Fractional-order controllers optimized via heterogeneous comprehensive learning pigeon-inspired optimization for autonomous aerial refueling hose–drogue system

Yongbin Sun, Haibin Duan *, Ning Xian

State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100083, China

A R T I C L E I N F O

Article history:
Received 4 February 2018
Received in revised form 20 July 2018
Accepted 23 July 2018
Available online xxxx

Keywords:
Autonomous aerial refueling (AAR)
Hose–drogue system (HDS)
Controlled drogue
Optimized fractional-order controller (FOC)
Heterogeneous comprehensive learning pigeon-inspired optimization (HCLPIO)

A B S T R A C T

Dynamic modeling and control system design for the hose–drogue system (HDS) in the docking stage of autonomous aerial refueling (AAR) are investigated in this paper. The dynamics and kinematics of hose are modeled via a finite-segment multi-body method, which describes the hose–drogue assembly as a link-connected system. A controllable drogue is connected to the hose for automatically stabilizing the drogue’s relative position under the influences of tanker trailing vortex, receiver bow wave, atmospheric turbulence, gust, and wind shear. Thus, a drogue position control law based on fractional-order method is designed to resist the multi-wind disturbances. Noting that it is difficult to tune the parameters of fractional-order controller (FOC), a modified pigeon-inspired optimization (PIO), the hybrid of heterogeneous comprehensive learning strategy and PIO (HCLPIO), is carried out to optimize the parameters of FOC. The simulation results show that the proposed optimized fractional-order feedback controllers effectively stabilize the controllable drogue to swing within an acceptable range.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Aerial refueling has been regarded as an effective method of increasing the endurance and range limitations of aircrafts. For manned aircrafts, if the pilots are not skilled for aerial refueling, autonomous aerial refueling (AAR) [1] would commendably assist the pilots to accomplish the task. And for unmanned aerial vehicles (UAVs), if UAVs have the ability of AAR, the autonomy of UAVs [2] would be enhanced drastically, which is a developing tendency of UAVs. Thus, AAR has drawn substantial interest from research institutions inspired by an advanced integration of UAVs into current combat missions [3,4]. Basically, three approaches are practiced for aerial refueling: the boom-receptacle refueling (BRR) [5,6], which the tanker extends the retractable boom to the fuel receptacle of receiver; the probe-and-drogue refueling (PDR) [5,6], which the tanker drags a flexible hose with a drogue and the receiver aims at inserting the probe into the drogue; the boom drogue adapter units refueling [6,7], which is the combination of the above two refueling approaches by attaching the drogue adapter units to the boom. Compared to the other two approaches, PDR outstands in certain aspects: in the processes of PDR, the receiver need not hold a strict relative position to the tanker and multiple receivers can be simultaneously refueled by a tanker equipped refueling pods. Besides, PDR is the only approach for helicopter refueling.

However, the hose–drogue assembly suffers complicated multi-wind disturbances in the processes of PDR. There always has atmospheric turbulence, gust, and wind shear in the refueling scene. Besides, the tanker and receiver respectively generate the trailing vortex and bow wave, which have different intensity concerned with the relative position of tanker and receiver. The composite multi-wind disturbances induce the hose–drogue assembly swinging dramatically, which is adverse for the accurate docking. Hence an active-control method is essential for stabilizing the drogue to swing within an acceptable range for easy and secure refueling.

To further investigate the AAR accurate docking technique, many research institutions and scholars have implemented substantial experiments and modeling analysis for the hose–drogue system (HDS). NASA Dryden Flight Research Center [8,9] gathered abundant aerodynamic data by flight tests and wind tunnel, which is obliged for modeling the dynamics of HDS. Besides, the Boeing Company [10] presented a wing-pod refueling hose model to describe the dynamic characteristics of the hose, Zhu and Meguid [11] investigated the dynamic behavior and stability of the HDS model via the finite element method with an accurate and computationally efficient curved beam element. Moreover, Ro et al. [12] modeled the dynamics of the hose–paradrogue assembly via a finite-segment approach and studied the dynamic charac-

* Corresponding author.
E-mail address: hhbduan@buaa.edu.cn (H. Duan).
https://doi.org/10.1016/j.aust.2018.07.034
1279-9638/© 2018 Elsevier Masson SAS. All rights reserved.

teristics of paraglider assembly resulting from the atmospheric turbulence and tanker maneuver. Williamson et al. [13] developed a pendulum-based hose model combined with the model of aerodynamic drogue, which could be automatically controlled and stabilized using drogue canopy manipulation under the influences of multi-wind disturbances. Wang et al. [14] investigated the dynamic modeling of the variable-length hose-drogue system and designed a sliding mode backstepping controller for hose whipping phenomenon. As mentioned above, although the analysis and models present the dynamics of HDS, the effective active-control method for hose-drogue assembly should be exploited to stabilize the drogue’s relative position in the presence of composite multi-wind disturbances.

The existing literatures mostly design the HDS controller with proportion–integration–differentiation (PID) [15]. Though the form and physical meaning of PID are explicit, the control effect would be influenced by many existing factors. The insufficient stability of PID controller for controllable drogue’s position could be caused by the atmospheric turbulence and wind shear during the docking coupling. Another method known as linear quadratic regulator (LQR) [16,17] theory is also adopted for controller design. However, the dynamic model of hose-drogue assembly is nonlinear, and many feedback control states could not be measured. Thus, in this paper, fractional-order control theory [18,19] is proposed to design the fractional-order PID (FOPID) controllers for controllable drogue, which stabilizes the three-dimensional position of drogue with accessible control states regardless of linear or nonlinear HDS model. Nevertheless, the integral and derivative orders λ, μ are introduced into FOPID controller so that the difficulty of parameter tuning is rapidly enhanced due to the five-dimensional parameters kp, ki, kd, λ, μ. The inapplicable parameters could generate non-optimal system performance, so much so that induce the dramatic swing or divergence of drogue’s position. Hence we adopt the modified evolutionary algorithm to optimize the capability of FOPID controllers for HDS and reduce the workload of designers.

