
Aerospace Science and Technology 39 (2014) 352–360
Contents lists available at ScienceDirect

Aerospace Science and Technology

www.elsevier.com/locate/aescte

Target detection approach for UAVs via improved Pigeon-inspired 

Optimization and Edge Potential Function

Cong Li, Haibin Duan ∗

State Key Laboratory of Virtual Reality Technology and Systems, School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing 
100191, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 June 2014
Received in revised form 3 September 2014
Accepted 18 October 2014
Available online 22 October 2014

Keywords:
Unmanned Aerial Vehicles (UAVs)
Pigeon-inspired Optimization (PIO)
Edge Potential Function (EPF)
Simulated Annealing (SA)
Target detection

In this paper, the hybrid model of Edge Potential Function (EPF) and Simulated Annealing Pigeon-
inspired Optimization (SAPIO) algorithm is proposed to accomplish the target detection task for 
Unmanned Aerial Vehicles (UAVs) at low altitude. EPF can be calculated from the edge map of the 
original image and provide a kind of attractive pattern for the given target, which is conventionally 
exploited by the optimization algorithms. Pigeon-inspired Optimization (PIO) is a novel bio-inspired 
computation algorithm, which was inspired from the homing characteristics of pigeons. In this paper, 
the simulated annealing mechanism is adopted in our SAPIO algorithm for maximizing the value of EPF. 
A series of comparative experiments with standard Genetic Algorithm (GA), Particle Swarm Optimization 
(PSO), Artificial Bee Colony Optimization (ABC) and PIO algorithms demonstrate the robustness and 
effectiveness of our SAPIO algorithm. Meanwhile, the proposed approach can guarantee accurate target 
matching.

© 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

Compared with manned aircraft, Unmanned Aerial Vehicles 
(UAVs) are affordable and convenient for high-risk missions. To-
day, UAV has been exploited to perform special missions carrying 
some important equipment such as GPS, optic camera and vari-
ous sensors [21]. While performing specific tasks, the UAV is an 
efficient tool because of its superior maneuverability and strong 
viability [14]. Furthermore, due to the rapid development of artifi-
cial intelligence technology, the UAV technology plays a vital role 
in the technology field of the nation and is essential for improving 
the security of the society [7,8].

As image sensors have become more and more advanced, it has 
become imperative to design a satisfying target recognition system 
for UAVs in order to achieve autonomous reconnaissance and de-
tection. The target recognition and detection method for UAVs has 
been investigated quite intensively in recent years. Ding et al. [5]
used the template matching method to recognize and track run-
way in the image sequences. Deng and Duan [4] proposed a novel 
biologically inspired model via improved artificial bee colony and 
visual attention to perform edge detection. Niu et al. [16] exploit 
target regions in DWT domain to perform the infrared and visible 
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image fusion, which can make UAV realize environment and per-
form detection tasks efficiently. Meanwhile, shape representation 
and matching methods such as Hausdorff distance matching [9]
and Charmfer matching [2] are key points in all sorts of ways, and 
have been extensively adopted for target detection and recognition 
problems [22].

Energy Potential Function (EPF), firstly proposed by Dao et al., is
a novel approach for the edge-based detection in digital images [3]. 
Similar with the potential generated by the electrostatic field, EPF 
is exploited to model the potential generated by edge structures 
of the image. However, EPF is a multi-dimensional and complex 
function, which is hard to optimize.

In recent years, Evolutionary Algorithms (EAs) including Particle 
Swarm Optimization (PSO) [17], Artificial Bee Colony Optimization 
(ABC) [11], and Genetic Algorithm (GA) [10] have become very 
popular in the optimization community and successfully applied 
to a wide range of problems. Mirghasemi et al. [15] exploited the 
combination of the PSO and FCM to solve the sea target detec-
tion problem. Wang and Duan utilized the improved version of 
biogeography-based optimization (BBO) for unmanned helicopter 
formation [20,18]. Tao et al. used ant colony optimization algo-
rithm and fuzzy entropy for object segmentation [19].

