same. This can
be verified by taking derivative of rq in Eq. (20) with respec-
tive velocity V. The flowchart of PIO algorithm for solving
current problem with QEGC and load factor constraint is
given in Fig. 4. The proposed schemes for incorporating
QEGC and load factor constraints can also be used as part
of guidance algorithms like predictor-corrector.
5. Simulation results

The simulation results are demonstrated for CAV-H
vehicle. PIO algorithm finds the entry trajectory that satis-
fies heat rate, load factor, QEGC and terminal constraints.
To test the robustness of the proposed scheme of entry tra-
jectory optimization, three cases are considered with dis-
persions in the initial conditions and load factor
constraint limit as amax ¼ 1:65 g. In these cases, the dimen-
sion of the problem is three. The angle of attack profiles
obtained in these cases are considered as the nominal con-
trol variable for corresponding each sub-case with different
load factor constraint limits amax. The dimension of the
problem in these sub-cases is one. Parametric dispersions
are also introduced in the sub-cases 4, 5, and cases S1–
S5. To test the applicability of the proposed approach, 5
missions with different latitude and longitudes of entry
interface and destinations are considered with
amax ¼ 1:65 g. Simulation results show that the entry trajec-
tories satisfy and fly at the specified upper bounds on load
factors. The initial conditions used for all the cases are in
Table 1 and the desired terminal conditions are in Table 2.
The parameters required for simulating PIO algorithm for
the considered cases and sub-cases are given in Table 3. In
PIO algorithm, the range of search space for r0 is given as
rmin ¼ 0�jj and rmax ¼ 89�jj , for angle of attack is amin ¼ 10�

and amax ¼ 20� and for Mach number is Mmin ¼ 12 and
Mmax ¼ 18. The CAV-H vehicle has maximum L/D at 10�

angle of attack according to Phillips (2003) and has aerody-
namic control sufficient to maintain angle of attack control



Table 5
Control parameters corresponding to the best objective function obtained using PIO and PSO for case 1, 2 and 3.

Case Algorithm r0 (deg) mpio apio (deg) Iterations J

Case 1 PIO 59.93 14.8 20 11 38.56
PSO 59.761 14.837 20 24 38.67

Case 2 PIO 56.1050 14.8 20 11 40.3231
PSO 55.8592 14.76 20 17 40.4149

Case 3 PIO 64.1870 14.801 20 14 36.9068
PSO 64.1920 14.7347 20 20 36.9920

Table 6
Statistical performance comparison of PIO and PSO algorithms with 10
runs for cases 1, 2 and 3.

Cases Algorithm Iterations J

l r l r

Case 1 PIO 13 1.8738 38.5655 0.0101
PSO 19 7.102 39.9242 0.6447

Case 2 PIO 14 3.0203 40.3266 0.0129
PSO 20 4.1865 40.4757 0.3474

Case 3 PIO 13 0.9661 36.9075 0.0013
PSO 19 6.3953 37.0313 0.1
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up to 20�. Therefore, the range of angle of attack in PIO
algorithm is taken to be between 10� and 20�. The limits
on bank angle magnitude are taken according to Zhao
and Zhou (2015a). Upper bound on dynamic pressure
qmax ¼ 53; 000 N=m2. The performance of PIO is compared
with Particle Swarm Optimization (PSO). The parameters
corresponding to PSO algorithm are given in Table 4.
The range of search space and path constraints are same
as that of PIO algorithm.

The values of unknown parameters corresponding to the
best objective value J obtained using PIO and PSO in cases
1, 2 and 3 are given in Table 5. The performance of PIO
over PSO algorithm is shown in Fig. 5. It can be seen that
PIO algorithm converges faster than PSO algorithm to the
minimum objective function value. Each case is imple-
mented 10 times using PIO and PSO algorithms. The statis-
tical performance comparison of both the algorithms is
carried out as shown in Table 6. For all the three cases,
the mean and standard deviation of the best objective func-
tion value is less in PIO algorithm than PSO algorithm.
The mean l and standard deviation r of iterations taken
to reach minimum objective function value are less in
PIO algorithm than PSO algorithm. Therefore, it can be
concluded that the performance of PIO is better than PSO.
Fig. 5. The best objective function value corresponding to each iteration
of PIO and PSO for cases 1, 2 and 3.
5.1. Advantages of PIO over PSO

	 The map and compass operator of PIO algorithm has an
exponential weighting factor e�Rk associated with the
previous velocity of pigeons as given in Eq. (29),
whereas, PSO has a weight w which is either constant
or linearly varying in the velocity update equation. With
the increase in the number of iterations, this weighing
factor in PIO reduces the influence of pigeons previous
velocity on the current velocity and allows PIO algo-
rithm to converge at a faster rate to the optimal value
than PSO algorithm.

