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Abstract
The canonical Pigeon-inspired optimization (PIO) possesses excellent local exploitation capability and can provide a very
fast convergence speed, but it is also easily trapped in local optima especially when facing complex problems. In order to take
full advantage of the superior local exploitation capability, and at the same time enhance the global exploration capability of
PIO, we present a modified PIO called high-level target navigation PIO (HTNPIO). The HTNPIO includes three strategies,
selective mutation strategy (SMS), levy-based map-compass strategy (LMS), and enhanced landmark strategy (ELS). In
the strategies, two kinds of mutation strategies and a simple levy-flight operator are performed. What’s more, an LMS-
ELS probability is proposed to balance the exploration and exploitation. In order to test the performance of the proposed
optimizer, HTNPIO is made comparisons with other 15 PIO and advanced heuristic algorithms on the IEEE CEC2017
benchmark problems and 5 real world optimization problems. Experimental results demonstrate that HTNPIO defeats all
the competitors on the CEC2017 benchmark problems including the extraordinarily competitive LSHADE, and also exhibits
extremely competitive performance in dealing with the real-world problems. Therefore, HTNPIO might be effective to
provide promising solutions in various function and industrial optimization problems.
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1 Introduction

Complex parameter optimization problems require more
intelligent and automated computations in various practical
industrial applications [1, 5–7, 11, 23, 25, 45, 53, 59]. Tra-
ditional gradient methods require function information and
are not suitable for solving non-convex optimization prob-
lems [76]. To work out multimodal and discontinuous opti-
mization problems more effectively, researchers have pre-
sented a large number of heuristic methods. Themost popular
heuristic methods include evolutionary algorithms and swarm
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intelligent algorithms, such as genetic algorithm (GA)
[15, 47, 66], differential evolution (DE) [14, 26, 51, 55], par-
ticle swarm optimization (PSO) [12, 39, 58, 69], ant colony
optimization (ACO) [19, 28, 50], artificial bee colony
(ABC) [17, 57], Cooperative Framework for Fireworks
Algorithm(CoFFWA) [74, 78], Moth-flame optimization
algorithm (MFO) [40, 48, 56, 67] and so on. Most heuris-
tic methods are inspired by the evolutionary law or survival
law of the the natural species, which have been proved to be
able to effectively solve the complex problems.

Pigeon-inspired optimization (PIO) is a new swarm intel-
ligent optimization method, which has attracted widespread
attention since proposed by Duan and Qiao [20] in 2014
for solving air robots path planning problems. Simulating
the homing behavior of pigeons, PIO utilized the map and
compass operator and landmark operator to find the solu-
tions of problems, and can provide a very fast convergence
rate, so it makes good sense for problems that require fast
convergence in a short time. One of the most popular appli-
cations of PIO is to solve unmanned aerial vehicle (UVA)
problems [18, 22, 24, 31, 32, 52, 64, 68]. Besides, due
to its simple concept and efficient search, PIO has also
been successfully applied to solve various industrial problems
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such as the air robots path planning problems [20, 73], feature
selection problems [2, 49], and other critical problems [3, 9,
21, 29, 37, 77, 79]. PIO has been demonstrated to provide
faster convergence speed and more accurate solutions than
PSO and DE in many optimization problems [2, 18, 31, 73].