Pigeon-inspired Optimization (PIO) algorithm is a novel swarm 
intelligence optimization algorithm, which was firstly invented by 
Duan in 2014 [6]. Motivated by the homing characteristics of pi-
geons, two operators including map and compass operator and 
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landmark operator have been designed. PIO algorithm has previ-
ously proven itself as a worthy competitor to its better known 
rivals [6]. However, the basic PIO runs into local optima easily be-
cause of its fast convergence. In this study, the simulated annealing 
[12,1] mechanism is exploited for the generation of the new in-
dividual to avoid the local optima. Finally, a novel variant of PIO 
algorithm, named Simulated Annealing pigeon-inspired optimiza-
tion optimized (SAPIO), is proposed here.

In this study, the hybrid model of EPF and SAPIO is proposed to 
accomplish the target detection task for UAVs. The EPF is utilized 
to provide a pattern of attractive field for the given contour, which 
is exploited by SAPIO algorithm to optimize the matching proce-
dure. In our work, the EPF is maximized when the given sketch 
translates, reorients and scales itself to obtain the accurate match. 
Thus, in this way, the best matching can be obtained.

The remainder of this paper is organized as follows. The main 
concepts of EPF are introduced in Section 2, while Section 3 de-
scribes the basic PIO algorithm and our improved version, respec-
tively. In Section 4, a series of comparative experiments are con-
ducted. Our concluding remarks are contained in the final section.

2. Overview of EPF

EPF is a newly-developed shape-matching approach which was 
proposed by Dao et al. Similar with the electric potential generated 
by the electrostatic field, EPF is exploited to model the potential 
generated by edge structures of the image. The electric potential 
created by a set of point charges Q i in a homogeneous background, 
at a distance r from charges, can be shown to be:

v(
⇀
r) = 1

4πε

∑
i

Q i

|⇀r − ⇀
ri |

(1)

where ε is the permittivity of the medium. ⇀r and ⇀
ri are the obser-

vation point and charge locations, respectively.
In the EPF model, the ith edge of the image at coordinates 

(xi, yi) is equivalent to the charge point Q eq(xi, yi). The edge po-
tential produced by a set of edge points Q eq(xi, yi) can be pre-
sented as follows [3]:
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where εeq is the permittivity of the image to be matched. Three 
kinds of EPF models were proposed by Dao et al., and the Win-
dowed EPF (WEPF) [3] is utilized in this study to reduce the com-
putational complexity, and improve the robustness of the method 
as well. WEPF simply lies in defining a window beyond which the 
edge points are ignored. Thus, the definition of the WEPF is writ-
ten as [3]:

EPF(x, y) = Q

4πεeq
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2 + (y − yi)
2

(3)

where w is the window chosen; εeq is the constant permittivity of 
the image windowed; Q is equal to the charge of each edge points. 
In this way, the edge potential can be easily calculated from the 
edge map extracted from the original image. Moreover, the Sobel 
edge extractor is applied in our study.

In order to determine whether the target image contains the 
object whose shape is similar to the sketch for a given position, 
rotation and scale factor, the matching function named EPF energy 
is defined as [3]:

f (ck) = 1
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n , yck
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)}
(4)
n k =1
Eq. (4) defines the average value of the EPF energy, which rep-
resents the degree of the sketch attracted by the target image. 
Additionally, the EPF is maximized when the given sketch trans-
lates, reorients and scales itself to obtain the accurate match. How-
ever, EPF is a multi-dimensional and complicated function, which 
is hard to optimize. Therefore, it is significant to select the appro-
priate optimization algorithm in this study.

3. PIO algorithm and its improved version

PIO algorithm is firstly proposed by Duan and Qiao [6] and de-
rived from the homing behavior of pigeons. As presented in [6], 
the rudimentary process of the basic PIO can be described as fol-
lows:

First, each pigeon Xi with the initial velocity V i is randomly ini-
tialized within the solution space, denoted as Xi = [xi1, xi2, ..., xim], 
where i is the ith pigeon, and m is the dimension of the problem 
to be solved. The rate of the position change (velocity) for pigeon i
is represented as V i = [vi1,vi2, ..., vim]. In this study, the rotation, 
translation (along the horizontal, tx , and vertical, t y , directions, re-
spectively) and scaling of the given sketch are parameters to be 
optimized. Subsequently, the transformed sketch is fitted within 
the potential field to compute the matching index, namely, the fit-
ness value of the pigeon.

