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Target detection for unmanned aerial vehicles is an important issue in autonomous formation flight. 
In this paper, a novel target detection approach for unmanned aerial vehicle formation is proposed 
based on edge matching. The windowed edge potential function is utilized to describe the attraction 
field for similar edges. Afterwards, the edge-based target detection problem can be formulated as an 
optimization problem. An improved version of the bird swarm algorithm, which is called competitive 
bird swarm algorithm, is proposed to find the location, rotation angle and scale of a given template 
on a specific image. A strategy named “disturbing the local optimum” is designed to help the original 
Bird Swarm Algorithm converge to the global optimal solution faster and more stably. Unmanned aerial 
vehicles moving in leader-follower pattern, which are called formation flight platforms, are used for 
our experiments. Images obtained by vision sensors embedded in the leaders are used to verify the 
effectiveness of the proposed method. The proposed algorithm is tested on both indoor and outdoor 
images to demonstrate the robustness. Comparative experiments with other state-of-the-art algorithms, 
including genetic algorithm, particle swarm optimization, artificial bee colony algorithm, pigeon-inspired 
optimization, and the basic bird swarm algorithm, are also conducted. The results prove the superiority 
and robustness of the proposed target detection algorithm.

© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Unmanned Aerial Vehicles (UAVs) are important platforms in 
both civilian and industrial applications [1], for the advantages of 
zero casualties, good stealth performance, short operational prepa-
ration time, and relatively low life-cycle cost [2]. Multi-UAVs mov-
ing in formation have attracted much attention [3–8]. With visual 
sensors becoming more and more advanced, vision based forma-
tion has aroused much interest [9–12]. In leader-follower forma-
tion, the leader can ascertain the direction and distance of the 
following UAVs with information obtained by visual sensors. There-
fore, target detection is an important task in vision based au-
tonomous formation flight of UAVs. The aim of this study is to 
design an adaptive, efficient and robust target detection algorithm 
that can be applied to vision based UAV formation.

A wide variety of strategies have been established to deal with 
the target detection problem for UAVs in recent years [13]. A real-
time detection algorithm for moving target from UAVs is proposed 
in [14]. A template matching approach is used in [15] to detect 
and track the run-way in image sequences. A target detection al-
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gorithm based on a visual attention model is given in [16]. A novel 
bio-inspired model is proposed in [17] via improved artificial bee 
colony and visual attention. An image registration algorithm is pro-
posed in [18] for moving target detection. In addition, edge or tem-
plate matching based methods, such as Charmfer matching [19]
and Hausdorff distance matching [20], have also been extensively 
used for target detection [21].

In this paper, an edge matching based method is proposed for 
UAV target detection, which is much simpler and more efficient 
compared with feature-based algorithms. The edge of an image is 
detected and utilized in a matching procedure, which searches for 
the image patch with the highest similarity to a given edge tem-
plate. A fast edge detection method based on structured forests 
is proposed in [22], which can obtain real-time performance and 
achieve state-of-the-art edge detection results. The edge matching 
method proposed in [23] utilizes the Canny edge detector. How-
ever, the edge map of a high-resolution UAV image extracted by 
Canny, would be enriched with textures, which will aggravate the 
computational complexity of edge matching. Therefore, the out-
standing edge detection method based on structured forests is 
utilized to extract edges in this paper. Afterwards, the windowed 
edge potential function (WEPF) [23] is used to make a description 
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of image edge. In terms of matching results and computational 
complexity, the WEPF based description is superior to traditional 
edge matching methods [24].

The edge-based matching problem can be considered as an op-
timization problem which can be resolved with various methods 
[13,21,23,24]. There are many advantages of bio-inspired optimized 
algorithms, such as high robustness, good distributed computing 
mechanisms, and extensive feasibility [25]. Thus a newly proposed 
bio-inspired optimization algorithm, Bird Swarm Algorithm (BSA) 
[26], is used for edge matching in aerial images. BSA is a novel 
optimization algorithm inspired by the social behaviors and so-
cial interactions in bird swarms. The searching space of BSA can 
be very large because of the high resolution of aerial images. In 
addition, the background of the scenes can be cluttered and com-
plex, which means that there are many local optima in the edge 
matching problem. Thus, the basic BSA may be trapped into lo-
cal optima or converge slowly. A strategy called “disturbing the 
local optimum” is designed and integrated into the basic BSA to 
overcome these shortcomings of it. The proposed BAS with the 
“disturbing the local optimum” strategy is called Competitive Bird 
Swarm Algorithm (CBSA). The “disturbing the local optimum” in 
CBSA can automatically check whether CBSA is trapped into local 
optima and add some disturbance to the local optimal solution if 
necessary. Therefore, the exploration ability of it is enhanced and 
the diversity of the swarm is improved. Furthermore, premature 
converge can be avoided.