However, in order to quickly converge, canonical PIO
kept all pigeons learning from the global best position
(Gbest) of the entire swarm and actively reduced the
population later in the iteration, which resulted in severe
premature convergence when fixing higher dimensional
problems. In order to better balance the exploration
and exploitation abilities, which have been proved as
two crucial characteristics of an algorithm [38], various
PIO variants have been developed in recent years. Li
and Duan [34] proposed a Bloch Quantum-behaved
Pigeon-inspired optimization (BQPIO) using Quantum
Evolutionary Theory for continuous optimization problems.
In this method, the locations of all the pigeons are encoded
by the probability amplitudes of quantum bits, and the
quantum rotation gates cause the motion of pigeons and
then attain diverse searching. BQPIO effectively improves
the search capabilities of the original PIO. However,
even if quantum behavior improves the performance of
BQPIO, the learning method of BQPIO is still single,
and the information interaction between particles is still
lacking. Inspired by Prey-Predator model, Duan et al [8,
31] presented a predator-prey pigeon-inspired optimization
(PPPIO) using predators to remove the bad solutions
with specific hunting rate for UAV three-dimensional path
planning and UAV ALS longitudinal parameters tuning
problems. PPPIO simulates the behavior of predator-prey
in nature, treating less-adapted individuals as predators and
other individuals as prey. Prey try to move away from the
predator to avoid falling into a local optimum. However,
this method cannot learn from the optimal value and is
very dependent on the selection of parameters, which is
less efficient. Sun et al [70] adopted a heterogeneous
comprehensive learning strategy to effectively improve
the performance of PIO. Two strategies, heterogeneous
comprehensive learning strategy and group-divided strategy
are employed. In the grouping strategy, two subgroups
divide the search effort, one focuses on the exploitation
and the other on exploration. In the heterogeneous
comprehensive learning strategy, if the fitness of the entire
population does not improve within a certain number
of generations, the heterogeneous comprehensive learning
strategy is executed, so that a specific dimension of
a vector is learned from the corresponding dimension
of another vector. HCLPIO enhances the comvergence
speed of PIO and has been successful in optimizing the
application of fractional-orders controllers. Nevertheless,
the search strategy of PIO does not provide a good
global search capability, so even if individuals learn among

different dimensions, there is no more potential learning
object. TAO and Li [27] proposed a cross pigeon-inspired
optimization with cognitive factor (CPIO-C) that adds
nonlinear incremental inertia weight to the velocity and
crosses the map-compass operator and landmark operator.
Specifically, perturbation coefficients based on sine and
cosine are added to the particle’s flight velocity, which
can realize a larger step search in the early stage and a
preciser search in the later stage compared with PIO. What’s
more, CPIO-C enables compass and landmark strategies to
cross-run with each other, which increases the continuous
optimization capability of PIO. Although the perturbation
coefficient provides PIO with a larger potential search space
and can improve the convergence accuracy to a certain
extent, the perturbation coefficient depends on parameter
settings, and the algorithm may have completely different
performances for different applications. In addition, the
learning strategy is limited, making it less likely to search
for the optimal value. Zhang and Duan [75] presented
a social-class pigeon-inspired optimization (SCPIO) to
optimize the multi-UAV path planning problem. SCPIO
divides the entire population into top-to-bottom classes,
and individuals in the lower classes can only learn
from the higher classes, thus achieving unidirectional
communications. The disadvantage of this method is that
information can only be transmitted in one direction, and the
efficient communications of population information cannot
be realized. Zhang and Duan [18] proposed a levy flight-
based pigeon-inspired optimization (LFPIO), employing a
Levy flight operator to improve the capability of random
search. Levy flight model is applied to adjust the step length
of pigeons in both map-compass operator and landmark
operator. By this method, pigeons randomly search in the
search space with different step length. LFPIO effectively
improves the global search capability of PIO, but it is still
prone to falling into local optima because the exemplar are
not high-quality. [64] employed cauchy mutation method
instead of uniform distribution to jump out of the local
optimum, and competed PSO, DE and PIO on the UAV path
planning problem. However, the learning mechanism is still
single, causing CMPIO to be unable to jump out of the local
optimum when faced with complex problems.