In the individual updating process, two operators are designed 
for simulating the homing characteristics of pigeons, which are 
the map and compass operator and the landmark operator, respec-
tively. At the initial moment, suppose the best position of all the 
pigeons is guaranteed by using map and compass operator, thus 
each pigeon adjusts its course following the best position [6]. In 
this map and compass operator, the pigeons are manipulated by 
the following equations:

V i(t) = V i(t − 1) · e−Rt + rand · (Xg − Xi(t − 1)
)

(5)

Xi(t) = Xi(t − 1) + V i(t − 1) (6)

where R is the map and compass factor which can slow the veloc-
ity of pigeons down as the iteration goes, rand denotes a random 
number within [0, 1], and Xg signifies the best position of all the 
pigeons.

In the landmark operator, suppose that pigeons fly for a certain 
amount of time but are still far from the destination, which rely 
on the landmark neighboring [6]. Furthermore, it supposes that pi-
geons would fly straight to the landmarks where they are familiar, 
and others would follow those that are familiar to the landmarks. 
Thus, in Duan’s model, the center of all pigeons is their destination 
in the tth iteration, which can be written as [6]:

Xc(t) =
∑

Np Xi(t) ·fitness(Xi(t))∑
fitness(Xi(t))

(7)

where Np is the number of pigeons in the tth iteration, which is 
halved in the process above. Specifically, half of the pigeons away 
from the landmark will follow the other half close to the land-
mark, which also signifies that two pigeons may be at the same 
position. In this landmark operator, the pigeons are manipulated 
by the following equations [6]:

Xi(t) = Xi(t − 1) + rand · (Xc(t) − Xi(t − 1)
)

(8)

PIO algorithm has been proven to be robust and reliable when it 
is applied to solve air robot path planning problem [6]. However, 
when we deeply think about the PIO process above, the basic PIO 
algorithm has some drawbacks that limit its further application.

In the model of the basic PIO, the landmark operator of the 
original PIO is conducted in the last few generations. However, the 
algorithm could be already convergent thus the landmark operator 
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Fig. 1. Detailed flow chart of SAPIO.
Table 1
Set of parameters for SAPIO algorithm.

Parameter Description Value

n Number of pigeons 200
Ncmax Maximum times of iteration 200
R The map and compass operator 0.2
D Dimension of the search problem 2
μ The mean of the Gaussian function 0
σ The variance of the Gaussian function 1
k The slope of the log sig() functions 20
T The initial temperature 1000
C The temperature decay coefficient 0.5

could not work. In our model, a probability Pconduct is exploited, 
which is defined as:

Pconduct = log sig

(
Ncmax/2 − t

)
(9)
k

where log sig() denotes a logarithmic sigmoid transfer function, 
Ncmax is the maximum iteration number, t is the current itera-
tion number, and k is changing for the slope of log sig() function, 
which is set as 20 in this study. In each iteration, a random num-
ber within [0, 1] is generated to be compared with the Pconduct . If 
the random number is less than the Pconduct , the map and compass 
operator is conducted. Else, the landmark operator is carried out. 
Moreover, while conducting the landmark operator, the number of 
pigeons is reduced by ninety percent in the SAPIO. Since the value 
of the Pconduct decreases from 1 to 0 nonlinearly, there is a higher 
probability to perform the map and compass operator at the initial 
moment. Then, the value of the Pconduct get smaller as the itera-
tion goes, leading to a higher probability to conduct the landmark 
operator.

As the search behavior of pigeons only use the best position 
of all the pigeons, although performed with a fast convergence, it 
seems easy to get into local optima. In order to avoid the local 
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Fig. 2. Experiments of case 1. (a) Original image and the target sketch; (b) The energy potential distribution of the original image; (c) Comparative evolution curves of the 
mean value of the objective function; (d) Comparative evolution curves of the best value of the objective function; (e) Comparative results of target detection and matching 

using GA, PSO, ABC, PIO, SAPIO, respectively.
Table 2
The comparative results of GA, PSO, ABC, PIO and SAPIO for case 1 in 10 runs.

Algorithm Best fitness Best parameter Mean

GA 13.5656 (132,224,267,1.2) 10.9862
PSO 16.8679 (119,225,286,1.3) 13.9812
ABC 16.8679 (119,225,286,1.3) 15.4111
PIO 16.8679 (119,225,286,1.3) 14.5277
SAPIO 16.8679 (119,225,286,1.3) 15.8120

Table 3
The comparative results of GA, ABC, PSO PIO and SAPIO for case 2 in 10 runs.