The proposed target detection method is tested on aerial images 
obtained by the visual sensor embedded in UAVs. Experimental 
results demonstrate that the proposed edge matching algorithm 
can deal with the target detection problem for UAVs effectively. 
Furthermore, the performance of CBSA is compared with that of 
BSA, which demonstrates that the proposed strategy can improve 
the searching and converging ability of CBSA. Moreover, compara-
tive experiments on CBSA and several state-of-the-art bio-inspired 
algorithms, including the particle swarm optimization (PSO) [27], 
artificial bee colony (ABC) algorithm [21], Genetic Algorithm (GA) 
[28], and Pigeon-inspired Optimization (PIO) algorithm [13] are 
conducted to demonstrate the advantage of the CBSA approach.

The remainder of this paper is organized as follows. In Sec-
tion 2, the edge detection approach and the principle of WEPF 
is introduced. In Section 3, the BSA algorithm is presented. The 
“disturbing the local optimum” strategy is proposed in Section 4, 
where the detailed implementation procedure of the proposed 
edge-based target detection algorithm is provided. In Section 5, 
a series of experimental results are given to demonstrate the ef-
fectiveness of the proposed approach, followed by the concluding 
remarks given in Section 6.

2. Edge detection and the WEPF model

2.1. Edge detection method using structured forests

Edges generally exhibit patterns of local structure, such as 
straight lines or T-junctions [29]. The problem of predicting local 
edge masks can be formulated as a structured learning framework 
applied to random decision forests [22,30].

1) Structured random forests
Structured labels are utilized to determine the splitting function 

at each branch in the tree. For a d × d image patch, the annota-
tion of it can be either a segmentation mask y ∈ Y = Z

d×d or a 
binary edge map y′ ∈ Y ′ = {0, 1}d×d . Both representations are uti-
lized in this approach. All the structured labels y at a given node 
are robustly mapped to a discrete set of labels c ∈ C , C = {1, . . . , k}. 
Similar structured labels are assigned to the same discrete label. 
Standard information gain measures can be evaluated on the dis-
crete space. A mapping from Y to an intermediate space Z is de-
fined to measure similarity over Y and calculate information gain. 
m dimensions of Z are sampled to reduce dimensionality, and a 
reduced mapping Πφ : Y → Z is obtained. To further reduce the 
dimensionality, principal component analysis (PCA) [31] is utilized. 
Then a straightforward map from Z to C is utilized to obtain the 
discrete labels. PCA quantization can be used to obtain the discrete 
label set C . The top log2(k) PCA dimensions can be used to quan-
tize a discrete label c as the assignment of z. In this paper we 
set m = 256 and k = 2. Each forest predicts a patch of edge pixel 
labels that are aggregated across the image to compute the final 
edge map.

2) Input features
In this paper, 32 ×32 image patches are used to predict 16 ×16

structured segmentation tasks. Two types of features are used: 
pixel lookups and pairwise differences. x ∈ R

32×32×K is the fea-
ture vector, where K is the number of channels. Three channels 
in the CIE-LUV color space together with the normalized gradient 
magnitude at the original scale and half resolution scale are used. 
Four orientation channels are derived from the gradient magnitude 
channels. Thus the input feature has 13 channels. Each channel 
is blurred with a radius 2 triangle filter and down sampled by 
a factor of 2. A large triangle blur is used on each channel (8 
pixel radius), and each channel is down sampled to a resolution of 
5 × 5. Then candidate pairs are sampled and pairwise differences 
are computed. Thus the total dimension of a candidate feature is 
7228.

3) Mapping function
A mapping Πφ : Y → Z is defined to train decision trees. y( j)

for 1 ≤ j ≤ 256 denote the jth pixel of mask y. z = ∏
(y) is a 

large binary vector that encodes [y( j1) = y( j2)] for each unique 
pair j1 �= j2.