However, most of PIO variants still stuck in local optima
easily especially when facing complex multimodal prob-
lems. Actually, this is attributed to such a fact that there are
not sufficient interactions between superior pigeons, which
makes it difficult to acquire useful information exchanges
to explore more potential solutions. To enhance the inter-
action between individuals in the population and give full
play to the performance of the algorithm itself, employ-
ing single or ensemble mutation strategies (MSs) is a
recently trend method. [81] introduced MS “DE/rand/1”
to the brain storm optimization (BSO) for applications
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of ANNs, which enhanced the performance of BSO. [10]
adopted an ensemble MS including “DE/current − to −
lbest/1”, “DE/lbest/1”, “DE/lbest/2” to produce bet-
ter guidance for particles. [41] applied DE/rand/1 to
moth-flame optimization (MFO), where the elite moths
operate MS to generate flames, and then the flame guided
the moths to explore the potentiality, thus establishing a
positive feedback channel. It maintained the good exploita-
tion performance and enhanced the global search capability
of MFO. [43] introduced a differential mutation strat-
egy to increase the population diversity and enhance the
global exploration performance of particle swarm opti-
mization (PSO), along with a multidimensional compre-
hensive learning strategy. Inspired by MS, [80] modi-
fied a solution search equation for the employed bee
phase of the artificial bee colony algorithm (ABC). [76]
applied a composite MS to salp swarm algorithm (SSA)
to generate trial vectors. In CMSRSSSA, for each indi-
vidual, three MSs “DE/rand/1”, “DE/rand/1/bin” and
“DE/rand/2/bin” are simultaneously executed to make
a competition to select a superior one as a trial vector,
which enhanced the exploration and exploitation of SSA.
CMSRSSSA is demonstrated to outperform the winners of
the related IEEE CEC competition.

The success of the above algorithms is jointly attributed
to the inspiration of MS. However, since each algorithm
has special properties, MSs should be combined with
the specific algorithms in unique ways. Dialectically,
finding a proper and efficient way to implement MSs can
greatly enhance the performance of the specific algorithm,
otherwise it will only waste computing resources. For
example, PIO has the weakness that it is easy to fall
into local optimum, so the MSs with more random search
capabilities are much more suitable for PIO.

In this paper, a high-level target navigation pigeon-
inspired optimization (HTNPIO) is presented with three
strategies: selective mutation strategy (SMS), levy-based
map-compass strategy (LMS), and enhanced landmark
strategy (ELS). The selective mutation method (“DE/

rand/1/bin” or “DE/rand/2/bin”) is utilized to generate
high-level targets to improve the exploration ability of
PIO, and the levy-flight method is implemented in
LMS. Moreover, the landmark operator is modified
in HTNPIO, in order to take advantages of PIO’s
local exploitation capability. In addition, an LMS-ELS
probability (LP) mechanism is proposed to maintain a
trade off between exploration and exploitation. Visually, the
overview diagram of HTNPIO is illustrated in Fig. 1, and the
main contributions of this paper are summarized as follows:

1. Apply a selective mutation strategy (SMS) to allow
substantial information interactions between different
elite pigeons to explore more potential solutions.
In SMS, DE/rand/1/bin or DE/rand/2/bin, and
crossover method is adopted to generate high-level
exemplars (targets). Pigeons learn from high-level
targets instead of single global best. Therefore, the
exploration capability of PIO is enhanced.

2. A simple levy-flight operator is introduced in levy-
based map-compass strategy (LMS) to enhance the
random search capability of PIO.

3. In order to give full play to the original exploitation
and fast converge ability of PIO, the landmark operator
of PIO was modified and executed in each iteration
crossing with LMS.

4. An LMS-ELS probability (LP) mechanism was pro-
posed to control the execution frequency of the LMS
and ELS in each generation. It effectively improves the
balance between the exploration and exploitation.

5. The reinforced HTNPIO defeats all the competitors on
CEC2017 benchmark problems including the extremely
competitive LSHADE, and achieves a best-in-class
performance in dealing with practical optimization
problems, which suggests that HTNPIO has broad
applicable prospects.

The remainder of the paper is arranged as follows.
Section 2 presents the related work, introducing the
canonical PIO, DE, and levy flight model. Section 3

Fig. 1 Overview diagram of
HTNPIO
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demonstrates the proposed HTNPIO in detail. Section 4
analyzes the computational complexity of the presented
HTNPIO. Section 5 visualize the performance of strategies
of HTNPIO. The experimental results of 30 CEC2017
benchmark instances and 5 real world problems are given
in Sections 6 and 7, respectively. Discussion is in Section 8.
Conclusion is provided in Section 9.