Evolutionary algorithms (EAs), including genetic algorithm (GA) [20], particle swarm optimization (PSO) [21], artificial bee colony optimization (ABC) [22], and so on, have gathered considerable attention from optimization communities and have been successfully applied to a wide range of scientific research problems [23–25]. Pigeon-inspired optimization (PIO), a novel swarm intelligence optimization algorithm, was firstly proposed for path planning by Duan et al. [26]. For further applications of PIO, Li and Duan [27] accomplished the target detection task for UAVs, and Zhang et al. [28] solved the optimal formation reconfiguration problems of multiple orbital spacecrafts. Besides, Sushnigdha et al. [29] utilized the PIO to design a constrained entry trajectory of re-entry vehicles. Moreover, Zhao et al. [30] applied the PIO to generate the constrained gliding trajectory for hypersonic gliding vehicles. In this paper, to enhance the swarm populations’ diversity of PIO, heterogeneous comprehensive learning (HCL) [31] strategy would be incorporated into PIO (HCLPIO), whose swarm populations are divided into two subpopulations for exploitation and exploration.

In this paper, the link-connected dynamic model is created for the HDS to describe the system’s flexibility. The multi-wind disturbances consist of tanker trailing vortex, receiver bow wave, atmospheric turbulence, gust, and wind shear for simulating the real scene of AAR. Besides, the FOPID controllers optimized by HCLPIO are adopted to stabilize the drogue’s relative position in the presence of multi-wind disturbances, which would make a significant impact on the success of AAR docking.

The remainder of this paper is organized as follows. The models of the HDS and multi-wind disturbances are described in Section 2. Then Section 3 specifies the heterogeneous comprehensive learning PIO algorithm. In Section 4, the optimized fractional-order feed-back controllers are designed for stabilizing the drogue’s relative position. Conclusions are contained in the final section.

2. Hose–drogue system and multi-wind disturbances environment

2.1. HDS components and coordinate system definition

The HDS contains three components: the hose, the controllable drogue, and the sensors. The hose–drogue assembly is described as a link-connected system based on the finite-segment multi-body method. In this way, the hose is divided into a certain number of links connected with frictionless joints where the aerodynamic forces and mass are concentrated according to the lumped parameter method. The controllable drogue (based on the work in [13]) is regarded as a mass point, and its aerodynamic forces could be controlled via changing the opening angles of actuators. Thus, the active-control aerodynamic forces are generated by the controllable drogue to resist the multi-wind disturbances. To simplify the model of HDS, the twist, elasticity, and damping are ignored. The hose–drogue assembly configuration and coordinate system definition are illustrated in Fig. 1. As shown in Fig. 1, the dynamic model of the hose–drogue assembly is derived in the tractive point coordinate system $O_x \ X_y \ Y_z$, whose x, y, z-axes are parallel to the tanker’s trajectory coordinate $O_x \ X_y \ Y_z \ Z_p$. The inertial reference coordinate system is described as $O_x \ X_y \ Y_z \ Z_p$. The state angles of the k-th link d_k are presented as the angles θ_{k1}, θ_{k2}, respectively relative to the planes $O_x \ X_y \ Y_z$ and $O_x \ X_z \ Y_z$. The forces acting on the lumped mass m consist of hose tensions T_{k-1}, T_k, hose equivalent restoring force R_k [39], and resultant external force (the resultant force of gravity and aerodynamic forces). The controllable actuators on the drogue locate at the starboard brace (actuator 1), the port-side brace (actuator 3), the upper brace (actuator 2) aligned with the vertical, and the upper brace (actuator 4) aligned with the vertical.

2.2. Model of the HDS

The hose–drogue assembly is described as a link-connected system modeled via a finite-segment multi-body method [12,14]. To stabilize the drogue’s relative position with multi-wind disturbances, the external forces of controllable drogue should be focused on.

The resultant external force Q_{dgro} of controllable drogue can be expressed as [12]

$$ Q_{dgro} = \left(\frac{m_N}{2} + m_{dgro} \right) \mathbf{g} + D_N + D_{dgro} $$

(1)

where m_{d}, m_{dgro} respectively denote the mass of the hose’s N-th link and the drogue; D_N is the aerodynamic force of the hose’s N-th link, which can be calculated as presented in [12, 14]; D_{dgro} denotes the drag force of drogue. Besides the conventional drag force of drogue, the real active-control aerodynamic force F_{D} is merged to D_{dgro}. As shown in Fig. 1, the four cruciform actuators [13] are controlled to change the opening angles u_{act1}, u_{act2}, u_{act3}, u_{act4} of drogue’s struct-braces (i.e., the red lines shown in Fig. 1). Thus, the controllable drogue can change its own drag force equivalent to generate the additional active-control aerodynamic forces for reducing the range of motion of the drogue’s position. Specifically, according to the wind-tunnel test results [13], if decrease u_{act1} and increase u_{act3}, the drogue would generate a positive lateral force, and if decrease u_{act2} and increase u_{act4}, a positive vertical force would be generated. Therefore, D_{dgro} can be calculated as...
Fig. 1. Hose–drogue assembly configuration and coordinate system definition. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

\[D_{dro} = -\frac{1}{2} \rho \left\| V_{N,air} \right\| \left(\frac{\pi d_{dro}^2}{4} \right) c_{dro} V_{N,air} + F'_{D} \]