4) Ensemble model
The outputs of multiple trees in the random forests are com-

bined to achieve robust results. The corresponding edge map y′ is 
stored at each leaf node together with the learned mask y. Multi-
ple overlapping edge maps y′ ∈ Y ′ can be averaged to obtain a soft 
edge response.

5) Multiscale detection and edge sharpening
The structured edge detector can be implemented on a multi-

scale version to enhance the performance of it. Three versions of 
resolution (1/2, 1, and 2) are computed and the results of the three 
edge maps are averaged after resizing to the original image dimen-
sions. The edge maps can be sharpened optionally using local im-
age color and depth values, with which the edge maps are better 
aligned to the image data. Additionally, the edge values vary from 
0 to 1, which is continuous-valued. However, binary-valued edge 
information should be imported to the EPF computation. Thus, 
edge values lower than 1/3 of the maximum value in the corre-
sponding edge image are set as 0, while others are set as 1 in this 
paper.

2.2. The principle of EPF

The image edges are considered as charged elements in EPF, 
which can generate an attraction field over object with similar 
edges. The concept of EPF is derived from the physics of electric-
ity, simulating the electric potential generated by the electrostatic 
field. It is utilized in this paper to model the potential generated 
by edge structures of images. An edge template of a particular tar-
get is attracted by a set of equivalent charged edge points, which 
maximize the potential in EPF.

In the electricity, a set of point charges in a homogeneous back-
ground Q i generates a potential, whose intensity can be calculated 
as follows.

v(�r) = 1

4πε

∑ Q i

|�r −�ri | (1)

i
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where �r and �ri are the observation point and the charge location, 
respectively. ε is the electrical permittivity of the medium. Objects 
with opposite charge in the potential field will be attracted to the 
field point with the maximum differential potential.

In the edge-based target detection problem, the i-th edge point 
with the coordinate (xi, yi) in the image is equivalent to the charge 
point Q eq(xi, yi). The edge potential produced by a set of edge 
points can be described as follows.

EPF(x, y) = 1

4πεeq

∑
i

Q eq(xi ,yi)√
(x − xi)

2 + (y − yi)
2

(2)

where εeq is the equivalent permittivity of image background. The 
edge points in the template image can be considered as an object 
in the equivalent edge potential field. Therefore, it would also be 
attracted to the field point with the maximum differential poten-
tial.

Windowed EPF (WEPF) is an improved version of the basic EPF 
[23], with the similarity measure and computation speed. A win-
dow w is defined in WEPF to limit the influence radius of a 
charged element to the potential. Thus WEPF can be defined as 
follows.

WEPF(x, y) = Q

4πεeq

∑
(xi ,yi)∈w

1√
(x − xi)

2 + (y − yi)
2

(3)

where w is the window defined to center on (x, y) in the image, 
the window size is set as 9 × 9 in this paper. (xi, yi) ∈ w are edge 
points in the calculating window. All the edge points are modeled 
with an equal charge Q for simplification. WEPF improves both the 
robustness and speed of edge matching process. In this paper, the 
edge maps are binarized in this paper, thus Q = 1. When x = xi

and y = yi , the value of 1√
(x−xi )

2+(y−yi)
2

is set as 10 compulsorily. 
The equivalent permittivity of image background is set as εeq =
0.05 in this paper.

3. The BSA algorithm

BSA is a novel optimization algorithm inspired by the swarm 
intelligence extracted from the social behaviors and social interac-
tions in bird swarms. While foraging, birds frequently raise their 
heads and scan their surroundings, which is interpreted as vigi-
lance behavior [32]. Studies also suggest that birds on the periph-
ery of a group try to move to the center to protect themselves from 
being attacked by predators [33]. Additionally, birds may fly to an-
other site for foraging or for escaping from predators [34]. There-
fore, in the BSA algorithm three behaviors are mainly extracted, 
i.e., foraging behavior, vigilance behavior and flight behavior.