	 Update of pigeons position in the landmark operator of
PIO algorithm is performed by considering the fitness
values of each pigeon, while PSO algorithm doesn’t con-
sider the quality of its particles.

	 The update equations of PSO algorithm requires usage
of the best position that the particle has achieved so
far. Therefore, it requires memory, while PIO algorithm
is independent of this aspect.

Fig. 6 shows the bank angle profile for all the cases. The
bank angle magnitude is zero in all the cases till the vehicle
attains the sufficient dynamic pressure. There is a sudden
decrease in the magnitude of the bank angle after the initial
descent in all the cases. This leads to an increase in the ver-
tical component of lift resulting in pull up as evidenced in
Fig. 9. Subsequently, the magnitude of bank angle increases
gradually bringing the vehicle into the denser atmosphere.

In all the cases, bank angle required to fly at QEGC is
used for integrating the equations of motion until the load
factor constraint becomes active. As soon as the load factor
constraint is violated, bank angle obtained from Eq. (50) is



Fig. 6. Bank angle profiles.
Fig. 8. Variation of flight-path angle with time.

Fig. 9. Variation of altitude with time.
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used to make the vehicle fly at altitude obtained from the
load factor limits. Therefore, the magnitude of bank angle
oscillates to satisfy load factor constraint. It is clear from
Fig. 13 that load factor constraint of 1:65 g are accurately
met in all the cases. The sign of bank angle changes based
on the heading error corridor. There is a corresponding
change in heading direction with each zero crossing of
the bank angle. The angle of attack profile corresponding
to obtained apio and mpio is shown in Fig. 7. At higher Mach
numbers, angle of attack is high so as to minimizes the
peak heat rate and subsequently, its magnitude reduces.

The flight-path angle variation is seen in Fig. 8. It is seen
that the commanded bank angle required to track the ref-
erence altitude rate dra=de, increases the flight-path angle
whenever the load factor constraint becomes active. From
the altitude variation plot in Fig. 9, it is observed that the
vehicle satisfies QEGC in all the cases. The oscillations in
the altitude profiles observed in the results section of
Sushnigdha and Joshi (2017) are eliminated.

The ground track of the vehicle is given in Fig. 12. With
series of bank reversals, the vehicle tries to travel along the
Fig. 7. Angle of attack profile.

Fig. 10. Variation of velocity with time.
great circle arc connecting the entry interface to the desti-
nation. The terminal velocity of 2000 m/s and range-to-
go of 92 km are achieved as seen in Figs. 10 and 11



Fig. 11. Variation of range-to-go with time.

Fig. 12. Ground track.

Fig. 13. Variation of load factor with time.
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respectively. As the initial flight-path angle is higher in case
2, the minimum peak heat rate experienced by the vehicle is
higher compared to other cases as seen in Fig. 14. The
dynamic pressure variation with time is shown in Fig. 15.

5.2. Bank reversals

The philosophy behind bank reversals is to make sure
that crossrange is within the predefined limits. Whenever
crossrange exceeds the predefined tolerance, bank angle is
commanded to reverse its sign. If the predefined tolerance
is small, then the number of bank reversals are more. Sim-
ilarly, when the tolerance is large, the number of bank
reversals are less. Lesser number of bank reversals are
applicable if larger crossrange errors are allowed to build
up. Moreover, larger crossrange errors lead to large termi-
nal errors in latitude and longitude. For this reason, a tigh-
ter tolerance limit of crossrange is chosen in the simulations
to ensure that terminal conditions on latitude and longi-
tude are met. As a consequence, larger number of bank
reversals are inevitable.

To show the implication of number of bank reversals,
case 1 given in Table 1 is considered. Case 1 is simulated
with 6 and 11 bank reversals respectively. As seen in
Fig. 16, crossrange errors are less when more bank rever-
sals are present and the achieved terminal latitude and lon-
gitude are 32.42�, 65.49� respectively. The crossrange
errors are more when the number of bank reversals are less
and the achieved terminal latitude and longitude are
32.39�, 63.68� respectively. The latitude and longitude of
the destination site being 31.6� and 65.7�, the terminal
errors in latitude and longitude are larger in the case with
fewer bank reversals. Therefore, more bank reversals are
considered to reduce the crossrange and terminal errors
in latitude and longitude. The ground track for both the
cases along with great circle arc connecting the entry point
and landing-site is shown in Fig. 17.
Fig. 14. Heat rate variation with time.