Algorithm Best fitness Best parameter Mean

GA 11.3785 (6,224,315,1.5) 8.9066
PSO 15.8354 (4,224,315,1.3) 8.9721
ABC 15.8354 (4,224,315,1.3) 9.5363
PIO 15.8354 (4,224,315,1.3) 9.2387
SAPIO 15.8354 (4,224,315,1.3) 11.8061

optima with higher efficiency, the Gaussian factor and Simulated 
Annealing (SA) mechanism are exploited to improve the perfor-
mance of the basic PIO.

SA was firstly proposed in the 1980s to solve the combination 
optimization problems [12]. In our model, the Gaussian distur-
bance is added to the newly-generated pigeons, enhancing its local 
optimization ability. In addition, as iteration proceeds, the Gaus-
sian factor is supposed to apply a small disturbance with a higher 
probability. Thus, individuals added Gaussian disturbance can be 
expressed as:

Xig(t) = Xi(t) + log sig

(
Ncmax/2 − t

k

)
N(μ,σ ) (10)

where log sig() denotes a logarithmic sigmoid transfer function, 
which decreases the amplitude of the Gaussian disturbance as the 
iteration proceeds.

In the model of the SA, the worse individual is reserved with 
the probability Pr . In this study, suppose that the difference be-
tween the fitness of the individual added Gaussian disturbance Xig
and the old one Xi is � f , and the EPF based matching is the 
maxim optimization problem, then the probability Pr is defined 
as [12]:

Pr = exp(� f /T ) (11)

where T is the annealing temperature, which decreases as the it-
eration goes. In case that the initial temperature is high enough 
and the annealing rate is low, the improved algorithm contributes 
to the jumping out of the local optima.

The implementation procedure of our SAPIO optimized EPF can 
be described as follows:
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Fig. 3. Experiments of case 2. (a) Original image and the target sketch; (b) The energy potential distribution of the original image; (c) Comparative evolution curves of the 
mean value of the objective function; (d) Comparative evolution curves of the best value of the objective function; (e) Comparative results of target detection and matching 
using GA, PSO, ABC, PIO, SAPIO, respectively.
Step 1: Image pre-processing. Filter the noise of the matched 
image, and then extract the edge map using the Sobel operator.

Step 2: Calculate the edge potential distribution of the matched 
image according to Eq. (3).

Step 3: Initialize parameters. Initialize parameters of SAPIO al-
gorithm, such as the number of pigeons n, the solution dimension 
space D , the maxim number of iteration Ncmax and the initial an-
nealing temperature and so on.

Step 4: Evaluate the fitness of pigeons. The rotation, translation 
and scaling of the given sketch are initialized in the step 3. Subse-
quently, the transformed sketch is fitted within the potential field 
according to Eq. (4) to compute the matching index, namely, the 
fitness value of the pigeon.

Step 5: Select the operator to be conducted. Compare with the 
given probability Pconduct , if a random value between 0 and 1 is 
smaller, then perform the map and compass operator. Otherwise, 
conduct the landmark operator.

Step 6: Update the pigeons. If the map and compass operator 
is selected, the velocity and position of each pigeon is updated by 
Eqs. (5) and (6), respectively. Else, utilize Eqs. (7) and (8) to update 
the individual.

Step 7: Add Gaussian disturbance. Add the Gaussian disturbance 
to the newly-generated individuals according to Eq. (10).

Step 8: Compare the fitness of pigeons before and after Gaus-
sian disturbance.
a) If the individual added Gaussian disturbance is better, reserve 
the better individual.

b) If the individual added Gaussian disturbance is worse, and 
then calculate the difference of them, and determine the probabil-
ity Pr according to Eq. (11). Subsequently, a random value between 
0 and 1 is generated to be compared with Pr . If rand < Pr , reserve 
the worse individual.

Step 9: Conduct the temperature annealing operation.
Step 10: If n pigeons have been generated, go to step 11. Other-

wise, go to step 5.
Step 11: Terminate whether the current number of iterations 

Nc reaches the Ncmax. Otherwise, go to step 5.
The flow chart of the SAPIO optimized EPF is shown in Fig. 1.