(2)

where \(\rho \) is the local air density; \(V_{N,air} = V_N - V_w \), \(V_N \) represents the velocity of the hose's \(N \)-th lumped mass, and \(V_w \) is the local wind velocity caused by the multi-wind disturbances; \(c_{dro} \) denotes the drag force coefficient of drogue; \(d_{dro} \) is the diameter of drogue. The expected active-control aerodynamic force for the design of controllers is presented as \(F_D = [0 \ F_s \ F_v]^T \), in which \(F_s, F_v \) are respectively the expected lateral and vertical forces generated by changing the opening angles of canopy. Considering the horizontal aerodynamic force of drogue would be changed in actual situations, the real active-control aerodynamic forces \(F'_D \), \(F'_D = [F'_h \ F'_s \ F'_v]^T \), is computed as \([13] \)

\[F'_D = -\frac{1}{2} \rho \left\| V_{N,air} \right\|^2 C_u (u_{act} - u_0) \]

(3)

where \(C_u \) represents the opening angular coefficient for active control; \(u_{act} \) is the opening angles of actuators; \(u_0 \) is the opening angles of the drogue's equilibrium state. Considering the roll angle of drogue is tiny, \(F'_s, F'_v \) are respectively generated by the horizontal actuators (i.e., act1 and act3 in Fig. 1) and the vertical actuators (i.e., act2 and act4 in Fig. 1). If the horizontal or vertical actuators change the opposite angle, \(F'_h \) is approximate to zero since the opposite effect of the actuators in a line.

2.3. Multi-wind disturbances environment

The states of the hose–drogue assembly can be easily affected by the multi-wind disturbances, including the tanker trailing vortex, receiver bow wave, atmospheric turbulence, gust, and wind shear.

2.3.1. Tanker trailing vortex

Due to the high precision and easy implementation for simulation, the tanker trailing vortex is built as Hallock–Burnham model \([32]\) which is experimented via flight tests. The wind velocity of Hallock–Burnham model is expressed as \([V_{vorx}, V_{vory}, V_{vorz}]\), where the component \(V_{vorz} \) is approximate to zero according to the property of this model. Besides, the components \(V_{vory}, V_{vorz} \) are computed as

\[V_{vory} = \frac{I_0}{2\pi} \left[\frac{z_{rel}}{(y_{rel} - \pi b_T/8)^2 + r_c^2 + z_{rel}^2} \right] \]

(4)

\[V_{vorz} = \frac{I_0}{2\pi} \left[\frac{y_{rel} + \pi b_T/8}{(y_{rel} + \pi b_T/8)^2 + r_c^2 + z_{rel}^2} \right] \]

(5)

where \((x_{rel}, y_{rel}, z_{rel}) \) denotes the coordinates relative to the trailing vortex coordinate system \(O_x X_y Y_z \) whose \(Y_z \) passes through the center of both trailing vortexes at wing trailing edge point to the right wingtip, \(O_x \) locates at the middle of the center of both trailing vortexes along \(Y_z \) and \(X_x, Z_z \) are parallel to the tanker-body coordinate system; \(I_0 \) is the initial intensity of trailing vortex, \(I_0 = 4G_T/(\pi \rho V_T b_T) \), in which \(G_T, V_T \) are respectively the gravity and velocity of tanker, \(r_c \) is the tanker’s span; \(r_c \) represents the radius of trailing vortex.

Noting that the trailing vortex tends to move down and the trailing vortex coordinate system \(O_x X_y Y_z \) has an offset \((d_x, 0, d_z)\) relative to the tanker-body coordinate system, thus the wind velocity of tanker trailing vortex should be improved. Correspondingly, the wind velocity components \(V'_{vory}, V'_{vorz} \) of the improved Hallock–Burnham model are expressed as

\[V'_{vory} = \frac{I_0}{2\pi} \left[\frac{z_{rel}}{(y_{rel} - \pi b_T/8)^2 + r_c^2 + z_{rel}^2} \right] \]

(6)

\[V'_{vorz} = \frac{I_0}{2\pi} \left[\frac{y_{rel} + \pi b_T/8}{(y_{rel} + \pi b_T/8)^2 + r_c^2 + z_{rel}^2} \right] \]

(7)
where \(x'_{rel} = x'_{r} + x_{a}, \ y'_{rel} = y'_{r} + y_{a}, \ z'_{rel} = z'_{r} + z_{a} + V_{mx}(x'_{rel}/V_{T}), \)
in which \((x'_{rel}, y'_{rel}, z'_{rel}) \) is the coordinates of one point in the
trailing vortex field relative to the tanker-body coordinate system.
and \(V_{mx} \) is the velocity of the trailing vortex moving down,
\(V_{mx} = 2\sqrt{b_{m}/(\pi b_{m}^2)} \). \(r'_{c} \) denotes the improved radius of trailing vortex,
\(r'_{c} = 0.5\sqrt{(x'_{rel}^2 + z_{a}^2)/V_{T}}. \)

2.3.2. Receiver bow wave

The dynamic motion of drogue caused by the approaching receiver
has an adverse influence on a successful refueling docking. The drogue tends to move away from the receiver as it approaches,
typically to the outward and upward directions since the effect of
bow wave up-wash. Rankine half body model [33] is implemented
to describe the bow wave, which obtains its wind velocity acting
on the lumped mass. The Rankine half body model is specified
as the superposition of averaged flow and point source flow. The streamline equation of bow wave is expressed as Eq. (8) in the
polar coordinate system.

\[
\psi = Ur \sin \theta + \frac{Q_{b}}{2\pi r}\theta
\]

where \(U \) is the velocity of averaged flow; \(Q_{b} \) denotes the intensity
of point source flow, \(Q_{b} = 2\pi Ur_{b} \), in which \(r_{b} \) is the distance
from the beginning of fuselage to the center of point source flow;
\(b_{m} = h_{max}/\pi, h_{max} \) is the maximum radius of fuselage in the width
direction; \(r \) represents the polar radius; \(\theta \) is the polar angle.