Fig. 15. Variation of dynamic pressure.

Fig. 16. Variation of crossrange.

Fig. 17. Ground track in comparison with great circle.
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5.3. Sub-cases

Five sub-cases along with different load factor limits and
entry conditions are discussed in Table 7. Entry conditions
are same as the previous cases. These sub-cases are consid-
ered to show the effectiveness of the proposed schemes. The
dimension of the problem is now reduced to one as the
bank angle r0 is the control variable to be found, with
the nominal angle of attack profile obtained in the corre-
sponding previous cases. Sub-cases 4 and 5 are to test the
robustness of the proposed methodologies in the presence
of parametric dispersions. Uncertainties of þ25% in den-
sity, þ10% in CL;þ10% in CD and þ5% in mass of the vehi-
cle are introduced in sub-case 4. Uncertainties of �25% in
density, �10% in CL;�10% in CD and �5% in mass of the
vehicle are introduced in sub-case 5. These uncertainties are
considered according to Joshi et al. (2007) and are held
constant throughout the simulations. The bank angle pro-
files obtained in these sub-cases are shown in Fig. 18. The
bank angle r0 obtained using PIO algorithm for sub-cases
are 61:165�; 56:47�; 63:958�; 55:81�; 64:53� respectively. In
the initial phase, magnitude of bank angle decreases to
make the vehicle fly at higher altitude. Thereafter magni-
tude of bank angle increases, leading the vehicle to denser
atmosphere. This modulation of bank angle is required to
eliminate the oscillations and satisfy QEGC. Towards the
end of reentry phase, bank angle is modulated to satisfy
the load factor constraint.

The entry profile corresponding to sub-case 1 along with
the entry corridor formed by the constraint limits is shown
in Fig. 19. It is clear from Fig. 19, that the entry profile lies
within the entry corridor. It is also observed that the con-
straint on dynamic pressure is implicitly satisfied when
the vehicle flies at altitudes higher than the altitude limit
corresponding to load factor constraint limit. Therefore,
the constraint on dynamic pressure is not explicitly
considered in this paper. However, the same logic that
modulates the bank angle command using Eq. (50) can
be used whenever the dynamic pressure constraint is
violated.

It can be seen from Fig. 21, that the load factor con-
straints in sub-cases are satisfied. The altitude profile of
entry trajectory doesn’t exhibit oscillations as seen in
Fig. 20. An acceptable maximum terminal altitude
error of about 1.5 km is observed in some of these
sub-cases.
Table 7
Details regarding initial conditions and load factor limits for sub-cases.

Sub-cases Initial conditions amax

1 Case 1 1:4 g
2 Case 2 1:55 g
3 Case 3 1:75 g
4 Case 2 1:65 g
5 Case 3 1:65 g



Fig. 18. Bank angle profile for various subcases. Fig. 21. Variation of load factor for different subcases.

Fig. 19. Entry profile within the corridor.

Fig. 20. Variation of altitude with time for subcases.

Table 8
Dispersions in parameters for Case 2.

Cases dCL dCD dq dm

S1 +10% �10% +25% +5%
S2 �10% +10% +25% +5%
S3 �10% �10% +25% +5%
S4 +10% �10% �25% �5%
S5 �10% +10% �25% �5%
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5.4. Sub-cases to test the robustness

Further, the following cases in Table 8 are considered to
show the robustness of the proposed strategies towards
parameter dispersions. Initial conditions for Case 2 given
in Table 1 are considered and dispersions in coefficient of
drag, lift, atmospheric density and mass are introduced.
The angle of attack profile obtained from case 2 is consid-
ered as nominal control profile and bank angle r0 is
obtained using PIO algorithm to minimize objective func-
tion given in Eq. (26). Load factor constraint is the same
as that of case 2. The considered parametric dispersion
ranges are in accordance with Joshi et al. (2007).