2 Related works

2.1 Pigeon-inspired optimization

Enlightened by homing pigeons, Duan and Qiao first
proposed PIO in 2014, which contains two operators:
the map-compass operator and landmark operator. In the
early stage of iterations, the map-compass operator is
conducted to provide the exploration for the solutions; in
the later stage, PIO utilizes landmark operator to accelerate
convergence. The maximum iterative number of the two
operators are tmax

1 and tmax
2 , respectively. Note that the

position of a pigeon represents a probable solution of
the objective function, and its corresponding fitness value
represents the objective function value. For instance, for
minimum optimization problems, a solution with smaller
fitness value represents a better position. Initially, we use
formulas (1) and (2) to initialize the position and velocity of
pigeons.Xi,d and Vi,d are the positions and velocity of the i-
th pigeon in the d-th dimension, respectively. Bmin andBmax

are the minimum and maximum bound ofXi,d , respectively.
“rand” indicates an evenly distributed random number in
the range [0,1].

Xi,d = Bmin + rand · (Bmax − Bmin) (1)

Vi,d = rand (2)

2.1.1 Map-compass operator

For the t-th generation, t ∈ [1, tmax
1 ], the map-compass

operator is conducted. In this strategy, the velocity of
pigeons are disturbed by an attenuation factor e−R·t , where
the attenuation speed is determined by the map-compass
factor R. The position and velocity of the i-th pigeon in the
t-th generation are updated by the following formulations
(3) and (4):

Vi(t + 1) = Vi(t) · e−R·t + rand · [Xg − Xi(t)] (3)

Xi (t + 1) = Xi + Vi (t + 1) (4)

where Xg is the global best position of pigeons obtained
so far, and rand is a random number uniformly distributed
between 0 and 1.

2.1.2 Landmark operator

When tmax
1 < t ≤ tmax

2 , the landmark operator is
implemented. In the landmark operator, the number of
pigeons NP is consistently decreased in every generation
based on formula (5) as follows:

NP (t + 1) = NP(t)

2
(5)

The pigeons fly towards their destination by following
landmarks in this strategy. If pigeons are familiar with
the landmarks, they will directly fly to the destination. If
they are away from the destination or unfamiliar with the
landmarks, they will follow the pigeons who are familiar
with the landmarks. Xt

c stands for the landmark and is the
center of all pigeons position at the t-th iteration. The half
of the pigeons that are away from the destination will follow
the center pigeon. Thus, the pigeons can jointly fly to their
destination quickly.

The position updating rule for the i-th pigeon at the t-th
iteration can be given by:

Xc(t) =
∑NP(t)

1 Xi(t)f (xi(t))

NP (t)
∑NP(t)

1 f (xi(t))
(6)

f (xi(t)) =
{

1
pt

i+ε
, f orminimumproblems

pt
i , f ormaximumproblems

(7)

Xi (t + 1) = Xt
i + rand · [Xt

c − Xi(t)] (8)

Here, f
(
xt
i

)
is the quality of the pigeon’s position, and pt

i

is the fitness value of the i-th pigeon in the t-th generation.
rand is a uniformly distributed number between 0 and 1.
When t > tmax

2 , the iterative search for the PIO algorithm is
end.

2.2 Differential evolution algorithm

Differential evolution (DE) algorithm presented by [55] is
an efficient evolutionary computing method for working out
various complex optimization problems. Three strategies,
mutation, crossover and selection are proposed in DE
algorithm. DE algorithm intends to evolve a population ofN
individuals in D-dimension search space towards the global
optimum by applying the mutation, crossover, and selection
strategy.

2.2.1 Mutation strategy

The mutation strategy utilizes existing individuals Xi =[
xi1, xi2, · · · , xi,d

]
, i ∈ {1, 2, · · · , N} to generate mutant

vector Vi = [
vi1, vi2, · · · , vi,d

]
, i ∈ {1, 2, · · · , N}.