3.1. Foraging behavior

Each bird searches for food according to its previous best expe-
rience and the swarms’ previous best experience about food. Thus, 
the foraging behavior can be elaborated as:

Xt+1
i, j = Xt

i, j + S1 × (
Pi, j − Xt

i, j

) × rand(0,1)

+ S2 × (
G j − Xt

i, j

) × rand(0,1) (4)

where j ∈ [1, . . . , D], D is the dimension of the problem. S1 and 
S2 are cognitive and social accelerated coefficient, respectively. Pi, j

is the best position of the i-th bird and G j is the global position, 
which is shared among the swarm.
3.2. Vigilance behavior

Each bird tries to move towards the center of the swarm while 
keeping vigilance. Birds among the swarm compete for the posi-
tion in the center, where is much safer than the periphery of the 
swarm. This behavior can be simply modeled as:

Xt+1
i, j = Xt

i, j + A1 × (
mean j − Xt

i, j

) × rand(0,1)

+ A2 × (
Pk. j − Xt

i, j

) × rand(−1,1) (5)

A1 = a1 × exp

(
− pF iti

sumfit + ε
× N

)
(6)

A1 = a2 × exp

((
pF iti − pF itk

|pF itk − pF iti| + ξ

)
N × pF iti

sumfit + ξ

)
(7)

where k ∈ {1, 2, . . . , N}, k �= i, N is the number of birds in the 
swarm. a1, a2 ∈ [1, 2] are coefficient which can be adjusted, mean j
is the j-th element of the average position of the whole swarm. 
pF iti is the best fitness of the i-th bird and sumf it is the sum of 
the swarms’ best fitness value. ξ is the smallest constant in the 
computer.

3.3. Flight behavior

Birds fly to other sites to forage again in responding to pre-
dation or merely for foraging. A bird can be a producer or a 
scrounger. Behaviors can be formulated as follows for producers 
and scroungers, respectively.

Xt+1
i, j = xt

i, j + randn(0,1) × Xt
i, j (8)

Xt+1
i, j = xt

i, j + rand(0,1) × FL × (
Xt

k, j − Xt
i, j

)
(9)

where randn(0, 1) is a Gaussian distributed random number with 
μ = 0, σ = 1. FL ∈ [0, 2] means that the scrounger will follow the 
producer to search for food. Each bird is assumed to fly to another 
place every FQ unit interval.

4. Target detection using CBSA

The edge detection algorithm and the principle of EPF have 
been clarified and the basic BSA has also been discussed. However, 
the edge matching process is complex and challenging. Although 
the BSA algorithm is novel and superior, there are still some short-
comings when utilized to the edge matching problem. Thus an 
improving strategy called “disturbing the local optimum” is intro-
duced to the original BSA to help it jump out of local optima. In 
this section, the proposed CBSA algorithm will be discussed and 
the framework of the edge-based target detection algorithm for 
UAVs using CBSA is given in detail.

4.1. “Disturbing the local optimum”

In the strategy of “disturbing the local optimum”, an effective 
method that identifies premature stagnation is embedded to the 
basic BSA. The strategy can automatically check whether BSA is 
trapped into the local optimum. Once the premature stagnation 
happens, a randomized solution is used as a substitute for current 
optimum to change the current searching locus.

When the optimal solution of CBSA has no change during con-
tinuous MAX iterations, the algorithm is assumed to have the po-
tential of stagnation. A counter CN is used to record the number 
of continuous iterations in which CBSA obtains the same optimal 
solution. If in current iteration CBSA obtains the same optimal so-
lution to that in the last iteration, CN = CN + 1. Otherwise, CN = 0. 
When CN = MAX, a random value is used to replace a randomly 
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selected dimension of current optimal solution, which can be de-
scribed as follows.

G ′ = (Gi1, Gi2, . . . , GiD) (10)

where Gik ∈ [mink, maxk], k ∈ [1, D] is randomly chosen. Compute 
the fitness value of G ′ and compare it with the best fitness value of 
the swarm. If the fitness value of G ′ is larger, current best solution 
G is replaced with G ′ . This strategy can make a fine tuning for 
the global optimal solution with a random disturbance and help 
the algorithm jump out of the local optimal solution. The number 
of invalid iterations can be effectively reduced with the stagnation 
judgment and random disturbance. Thus the algorithm can con-
verge to the global optimum faster and more stably.