The radial velocity \(v_{r} \), and circumferential velocity \(v_{\theta} \) of bow
wave relative to the polar coordinate system can be computed as

\[
\begin{align*}
v_{r} &= \frac{1}{r} \frac{\partial \psi}{\partial \theta} = U \cos \theta + \frac{Q_{b}}{2\pi r} \\
v_{\theta} &= -\frac{\partial \psi}{\partial r} = -U \sin \theta
\end{align*}
\]

Further, the wind velocity \(v_{b\text{bow}} = v_{r} \cos \theta - v_{\theta} \sin \theta \) of bow
wave relative to the three-dimensional cartesian coordinate system is
expressed as

\[
\begin{align*}
v_{b\text{bow}} &= v_{r} \cos \theta - v_{\theta} \sin \theta \\
v_{b\text{bowx}} &= (v_{r} \sin \theta + v_{\theta} \cos \theta) \sqrt{y_{b}^2 + z_{b}^2} \\
v_{b\text{bowy}} &= (v_{r} \sin \theta + v_{\theta} \cos \theta) \sqrt{y_{b}^2 + z_{b}^2} \\
v_{b\text{bowz}} &= (v_{r} \sin \theta + v_{\theta} \cos \theta) \sqrt{y_{b}^2 + z_{b}^2}
\end{align*}
\]

where \((x_{b}, y_{b}, z_{b}) \) are the coordinates relative to the bow wave
coordinate system \(O_{b}X_{b}Y_{b}Z_{b} \) whose origin \(O_{b} \) locates at the center
of point source flow, and \(x, y, z \)-axes are parallel to the receiver-
body coordinate system.

2.3.3. Other wind disturbances

Other wind disturbances exist in the AAR flowfield environment
including atmospheric turbulence, gust, and wind shear. The at-
mospheric turbulence can induce high-frequency irregular position
swinging of the drogue. The gust and wind shear correspondingly
produce momentary position changing of the drogue.

We adopt the atmospheric turbulence model as the continuous
Dryden turbulence [34], which is prescribed in MIL-F-8785C.
Additionally, the gust and wind shear are implemented as a step
function.

3. Heterogeneous comprehensive learning PIO algorithm

3.1. Basic PIO algorithm

Inspired by the homing pigeons, Duan and Qiao [26] firstly put forward the basic PIO algorithm, which requires personal and

...
where d is the number of dimension; the exemplar $f_i(d) = [f_i(1), f_i(2), \ldots, f_i(D)]$ decides whether the i-th pigeon follows its own or another’s p_{best} for each dimension, which is determined according to the learning probability P_c values. The P_c^d value of the i-th pigeon’s d-th dimension is computed as [31]

$$P_c^d = a_p + b_p \cdot \frac{\exp((10(i-1)/(N_p-1)) - 1)}{\exp(10) - 1} (18)$$

where N_p denotes the population size of pigeons; a_p, b_p are the learning probability coefficient. If $\text{rand}_d^d < P_c^d$, the i-th pigeon will learn from another pigeon’s p_{best} for the d-th dimension. The exemplar is determined with the tournament selection procedure in which two pigeons are randomly selected from the exploitation-subpopulation and the corresponding dimension will learn from the pigeon with better fitness. Otherwise if $\text{rand}_d^d > P_c^d$, the d-th dimension of the i-th pigeon will learn from its own p_{best}.

The i-th pigeon’s new velocity of the exploitation-subpopulation for each dimension at the t-th iteration is updated as

$$V_i^d(t) = V_i^d(t-1) \cdot e^{-Rt} + \text{rand}_d^d \cdot (p_{best}^d - X_i^d(t-1)) (19)$$

(2) The modified landmark operator is the same as the basic landmark operator.

4. Optimized fractional-order feedback controllers

4.1. Realization of fractional-order calculus operator

Compared with the integral-order PID, the fractional-order $PI^\mu D^\nu$ extends the order of calculus operator from integer to fraction, even complex number, which may provide better disturbance rejection performance, tracking characteristics, and robustness [35] for systems. Among all the realizations of fractional-order calculus operator s^α, the modified Oustaloup’s method [36] can be adopted to approximate the operator for obtaining the transfer functions of controllers. The modified Oustaloup’s method enhances the fitting effect of fitting frequency band endpoint by the Taylor series expansion of the basic Oustaloup’s equation [37] in the fitting frequency band $[\omega_1, \omega_2]$, which is expressed as [36]

$$s^\alpha \approx \left(\frac{d_f \omega_2}{b_f}\right)^\alpha \left(d_f^2 (1-\alpha)s^2 + b_f \omega_2 s + d_f \alpha\right) \prod_{k=-M}^{M} \frac{s + \omega_k}{s + \omega_{k+1}}$$

where α is the order of calculus operator; $2M + 1$ denotes the order of fitting; $\omega_k = \left(\frac{d_f \omega_2}{b_f}\right)^{2k} (2M + 1)$; b_f, d_f represent the fitting coefficients.