4. Experimental results and analysis

In order to investigate the feasibility and effectiveness of the 
hybrid model in this work, a series of experiments are conducted 
for four different cases. As presented in Ref. [3], Dao et al. com-
pared the GA-EPF model with the optimized HD and CM tech-
niques, and WEPF is the only method to achieve a correct matching 
in some cases. In addition, SAPIO algorithm proposed in this pa-
per was further compared with other algorithms, i.e., the basic GA, 
PSO, ABC and PIO. In this study, the control parameters of PIO and 
SAPIO are shown in Table 1, and the parameters for GA and ABC 



C. Li, H. Duan / Aerospace Science and Technology 39 (2014) 352–360 357
Fig. 4. Experiments of case 3. (a) Original image and the target sketch; (b) The energy potential distribution of the original image; (c) Comparative evolution curves of the 
mean value of the objective function; (d) Comparative evolution curves of the best value of the objective function; (e) Comparative results of target detection and matching 
using GA, PSO, ABC, PIO, SAPIO, respectively.
are the same as those in [22]. For SAPIO, the initial temperature is 
set as 1000 by experimentally. All the pictures used in this paper 
originate from the Google earth.

The task of the first case is to find the wharf with the specified 
shape in the original image (Fig. 2(a)). The comparative results of 
GA, PSO, ABC, PIO and SAPIO for case 1 in 10 runs are presented 
in Table 2. Additionally, all the following experiments were im-
plemented on a PC with 8 GB RAM using Windows 7 and were 
encoded in MATLAB 2013b for 64-bit.

From Table 2, it is natural to conclude that the SAPIO outper-
forms GA, PSO, ABC and PIO obviously, which has the highest mean 
value in 10 runs among all the algorithms. It should be further 
noted that GA runs into local optima easily and is not suitable for 
this case. Moreover, the best matching parameters for SAPIO, PIO, 
PSO and ABC are the same.

To further compare the SAPIO with other algorithms, the evolu-
tion curves of the function’s mean value in independently 10 runs 
for GA, PSO, ABC, PIO and SAPIO are shown in Fig. 2(c) and the 
best curves of those are compared in Fig. 2(d), respectively. As 
clearly indicated in Fig. 2(c), PIO has a faster convergence speed 
compared with the SAPIO algorithm. However, due to the simu-
lated annealing mechanism, it is obvious that SAPIO is more sta-
ble compared with the basic PIO from the curve. Moreover, the 
SAPIO algorithm also converges quickly compared with the ABC 
algorithm, which indicates it can search the better solution with 
higher efficiency. Furthermore, it should be noted that GA has the 
poor performance on case 1. Finally, the satisfactory detection and 
matching result can be obtained using our method as shown in 
Fig. 2(e).

Additionally, other experiments are conducted in this study 
to demonstrate the robustness and effectiveness of our proposed 
method. Fig. 3, Fig. 4, and Fig. 5 are target detection results of 
case 2, case 3 and case 4, respectively (see Tables 3, 4 and 5). 
EPF is multi-dimensional function, and it will generate a vast of 
local optima when running on clutter background. In that case, 
matching processes can be stuck forever at one local optima with 
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Fig. 5. Experiments of case 4. (a) Original image and the target sketch; (b) The energy potential distribution of the original image; (c) Comparative evolution curves of the 
mean value of the objective function; (d) Comparative evolution curves of the best value of the objective function; (e) Comparative results of target detection and matching 
using GA, PSO, ABC, PIO, SAPIO, respectively.
Table 4
The comparative results of GA, PSO, ABC, PIO and SAPIO for case 3 in 10 runs.

Algorithm Best fitness Best parameter Mean

GA 8.1583 (256,25,129,1) 7.7757
PSO 12.2295 (261,30,315,1) 9.0947
ABC 11.9697 (275,24,315,1.1) 9.0907
PIO 12.2295 (261,30,315,1) 9.2084
SAPIO 12.5605 (258,25,315,1.1) 9.9201

Table 5
The comparative results of GA, PSO, ABC, PIO and SAPIO for case 4 in 10 runs.