4.2. Problem formulation

A binary edge image of a target is given as a template, which 
is utilized to detect the specific target in the tested aerial image. 
WEPF is utilized to calculate the edge potential for the edge map 
of the test image. Afterwards, the CBSA algorithm is utilized to find 
a patch in the test image that can arouse the highest attraction of 
the template. The matching process can be specifically described as 
finding the optimal translation parameters (tu, tv), rotation angle θ

and scaling factor s of the template to make a match with the 
test image. A candidate solution of the problem can be defined as 
ω = [tu, tv , θ, s]. Afterwards, the matching function is defined as:

f (ω) = 1

N(ω)

N(ω)∑
n(ω)=1

{
WEPF

(
x(ω)

n , y(ω)
n

)}
(11)

where n(ω) is the n-th pixel of the edge template, which is 
transformed with ω. N(ω) denotes the number of edge pixels in 
the transformed template. (x(ω)

n , y(ω)
n ) represents the correspond-

ing coordinate of a candidate patch in the test image. Therefore, 
WEPF(x(ω)

n , y(ω)
n ) = Q

4πεeq

∑
(xi ,yi)∈w

1√
(x(ω)

n −xi)
2+(y(ω)

n −yi)
2

, where w

is the window defined to center on (x(ω)
n , y(ω)

n ) in the test image. 
(xi, yi) ∈ w are the edge points in the calculating window. There-
fore, the matching function can be rewrited as:

f (ω) = 1

N(ω)

×
N(ω)∑

n(ω)=1

{
Q

4πεeq

∑
(xi ,yi)∈w

1√
(x(ω)

n − xi)
2 + (y(ω)

n − yi)
2

}

(12)

when x(ω)
n = xi and y(ω)

n = yi , 1√
(x(ω)

n −xi)
2+(y(ω)

n −yi)
2

is set as 10 

compulsorily. All edge points are modeled with an equal charge 
Q for simplification. In this paper, the edge maps are binarized, 
thus Q = 1. The value of f (ω) is maximized when the edge tem-
plate with the certain transformation is matched accurately in the 
test image.

4.3. Implementation of CBSA for target detection

The implementation of the proposed edge-based target detec-
tion for UAVs using CBSA can be described as follows.

Step 1) Edge detection. The test image is obtained with the visual 
sensor embedded in UAV. The edge map of the test image 
is calculated.
Step 2) WEPF calculation. Calculate WEPF of the test image with 
the windowed edge potential field function model given 
in (3) based on the edge map obtained in Step 1).

Step 3) Initialize parameters. Initialize parameters of the CBSA al-
gorithm, including the number of birds N , the maximum 
number of iteration M , the frequency of birds’ flight be-
haviors FQ , the probability of foraging for food p, five 
constant parameters S1, S2, a1, a2 and FL, and MAX in 
the “disturbing the local optimum” strategy. Additionally, 
initialize the search space of the CBSA algorithm and ini-
tialize the position of birds. Set the number of iteration 
Nc = 0 and CN = 0.

Step 4) Evaluate the fitness of birds. Compute the fitness value of 
each bird using (12). Store the fitness of each bird and 
the global best fitness. Store the positions of the birds.

Step 5) Choose an operation. Set Nc = Nc + 1. Check whether the 
iteration number is larger than M . If so, go to Step 10). 
Otherwise, check if Nc > 1 and current global best fitness 
equals to that of last iteration. If so, set CN = CN +1, then 
go to Step 9) when CN > MAX or go to Step 5) when CN ≤
MAX. Otherwise, set CN = 0 and check if Nc%FQ = 0. If so, 
go to Step 8). Otherwise, go to Step 6) when rand(0, 1) <
p or go to Step 7) when rand(0, 1) ≥ p.

Step 6) Conduct the foraging behavior. Use (4) to update each the 
position bird. Evaluate the fitness of birds. If the new so-
lutions are better than their previous ones, update them. 
Go to Step 5).

Step 7) Conduct the vigilance behavior. Use (5)–(7) to make the 
birds move to the center while competing with each 
other. Evaluate the fitness of birds. If the new solutions 
are better than their previous ones, update them. Go to
Step 5).

Step 8) Conduct the flight behavior. Use (8) or (9) to update 
each the position bird. Evaluate the fitness of birds. If the 
new solutions are better than their previous ones, update 
them. Go to Step 5).

Step 9) Conduct the “disturbing the local optimum” strategy. Use 
(10) to make a disturbance of current best position and 
set CN = 0. If the fitness of G ′ is better than that of cur-
rent best fitness in the swarm, update the best position. 
Go to Step 5).

Step 10) Output the optimal solution and its fitness value. Use 
the translation, rotation and scaling parameters given by 
CBSA to transform the edge template. Mark the trans-
formed edge template on the original test image to make 
the result visualized.

The flow chart of CBSA for edge-based target detection is given 
in Fig. 1.