4.2. Optimized fractional-order controllers for HDS

The proposed optimized fractional-order $PI^\mu D^\nu$ controllers are carried out to stabilize the drogue’s relative position in the presence of composite multi-wind disturbances. As depicted in Fig. 2, the simulation system contains three parts: the hose–drogue model (Section 2), the multi-wind disturbances environment (Section 2), and the optimized controllers (Section 3 and Section 4).

First, design the FOPID controllers for the lateral and vertical actuators to obtain the expected aerodynamic forces F_s, F_v. Then, distribute the relevant actuators to change the opening angles. Specifically, two horizontal actuators change the opposite angles to generate the real lateral force F_v, and two vertical actuators for the real vertical force F_v. Finally, utilize the HCLPIO algorithm to optimize the parameters of FOPID controllers, which contributes to enhance the stability and performance of the controllers.

The implementation procedures of the HCLPIO optimized fractional-order controllers for HDS can be described as follows:

Step 1: Obtain the stabilized position of the controllable drogue. Model the HDS and add the steady wind disturbance (i.e., tanker trailing vortex) to the model. Calculate the equations of hose-drogue model until the position of drogue stabilizes.

Step 2: Initialize the parameters. Initialize parameters of HCLPIO including the number of pigeons’ swarm populations (N_p), the number of dimension for the problem (D), the number of exploitation-subpopulation (N_t), the number of exploration-subpopulation (N_e), and so on.

Step 3: Evaluate the fitness values of initial pigeons. Calculate the sum of squares of position errors for the controllable drogue to evaluate the initial parameters of $PI^\mu D^\nu$ controllers.
Step 4: Conduct the selected operator to update the pigeons. If the number of iterations \(N_c \) is less than the maximum number of map and compass operator \(N_{c1,\max} \), then conduct the modified map and compass operator. Otherwise, perform the modified landmark operator.

Step 5: Evaluate the fitness values of pigeons. Implement the processes of HDS simulation with all the wind disturbances to obtain the drogue’s position errors relative to the stabilized position, then calculate the sum of squares.

Step 6: Obtain the maximum fitness value and the best position of pigeons. According to the fitness value, select the best position of pigeons which is the optimized parameters of \(PI^\mu D^\mu \) controllers.

Step 7: Terminate if the current number of iterations \(N_c \) reaches the \(N_{c1,\max} + N_{c2,\max} \), output the results. Otherwise, go to step 4.

The detailed flow of HCLPIO for the optimized fractional-order controllers is depicted in Fig. 3.

5. Simulation results and analysis

To demonstrate the validity of our proposed optimized fractional-order controllers, extensive simulations are implemented based on the dynamic model of HDS under the influence of multi-wind disturbances. The procedures of PSO and HCLPSO are implemented as described in Lynn and Suganthan’s paper [31]. The equations of PSO are given in Appendix A. And the parameters (as applied in other works) of HDS [14], PSO [31], PIO [27], HCLPSO and HCLPIO are respectively presented in Table 1, Table 2, and other parameters for simulations are listed in Table 3. Here we make comparisons in two aspects: the conventional optimized PID controllers and our proposed optimized FOPID controllers for HDS; PSO, PIO, HCLPSO, and HCLPIO for FOPID controllers.

Case 1. Assume that the docking stage of AAR is implemented in the light turbulence from \(t = 50 \) s, and the gust is acted from \(t = 90 \) s. Suppose the tanker makes fixed straight level flight at height

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Parameters of hose–drogue system.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>(L)</td>
<td>Hose total length</td>
</tr>
<tr>
<td>(N)</td>
<td>Number of links</td>
</tr>
<tr>
<td>(m_{dro})</td>
<td>Mass of drogue</td>
</tr>
<tr>
<td>(d_{dro})</td>
<td>Diameter of drogue</td>
</tr>
<tr>
<td>(c_{dro})</td>
<td>Drag force coefficient of drogue</td>
</tr>
</tbody>
</table>