Algorithm Best fitness Best parameter Mean

GA 7.9405 (7,17,165,1) 6.8155
PSO 11.6076 (6,4,345,1) 8.6832
ABC 11.4713 (7,3,346,1) 10.5777
PIO 10.9333 (5,1,345,1) 9.2051
SAPIO 11.8576 (6,3,345,1) 10.7820

high energy. In order to evaluate the performance of the EPF-SAPIO 
in clutter background, the original image in case 4 is added with 
Gaussian noise and the target is occluded partly. From Figs. 3, 4
and 5, it is clear that SAPIO can find the better solution with 
higher efficiency, though the convergence speed is slower than the 
original PIO. In addition, the comparative curves show the simu-
lated annealing mechanism can help PIO to escape from possible 
local entrapment and obtain satisfactory tradeoff between explo-
ration ability and exploitation ability. Moreover, in the case 4, 
even when the target is in the clutter background and occluded 
partly, the EPF-SAPIO and EPF-ABC models can detect the target 
efficiently. However, the convergence speed of the ABC algorithm 
is much slower than that of the SAPIO algorithm. As a result, the 
given sketch can translate, reorient and scale itself to obtain the 
accurate match by using our method even in the clutter back-
ground.

Furthermore, we compare our method with the fast directional 
chamfer matching method [13]. Fast directional chamfer match-
ing approach not only improve the accuracy of matching but also 
combine the edge orientation information, which was introduced 
by Liu in 2010 [13]. The detection results of Liu’s method for the 
above four cases are shown in Fig. 6, and the target will be circled 
with the green square if it could be detected.

It isobvious that Liu’s model even cannot detect the target when 
the given sketch translates, reorients and scales itself. Finally, when 
the given sketch dose not reorient itself, the results of Liu’s model 
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Fig. 6. Target detection results of the fast directional chamfer matching approach (a) case 1; (b) case 2; (c) case 3; (d) case 4. (For interpretation of the colors in this figure, 
the reader is referred to the web version of this article.)

Fig. 7. Target detection results when the given sketch does not reorient itself (a) case 1; (b) case 2; (c) case 3; (d) case 4.

Table 6
The comparative computational time for 4 cases (in seconds).

Algorithm Case 1 Case 2 Case 3 Case 4
Sample (380 ∗ 234) Sample (360 ∗ 175) Sample (360 ∗ 352) Sample (222 ∗ 161)
Target (106 ∗ 94) Target (127 ∗ 127) Target (147 ∗ 147) Target (177 ∗ 105)

Time to run algorithm/iteration
GA 3.5787 4.9887 6.3198 5.9228
PSO 1.6883 1.9065 2.1558 1.9785
ABC 1.817 2.3415 2.5872 2.5792
PIO 2.0762 2.6531 3.3673 3.0815
SAPIO 2.9347 3.7716 4.1388 3.9765
are presented in Fig. 7. In Fig. 7, only the ship can be detected 
correctly. Therefore, our proposed method outperforms the fast di-
rectional chamfer matching method obviously.

Because UAV always requires real-time processing, and evolu-
tionary algorithms which based on iterations are time consuming, 
the computational complexity of the proposed method according 
to the size of image is analyzed in this paper. Table 6 displays the 
computational time of the proposed methods relevant to the above 
cases.

From Table 6, it is obvious to conclude that the time to run al-
gorithm is more relevant to the size of the target image, whereas 
the size of the sample image has a slight effect on the computa-
tional time. Although the computational complexity is higher than 
the original PIO algorithm due to the simulated annealing oper-
ation, SA can support PIO to jump out of local optima and the 
convergence speed of SAPIO is fast. Therefore, it is clear that our 
proposed SAPIO optimized EPF approach is effective and robust in 
solving the target detection problem for aircraft at low altitude.

5. Concluding remarks

In this paper, a hybrid biological model of SAPIO algorithm and 
EPF is proposed to accomplish the target detection and match-
ing task for UAVs. EPF can be calculated from the edge map of 
the original image and provide a kind of attractive pattern for the 
given target, which is conventionally exploited by SAPIO. The com-
parative experiments are conducted among the GA, PSO, ABC, PIO 
and SAPIO algorithm. Moreover, the simulation results show that 
the SAPIO clearly improves the performance of the basic PIO owing 
to the simulated annealing mechanism. Furthermore, the experi-
mental comparison also shows the effectiveness and stability of 
our method over other algorithms, which provides a more effec-
tive way for more complicated UAVs target detection tasks.
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