5. Simulation results and analysis

In our experiments, UAVs moving in the leader-follower forma-
tion are used as the platforms. In this formation structure, one of 
the UAVs is designated as the leader, with others treated as fol-
lowers. The images obtained by the visual sensor embedded in 
the leader are utilized to test the feasibility and robustness of 
the proposed method in the edge-based target detection task. The 
information obtained by target detection will be used to make rel-
ative pose estimations among UAVs in further research.

The performance of CBSA is compared with those of the basic 
BSA and other state-of-the-art evolutionary algorithms, including 
the PSO [27], ABC [21], GA [28], and PIO [13]. The methods are 
tested on several images in different scenes, and the comparative 
results are given. The experiments are conducted on a PC with In-
tel Core i7, 3.6-GHz CPU, 4-GB memory, and 64-bit Windows 7.
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Fig. 1. Flow chart of edge-based target detection for UAVs using CBSA.

Table 1
Parameters of CBSA.

Symbol Quantity Value

N Number of individuals 200
M Maximum number of iteration 100
FQ Frequency of birds’ flight behaviors 2
p Probability of foraging for food 0.8+ 0.2∗rand
S1 Constant parameter 1 in (4) 1.5
S2 Constant parameter 2 in (4) 1.5
a1 Constant parameter in (6) 1
a2 Constant parameter in (7) 1
FL Constant parameter in (9) 0.5 + 0.4∗rand
MAX Parameter in “disturbing the local 

optimum” strategy
5

The initial parameters of CBSA are selected based on tests and 
practical experience. The number of individuals and the maxi-
mum number of iteration for all the 6 algorithms are set as the 
same to make fair comparisons. The searching spaces of the al-
gorithms are determined according to test images. The range of 
translation equals to the size of the test image. The value of the 
rotation varies from 0◦ to 360◦ . The scaling parameter varies from 
0.8 to 1.5. Parameters of BSA and CBSA are set the same, except 
for MAX. Parameters of the CBSA method are presented in Ta-
ble 1.
Table 2
Comparative results of 6 methods for Experiment I.

Algorithm Best solution Best fitness

Case I GA [204,681,102,1.1] 9.5570
PSO [274,683,161,1.0] 14.7404
ABC [270,679,305,9] 12.3714
PIO [274,683,161,1.0] 14.7404
BSA [214,96,32,9] 9.6743
CBSA [274, 690, 315, 1.0] 33.7330
Truth [274, 690, 315, 1.0] 33.7330

Case II GA [254,375,297,0.9] 12.5584
PSO [251,288,233,0.9] 15.4586
ABC [252,309,167,1.0] 13.9585
PIO [296,307,178,0.9] 17.9702
BSA [248,311,46,1.1] 13.5968
CBSA [252, 308, 315, 1.0] 33.3646
Truth [252, 308, 315, 1.0] 33.3646

5.1. Experiment I

In this experiment the proposed CBSA algorithm and other five 
algorithms are tested on two indoor images. The resolution of the 
original image used in Case I is 1291∗964. The high resolution of 
the image results in a large searching space for the optimization 
algorithm. The experimental results are given in Fig. 2.

The template used in Experiment I Case I is rotated with 45◦ in 
the original scale. In Fig. 2(c), the edge map obtained by the Canny 
algorithm is cluttered. The edge map given in Fig. 2(d) that ob-
tained by the method introduced in Section 2.1 is much cleaner. 
Afterwards, the edge map in Fig. 2(d) is binarized and utilized 
to compute the WEPF. The experimental results given in Fig. 2(f) 
shows the best matching results of Case I obtained by the afore-
mentioned 6 algorithms among 10 independent runs. The match-
ing results show that only the proposed CBSA algorithm makes the 
optimal matching, while the other 5 algorithms are all failed. The 
convergence curves are given in Fig. 2(g). The green line given in 
Fig. 2(g) is the theoretical best fitness. The legend of it is “Truth”. 
In Case I of Experiment I, CBSA obtains the best fitness value 
within 100 iterations. The evolution curves of CBSA and BSA show 
that the BSA algorithm is trapped into local optimum and the con-
verging speed of it is rather slow. The performances of the other 
four algorithms are also dissatisfactory. The proposed CBSA method 
fulfilled the target detection task.