Table 2
Parameters of PSO, PIO, HCLPSO and HCLPIO.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nt</td>
<td>Number of particles</td>
<td>100</td>
<td>Nt</td>
<td>Number of pigeons</td>
<td>100</td>
</tr>
<tr>
<td>Ncmax</td>
<td>Max iteration</td>
<td>100</td>
<td>Rc</td>
<td>R the map and compass factor</td>
<td>0.2</td>
</tr>
<tr>
<td>c₁</td>
<td>Self acceleration coefficient (linearly decrease from 2.5 to 0.5)</td>
<td>2.5–0.5</td>
<td>Ncmax</td>
<td>Max iteration of two operators</td>
<td>100</td>
</tr>
<tr>
<td>c₂</td>
<td>Global acceleration coefficient (linearly increase from 0.5 to 2.5)</td>
<td>0.5–2.5</td>
<td>Nc₁max</td>
<td>Max iteration of map and compass operator</td>
<td>75</td>
</tr>
<tr>
<td>w</td>
<td>Inertia weight (linearly decrease from 0.90 to 0.2)</td>
<td>0.99–0.2</td>
<td>Nc₂max</td>
<td>Max iteration of landmark operator</td>
<td>25</td>
</tr>
<tr>
<td>Δ</td>
<td>Dimension of the search space for FOPID</td>
<td>10</td>
<td>D</td>
<td>Dimension of the search space for FOPID</td>
<td>10</td>
</tr>
<tr>
<td>Nε</td>
<td>Number of exploitation-subpopulation</td>
<td>70</td>
<td>Nε₁</td>
<td>Number of exploitation-subpopulation</td>
<td>70</td>
</tr>
<tr>
<td>Nε</td>
<td>Number of exploitation-subpopulation</td>
<td>70</td>
<td>Nε₁</td>
<td>Number of exploitation-subpopulation</td>
<td>70</td>
</tr>
<tr>
<td>εp</td>
<td>Learning probability coefficient</td>
<td>0.1</td>
<td>h_p</td>
<td>Learning probability coefficient</td>
<td>0.1</td>
</tr>
<tr>
<td>γp</td>
<td>Learning probability coefficient</td>
<td>0.25</td>
<td>γ_p</td>
<td>Learning probability coefficient</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 3
Other parameters for simulations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_T</td>
<td>Velocity of tanker</td>
<td>150 (m/s)</td>
</tr>
<tr>
<td>h</td>
<td>Height of AAR</td>
<td>7000 (m)</td>
</tr>
<tr>
<td>V_r2</td>
<td>Velocity of receiver larger than V_T during approaching</td>
<td>1.5 (m/s)</td>
</tr>
<tr>
<td>d₂D</td>
<td>Distance of receiver behind drogue</td>
<td>25 (m)</td>
</tr>
<tr>
<td>dₚ0</td>
<td>Refueling pod’s position relative to right wingtip</td>
<td>2.85 (m)</td>
</tr>
<tr>
<td>(γₚuₚ, γₚwₚ, γₚnₚ)</td>
<td>Velocity of gust</td>
<td>(0–3) 2 (m/s)</td>
</tr>
<tr>
<td>(d₁, 0, d₁)</td>
<td>O₁, X₁, Y₁, Z₁ relative to tanker’s body coordinate system</td>
<td>(2.0 2) (m)</td>
</tr>
<tr>
<td>h_max</td>
<td>Maximum radius of fuselage width</td>
<td>0.4 (m)</td>
</tr>
<tr>
<td>U</td>
<td>Velocity of averaged flow</td>
<td>V_T (m/s)</td>
</tr>
<tr>
<td>b₁</td>
<td>Wingspan of tanker</td>
<td>39.88 (m)</td>
</tr>
<tr>
<td>m₁</td>
<td>Mass of tanker</td>
<td>120000 (kg)</td>
</tr>
<tr>
<td>(z₁, y₁, z₁)</td>
<td>Probe’s position relative to receiver’s nose coordinate system</td>
<td>(~2.05 0.5 – 0.86) (m)</td>
</tr>
<tr>
<td>b₂</td>
<td>Fitting coefficient</td>
<td>10</td>
</tr>
<tr>
<td>d₂f</td>
<td>Fitting coefficient</td>
<td>7</td>
</tr>
<tr>
<td>2M+1</td>
<td>Order of fitting</td>
<td>7</td>
</tr>
<tr>
<td>[ω₁, ω₂]</td>
<td>Fitting frequency band</td>
<td>[0.35, 400]</td>
</tr>
<tr>
<td>uₐ</td>
<td>Opening angles of the drogue’s equilibrium state</td>
<td>[30° 24° 30° 24° 30° 24° 30° 24°]</td>
</tr>
<tr>
<td>Cₐ</td>
<td>Opening angular coefficients for aerodynamic force</td>
<td>[−8.64 −10.41 −8.64 −3.44 −10.41 −10.41 −10.41 0]</td>
</tr>
</tbody>
</table>

h, velocity V_T, and the receiver starts to approach the drogue from t = 50 s until arrives at the drogue’s initial stabilized position (i.e., the drogue’s relative position at t = 50 s). Besides, the refueling pod is mounted around the right wingtip, and the initial states of HDS are θ₁,k = 30°, θ₂,k = 0°, ϑ₁,k = 0, ϑ₂,k = 0. In this case, the active-control of controllable drogue is not conducted.

The hose–drogue system simulation results for AAR docking in Case 1 are shown in Figs. 4–5. As illustrated in Fig. 4, the hose’s simulation results effectively reflect the flexibility of hose which is susceptible to the multi-wind disturbances. As the assumptions in Case 1, in the first 50 s, the HDS stabilizes in the steady flowfield including the free stream and tanker trailing vortex as shown in Fig. 5(b), (c), (d). The initial stabilized position at the 50 s is listed in Table 4, which could be regarded as the target position in the following active-control for controllable drogue. When the multi-wind disturbances are added from the 50 s, the hose–drogue assembly starts to move from the initial stabilized position to the final swinging area as shown in Fig. 5(a). Noting that the capture radius was defined as 0.1 m [36] inside the outer ring of drogue, thus the effective capture radius is R_c = 0.205 m in this paper. In other words, if the drogue swings in the area of radius R_c, the receiver would successfully dock into the drogue in high probability. However, as we can see from Fig. 5(b), (c), (d) and Table 4, the max–min of drogue’s position in three directions are respectively 0.184 m, 0.831 m, and 0.569 m much larger than 2R_c = 0.41 m. Besides, the drogue has an obvious position offset at the 150 s comparing with the initial stabilized position. Since the high-frequency swing of the drogue, the receiver might be trapped into the problem of chasing the drogue, which could easily cause an accident.

Fig. 4. States of hose-drogue system in Case 1.
Fig. 5. Simulation results for drogue position in Case 1.

Table 4
Drogue position statistical property (100–150 s).