In the presence of the above parametric dispersions, the
proposed scheme has eliminated the oscillations in the alti-
tude profile as shown in Fig. 22. The entry trajectory has
also satisfied the load factor constraint accurately in all
the cases as seen in Fig. 23. The bank angle profile obtained
using PIO algorithm follows same trend as the previous
cases. The angle of attack profile is same as that of the case
2. The presence of parametric dispersions has resulted in
terminal altitude errors of 1.3 km, 0.3 km, 0.7 km,
1.2 km, and 1.5 km in cases S1, S2, S3, S4 and S5 respec-
tively. These terminal errors are within the acceptable tol-
erance limits. The terminal errors in velocities and range-
to-go are very small. The dispersions in final positions
around the landing site in all the cases and subcases consid-
ered so far are shown in Fig. 24. The achieved terminal
positions are within the allowable tolerance limit.

5.5. Cases to test the applicability

The applicability of proposed strategies that eliminate
entry trajectory oscillations and satisfy load factor con-
straint is tested by considering 5 cases with different latitude



Fig. 22. Variation of altitude under parameter dispersions.

Fig. 23. Variation of load factor under parameter dispersions.

Fig. 24. Final dispersions around the landing site.
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and longitude of entry interface and different destinations.
Entry conditions in altitude, velocity, flight-path angle are
same as case 2 given in Table 1. Desired terminal conditions
in altitude, range-to-go, and velocity are same as given in
Table 2. The details of entry conditions and destinations
are given in Table 9.

The control variables are bank angle and angle of attack
that are found using PIO algorithm. The objective function
is given in Eq. (25). The bank angle profiles corresponding
to each case is shown in Fig. 25. The same trend in bank
Table 9
Latitude and longitude at the entry interface and destination.

Cases h0 (deg) /0 (deg) w0 (deg) s0 (km) h� (deg) /� (deg)

1 �72.42 38.99 37 11,112 65.7 31.6
2 180 35 90 10,206 265 �10
3 0 50 �10 11,009 �165 30
4 0 50 120 13,303 90 �40
5 0 50 60 12,735 130 0

Fig. 25. Bank angle profiles for different cases.

Fig. 26. Angle of attack variation with time.



Fig. 27. Ground track for different cases.

Fig. 28. Altitude profiles.

Fig. 29. Variation of velocity.

Fig. 30. Variation of load factor.
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angle is observed to satisfy QEGC and load factor con-
straint. The angle of attack profile is given in Fig. 26.
The ground track of these cases is shown in Fig. 27. It is
seen that the entry trajectory satisfies the required terminal
range-to-go, altitude, and velocity. The altitude profile is
shown in Fig. 28. It is clear that the vehicle satisfies QEGC.
The velocity and load factor variations are given in Figs. 29
and 30 respectively. Load factor constraint is satisfied in all
the 5 cases. It can be concluded that the proposed method-
ology for satisfying QEGC and load factor constraints as
part of PIO algorithm is applicable to various re-entry
missions.
6. Conclusion

In this paper, the entry trajectory optimization problem
is solved using PIO algorithm to obtain the control profiles
that minimize the peak heat rate, satisfy terminal condi-
tions, equilibrium glide condition and various load factor
constraints. Three cases with slightly dispersed initial entry
conditions and parameter uncertainties are considered to
show the robustness of the proposed schemes. To ensure
applicability of the proposed schemes, 5 cases with different
entry locations and destinations are presented. The entry
trajectory derived from the control profiles obtained using
PIO algorithm has minimized the peak heat rate experi-
enced by the vehicle in the initial descent phase and has sat-
isfied the terminal error constraints accurately. In these
cases where the dimension of the problem is three, PIO
algorithm has converged in less number of iterations com-
pared to PSO algorithm. The angle of attack profile
obtained in these cases suggest that the high angle of attack
is required at higher Mach numbers to minimize the peak
heat rate and subsequently after reaching a particular
Mach number its magnitude should slowly decrease to sat-
isfy the desired terminal altitude. This angle of attack pro-
file is considered to be the nominal angle of attack profile
for the remaining sub-cases, where bank angle alone is
modulated to satisfy the desired load factor constraint.
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The proposed schemes for incorporating QEGC and load
factor constraints are very simple. They utilize the slope
of altitude limits of path constraints in the altitude-
velocity space and from the simulation results it is seen that
the proposed methodology has successfully constrained
load factor to 1:4 g; 1:55 g and 1:75 g in three different
sub-cases. The simulation results of all the cases have satis-
fied QEGC, path constraints, and terminal conditions.
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