The resolution of the original image used in Experiment I, 
Case II is 1008∗765. The target detected in Experiment I Case I 
is installed on the UAV as a mark. The template used in Experi-
ment I Case II is rotated with 45◦ in the original scale. The results 
shown in Fig. 3 indicate that the CBSA method can make good 
performance for the indoor images. The evolution curves further 
demonstrated the advantage the CBSA, which detects the target 
accurately. The best solutions obtained with the 6 methods are 
given in Table 2, which show that CBSA find the accurate solutions. 
The row named “Truth” represents the theoretical optimal solu-
tion and the corresponding best fitness. Results in Table 2 show 
that the proposed CBSA algorithm converges to the theoretical op-
timum.

5.2. Experiment II

In Experiment II, the six algorithms are tested on two out-
door images, which are obtained by the UAV visual sensor. The 
original images used in Cases I and II are obtained with the Mer-
cury camera from Daheng IMAVISION. The resolutions of them are 
both 1292∗964. Two octorotors used as the leader-follower forma-
tion flight platform are S1000 from DJI technology Inc. The camera 
is embedded in the leader UAV. The formation flight platform is 
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Fig. 2. Target recognition results obtained by the six evolutionary algorithms for Experiment I, Case I. (a) Test image, (b) edge template, (c) edge map of the test image 
extracted of by Canny, (d) edge map extracted by the method introduced in Section 2.1, (e) edge potential distribution of (d), (f) matching results, and (g) evolution curves. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 3. Target recognition results obtained by the six evolutionary algorithms for Experiment I, Case II. (a) Test image, (b) edge template, (c) edge map of the test image 
extracted by Canny, (d) edge map extracted by the method introduced in Section 2.1, (e) edge potential distribution of (d), (f) matching results, and (g) evolution curves.
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Fig. 4. Leader-follower formation flight platform used in Experiment II.

shown in Fig. 4. The target is the same to that detected in Experi-
ment I. The experimental results of Cases I and II in Experiment II 
are given in Figs. 5 and 6.

The same edge template is used in both Cases I and II. To test 
the robustness of the proposed algorithm, the template size is re-
duced to 1/1.1 and 1/1.2 of the original size in Cases I and II, 
respectively. The edges extracted by Canny, given in Fig. 5(c) and 
Fig. 6(c) are redundant and cluttered because the texture of the 
background is complex. However, the method introduced in Sec-
tion 2.1 can restrain the edge of the background well. Only some 
main edges are obtained, which can decrease the complexity of 
calculation obviously.

The comparative results of the six algorithms verified the su-
periority of CBSA. Matching results given in Figs. 5 and 6 show 
that GA, PSO, and the basic BSA all mistake the characters on the 
signboard with the target, while CBSA attains a precise match-
ing. Moreover, the target is occluded partly with equipment in the 
leader UAV in Case II. The CBSA algorithm can also detect the tar-
get, which further demonstrates the robustness of the proposed 
method.

5.3. Experiment III

The six algorithms are tested with a different target in Ex-
periment III. The resolution of the original image used in Cases 
I and II in Experiment III is 1024∗526. The leader UAV is designed 
based on the quadrotor X650 pro from XAIRCRAFT Technology Co., 
Ltd. A Phantom 3 Standard quadrotor from DJI technology Inc is 
used as the follower UAV, which is also the target to detect. The 
leader-follower formation flight platform is shown in Fig. 7. The 
experimental results of Cases I and II are given in Figs. 8 and 9.

In the first case of Experiment III, CBSA finds the global op-
timum successfully, demonstrating the effectiveness of both the 
objective function and CBSA. In Case I of Experiment III, the edge 
template is rotated with 300◦ . Partial information of edge in the 
target template is lost. The PSO algorithm roughly detects the tar-
get, while other 4 comparative algorithms obtained unsatisfying 
results as shown in Fig. 8(f). The evolution curves in Fig. 8(g) show 
that the best fitness value obtained by CBSA is larger than those of 
the other 5 algorithms. It is obviously that the proposed “disturb-
ing the local optimum” strategy strengthens the searching ability 
of CBSA.

In Experiment III, Case II, another image is utilized to test 
the performance of CBSA using an edge template with both ro-
tation and scaling. The edge template is rotated with 100◦ and the 
size of it is set as 1/1.2 of the original size. Target detection re-
sults given in Fig. 9 have shown that CBSA can still deal with the 
matching problem well when both the orientation and scale of the 
edge template are changed. CBSA detects the following UAV accu-
rately.
Table 3
Comparative results of 6 methods for Experiment III.