<table>
<thead>
<tr>
<th></th>
<th>50 s</th>
<th>150 s</th>
<th>max–min</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x (m)</td>
<td>−21.27</td>
<td>−21.55</td>
<td>0.184</td>
<td>−21.54</td>
<td>0.0020</td>
</tr>
<tr>
<td>y (m)</td>
<td>17.961</td>
<td>17.652</td>
<td>0.181</td>
<td>17.769</td>
<td>0.0447</td>
</tr>
<tr>
<td>z (m)</td>
<td>8.068</td>
<td>7.305</td>
<td>0.569</td>
<td>7.337</td>
<td>0.0181</td>
</tr>
<tr>
<td>Optimized PID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x (m)</td>
<td>−21.27</td>
<td>−21.30</td>
<td>0.048</td>
<td>−21.29</td>
<td>0.00011</td>
</tr>
<tr>
<td>y (m)</td>
<td>17.961</td>
<td>17.922</td>
<td>0.138</td>
<td>17.960</td>
<td>0.00087</td>
</tr>
<tr>
<td>z (m)</td>
<td>8.068</td>
<td>8.039</td>
<td>0.126</td>
<td>8.071</td>
<td>0.00077</td>
</tr>
<tr>
<td>Optimized FOPID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x (m)</td>
<td>−21.27</td>
<td>−21.28</td>
<td>0.026</td>
<td>−21.28</td>
<td>0.00036</td>
</tr>
<tr>
<td>y (m)</td>
<td>17.961</td>
<td>17.944</td>
<td>0.049</td>
<td>17.960</td>
<td>0.00011</td>
</tr>
<tr>
<td>z (m)</td>
<td>8.068</td>
<td>8.050</td>
<td>0.063</td>
<td>8.056</td>
<td>0.00018</td>
</tr>
</tbody>
</table>

Table 5
Parameters of the PID and FOPID controllers optimized by HCLPIO.

<table>
<thead>
<tr>
<th>Controller</th>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>[k_p, k_i, k_d]</td>
<td>[234.2184, 178.8385, 189.6352, 301.0738, 145.2843, 178.8409]</td>
</tr>
<tr>
<td>FOPID</td>
<td>[k_p, k_i, k_d, λ, μ, ω, k_1, k_2, λ^2, μ^2]</td>
<td>[221.8123, 215.7172, 208.0867, 1.2719, 1.3176, 217.0255, 263.8515, 201.2188, 1.1983, 1.2897]</td>
</tr>
</tbody>
</table>

Fig. 6. States of hose–drogue system for FOPID controllers in Case 2.

Case 2. The assumptions of simulation are the same as Case 1. In this case, the optimized \(P^I D^f \) and PID controllers for controllable drogue are respectively implemented from \(t = 50 \) s.

In Case 2, the optimized FOPID controllers are employed to stabilize the position of the controllable drogue, which certifies the FOPID controllers' validity. Implementing the design processes of the optimized controllers as identified in Section 4.2, assume that choose one of the four algorithms (PSO/PIO/HCLPSO/HCLPIO) successively for the FOPID controllers (as shown in Fig. 2), the parameters of FOPID controllers optimized via the four algorithms can be obtained. Similarly, assume that the controllers are chosen as the form of PID, we can acquire the parameters of PID controllers optimized via the four algorithms as well. Table 5 merely presents the parameters of PID and FOPID controllers optimized by HCLPIO. As shown in Fig. 6, the initial stabilized states of the hose–drogue assembly are extremely similar to the final states, which means the HDS commendably maintain the drogue's relative position via the optimized FOPID controllers. When compare Fig. 7(a) with Fig. 5(a), it can be concluded that the drogue stabilizes to a determinate relative position with minor swing because of the active-control aerodynamic forces generated by the control-

Fig. 7. Simulation results for drogue position in Case 2.
lable drogue. Further, if the active-control for controllable drogue is off, as analyzed above, the swinging range of drogue does not meet the requirement of effective capture radius R_c. But when the FOPID controllers for controllable drogue is conducted, it can be seen from Fig. 7(b), (c), (d) that the drogue swings in a much smaller range than Case 1. Quantitatively, as listed in Table 4, there is an obvious reduction in the range of motion of the drogue's position: from 0.184 m to 0.026 m in x-axes, from 0.331 m to 0.049 m in y-axes, and from 0.569 m to 0.063 m in z-axes, which are within the range of $2R_c$. Besides, the variances of drogue's position for FOPID controllers are just a few hundredths of that without control at the 100–150 s. As shown in Fig. 8, due to the refueling pod mounted around the right wingtip, a relatively larger lateral wind velocity ($V_{l_{w}} \approx 7.5$ m/s) of the trailing vortex is generated, and the vertical wind velocity is approximate to zero. The wind velocity of the bow wave is denoted as $V_{b_{w}} > 0$, $V_{w_{z}} < 0$, which means the bow wave tends to push the drogue moving to the right top position. The atmospheric turbulence can be regarded as the high-frequency disturbance inducing the drogue's swing. Thus, it is essential that apply the optimized FOPID controllers to stabilize the drogue. From the results in Fig. 9, the active aerodynamic forces can be decomposed into two components: the stable component for resisting the trailing vortex, bow wave, gust, and wind shear; and the vibrating component for resisting the atmospheric turbulence. The role of active aerodynamic forces is equivalent to transform the unsteady flowfield to an approximate steady flowfield and compensate the influence of that. Further, as we can see from Fig. 10, the opening angles of actuators are deflected within a few degrees, which are limited in the normal range.