Algorithm Best solution Best fitness

Case I GA [265, 707, 243, 1.4] 7.6877
PSO [352, 775, 241, 1.0] 16.0348
ABC [261, 692, 313, 1.1] 10.1732
PIO [304, 622, 74, 1.0] 13.0546
BSA [273, 703, 197, 0.9] 11.9890
CBSA [352, 784, 60, 1.0] 25.0994
Truth [352, 784, 60, 1.0] 25.0994

Case II GA [322, 645, 86, 1.4] 6.3535
PSO [304, 592, 82, 1.0] 12.4548
ABC [271, 577, 0, 1.0] 13.1675
PIO [298, 634, 90, 0.9] 11.5265
BSA [304, 592, 82, 1.0] 12.4548
CBSA [305, 592, 260, 1.2] 29.5452
Truth [305, 592, 260, 1.2] 29.5452

The best solutions obtained with the six methods in Experi-
ment III are given in Table 3. In the first case the rotation and 
scaling parameters obtains by CBSA is 300 and 1.0, respectively. In 
the second case the rotation and scaling parameters are 100 and 
1/1.2, respectively. Thus the best solutions of CBSA are all accurate. 
In addition, all the 10 evolution curves of CBSA for Experiment 
III, Case II are given in Fig. 10. In one of the ten runs, CBSA is 
trapped into a local optimum, while in other 9 runs it all con-
verges to the optimal solution. The green line with legend “Truth” 
given in Fig. 10(g) is theoretical best fitness. The blue lines repre-
sent the 9 run that CBSA converges to the global optimum, while 
the red line indicates the run that CBSA is trapped into a local op-
timum.

The “disturbing the local optimum” makes a fine tuning for the 
global optimal solution with a random disturbance. Therefore, it 
cannot guarantee that a better solution can be found with the dis-
turbance. In the condition that the algorithm trapped to a local 
optimum and all the four dimensions of the local optimum are dif-
ferent from that of the global optimum, it will be difficult for CBSA 
to jump out of the local optimum. The reason is that the “disturb-
ing the local optimum” uses a random value to replace a randomly 
selected dimension of the current optimal solution. Therefore, only 
one dimension of the local optimum is modified in an operation. 
But it indeed enhances the exploration ability of BSA, improves the 
diversity of the swarm, and increase the probability of obtaining 
the optimal solution.

6. Conclusions

An edge-based target detection algorithm using CBSA is pro-
posed for UAVs in formation flight. A fast edge extraction method 
based on structured forest is adopted to obtain discriminating 
edges in aerial images. The concept of WEPF is adopted in the 
proposed algorithm to build an attraction pattern for image edges 
to attract the edge template. The original BSA algorithm is im-
proved with a “disturbing the local optimum” strategy, which 
can improve the global optimizing ability. The experimental re-
sults have demonstrated the superiority of CBSA. There is still 
some further work to do to reduce the computation time con-
sumption. Furthermore, the implementation of the proposed novel 
approach in embedded processors is also a focus of the future 
study.
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Fig. 5. Target recognition results obtained by the six evolutionary algorithms for Experiment II, Case I. (a) Test image, (b) edge template, (c) edge map of the test image 
extracted by Canny, (d) edge map extracted by the method introduced in Section 2.1, (e) edge potential distribution of (d), (f) matching results, and (g) evolution curves.
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Fig. 6. Target recognition results obtained by the six evolutionary algorithms for Experiment II, Case II. (a) Test image, (b) edge template, (c) edge map of the test image 
extracted by Canny, (d) edge map extracted by the method introduced in Section 2.1, (e) edge potential distribution of (d), (f) matching results, and (g) evolution curves.
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Fig. 7. Leader-follower formation flight platform used in Experiment III.
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Fig. 8. Target recognition results obtained by the six evolutionary algorithms for Experiment III, Case I. (a) Test image, (b) edge template, (c) edge map of the test image 
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Fig. 9. Target recognition results obtained by the six evolutionary algorithms for Experiment III, Case II. (a) Test image, (b) edge template, (c) edge map of the test image 
extracted by Canny, (d) edge map extracted by the method introduced in Section 2.1, (e) edge potential distribution of (d), (f) matching results, and (g) evolution curves.
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Fig. 10. Evolution curves of CBSA for Experiment III, Case II (10 times).
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