Additionally, the optimized PID controllers are adopted for the active-control of controllable drogue to further compare the optimized FOPID controllers. As indicated in Fig. 7(b), (c), (d), it is obvious that the optimized FOPID controllers perform superior than the optimized PID controllers for position stabilizing at the 100–150 s. We can clearly see from Table 4 that the variances of drogue's position for FOPID controllers in x, z-axes are merely about half of those for PID controllers, and the variance in y-axes is enhanced more significantly. Besides, comparing the drogue's position at the 150 s with that at the 50 s in Table 4, the steady-state offsets are smaller for FOPID controllers than the PID

![Graphs showing velocity of tanker trailing vortex, receiver bow wave, atmospheric turbulence, and multi-wind disturbances](image-url)
Fig. 9. Simulation results for real lateral and vertical forces in Case 2.

(a) Real lateral force
(b) Real vertical force

Fig. 10. Opening angles for actuators.

(a) Opening angle of actuator 1
(b) Opening angle of actuator 2
(c) Opening angle of actuator 3
(d) Opening angle of actuator 4
controllers. Therefore, as the comparative experiments mentioned above, the optimized FOPID controllers cannot merely stabilize the drogue's position in the presence of multi-wind disturbances, but also perform more efficiently than the optimized PID controllers.

To evaluate the effectiveness of our proposed HCLPIO, we respectively apply the four algorithms (PSO/PIO/HCLPSO/HCLPIO) to optimize the FOPID controllers in independent 10 runs and compare the average fitness values of different algorithms. As presented in Fig. 11 and Table 6, starting from the same initial fitness value, the proposed HCLPIO for the optimized FOPID controllers performs the best in terms of the fitness value, which means the HCLPIO optimized parameters possess the best capability for stabilizing the drogue’s position. Besides, we also make some analysis about the tendency of the four algorithms’ evolution curves for FOPID controllers as follows:

1. It can be seen from Fig. 11 that the basic PIO converges faster than the basic PSO. The map and compass operator of PIO better refines the promising solutions in the entire search space to obtain the more optimal parameters for FOPID controllers.

2. When compare HCLPIO, HCLPSO with basic PIO, PSO at the first 15 iterations, we draw a conclusion that the basic algorithms have a faster convergence rate than the modified version. Since the HCL strategy is introduced into the modified algorithms, the swarm populations are divided into two subpopulations, which reduces the convergence rate at the first few iterations.

3. In turn, since the HCL strategy enhances the diversity of swarm populations at the late iterations, the HCLPIO is prevented to trap into the local optimal solutions. Thus, even at the late iterations, the HCLPIO still has stronger exploration capability to continuously update the pigeons for attaining the more optimal parameters.

Table 6

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Controller parameters</th>
<th>Fitness value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIO</td>
<td>[232.8871, 186.5465, 192.1504, 1.1855, 1.1100, 237.6300, 178.6573, 181.6861, 1.1698, 1.1844]</td>
<td>123.4095</td>
</tr>
<tr>
<td>HCLPSO</td>
<td>[242.1030, 170.4099, 228.2729, 1.4659, 1.2550, 252.8450, 241.7969, 214.0536, 1.1838, 1.3729]</td>
<td>119.1342</td>
</tr>
<tr>
<td>PSO</td>
<td>[199.2369, 198.4451, 183.6850, 1.0893, 1.1747, 197.5306, 246.6755, 192.9626, 1.0448, 1.1153]</td>
<td>127.3263</td>
</tr>
</tbody>
</table>

Fig. 11

Comparative evolution curves of four algorithms for FOPID controllers.

6. Conclusions

In this paper, we design an optimized fractional-order PID controllers for stabilizing the position of drogue relative to the tanker. First, we investigate the dynamics of hose–drogue system, and model the hose–drogue assembly as a link-connected system based on the finite-segment multi-body method. Then, we establish the multi-wind disturbances environment including the tanker-trailing vortex, receiver bow wave, atmospheric turbulence, gust, and wind shear for the HDS simulations in the docking stage of AAR. Moreover, a modified version of PIO, called HCLPIO, is proposed to enhance the diversity of swarm populations for the more optimal solution. Finally, the HCLPIO optimized FOPID controllers are designed to reduce the swinging range of controllable drogue for resisting the multi-wind disturbances. The simulation results indicate that our proposed optimized FOPID controllers for HDS are more effective than the optimized PID controllers for stabilizing the controllable drogue to swing within an acceptable range, and our proposed HCLPIO alleviates the workload on designers via optimizing the parameters of controllers. Our future work will emphasize on the application of our proposed approach for comprehensive simulations of AAR entire processes considering the control problems for tanker and receiver.

Conflict of interest statement

None declared.

Acknowledgements

This work was partially supported by National Science Foundation of China (NSFC) (Grant Nos. 61425008, 61330004, 91648205), Aeronautical Foundation of China (Grant No. 2015ZS151013).

Appendix A. Equations of PSO

The velocity $V_i(t)$ and position $X_i(t)$ of i-th particle at the t-th iteration are updated as follows:

$$V_i(t) = w \cdot V_i(t-1) + c_1 \cdot rand_1(t) \cdot (pbest_i - X_i(t - 1)) + c_2 \cdot rand_2(t) \cdot (gbest - X_i(t - 1))$$

$$X_i(t) = X_i(t - 1) + V_i(t)$$

where w denotes the inertia weight; c_1 and c_2 are acceleration coefficients; $rand_1$ and $rand_2$ represent the random numbers in the range of [0, 1]; $pbest_i$ is the best position of i-th particle; $gbest$ is the current global best position.

References