Usually, there are five differential evolution strategies [55].
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Particularly, “DE/rand/1/bin” and “DE/rand/2/bin”
are the used mutation strategies in this paper, described as
follows, where r1, r2, r3, r4 and r5 are five incompatible
integers randomly selected from [1, N ], which are also
different from the ith individual, t is the number of
generation.
DE/rand/1/bin:

V ectort
i = Xt

r1 + F · (Xt
r2 − Xt

r3) (9)

+F · (Xt
r4 − Xt

r5)

DE/rand/2/bin:

V ectort
i = Xt

i + F · (Xt
r1 − Xt

i ) (10)

+F · (Xt
r2 − Xt

r3)

here, F is the mutation operator that determines the
magnification ratio.

2.2.2 Crossover strategy

The next binomial crossover strategy is utilized to produce a
trial vector Ui = [

ui1, ui2, · · · , ui,d

]
, i ∈ {1, 2, · · · , N}

and the trial vector can either be the original vector Xi or
its mutant vector Vi depending on the following formulation
(10), where i is the individual serial number, and d is the
dimension serial number:

ui,d =
{

vectori,d , (rand ≤ CR) or d = drand

xi,d , (rand > CR) or d �= drand
(11)

where ui,d is the i-th trial vector at the d-th dimension, rand

is a decimal uniformly generated from [0, 1], and CR ∈
[0, 1] is the crossover rate. drand is the number randomly
chosen from 1 to D, ensuring that Ui is not same as Xi in
the d-th dimension.

2.2.3 Selection strategy

In the selection strategy, Ui and Xi are compared by its
fitness value to select the better one as the Xi in next
generation, i is the current number of the individual, and
t + 1 indicates the next generation. Xi (t + 1) is updated by
(12) for the minimum problems.

Xi (t + 1) =
{

Ui(t), f [Ui(t)] < f [Xi(t)]
Xt

i , f [Ui(t)] ≥ f [Xi(t)] (12)

where f [Ui(t)] and f [Xi(t)] represent the fitness value of
Ui(t) and Xi(t), respectively.

2.3 Levy-flight model

Recent diverse heuristic algorithms have exhibited the
advantages of Levy distribution [30, 33, 35, 36, 44, 54, 63],

which models a random walk with frequent small steps and
occasional big steps. Because the probability density of the
step sizes of levy-flight is heavy-tailed, the characteristic
allows the search to jump out of a local optimum and
start with a new region in search space. Typically, a levy-
flight based motion pattern goes like: a particle moves
locally, walking small steps frequently, and performs big
steps occasionally, and then moves locally again. The
mathematical model of the levy flight distribution is defined
as follows:

χ = λ

‖θ‖ 1
η

, λ ∼ N(μ, σ 2
λ ), θ ∼ N(μ, σ 2

θ ) (13)

σλ =
[
�(1 + η) · sin(

πη
2 )

2
η−1
2 · �(

1+η
2 ) · η

] 1
η

(14)

In this paper, the decision parameters are as follows:

μ = 0, σθ = 1, η = 0.1 (15)

3 High-level target navigation
pigeon-inspired optimization

The basic PIO obtains the optimum by following the
current leader and updating the followers. If the leader
is fallen into local optima, the followers are likely to
stuck in local optimum. Therefore, the performance of
PIO depends largely on the quality of exemplars. To
improve the quality of the exemplars while maintaining
the exploitation ability of PIO, HTNPIO is presented
with three strategies, selective mutation strategy (SMS),
levy-based map-compass strategy (LMS), and enhanced
landmark strategy (ELS). First two strategies can make
different pigeons obtain frequent interactions for increasing
the capacity of global search. The third strategy commits to
accelerate convergence. In SMS, we apply two alternative
mutation strategies, crossover, and selection operations for
the random personal best pigeons (PBs) to build high-
level targets. In LMS, the target can be employed to guide
the pigeons for exploring more promising solutions, while
levy-flight model is introduced to enhance the randomness.
In ELS, landmark operator of PIO is operated iteratively
to enhance the exploitation. What’s more, a linear LMS-
ELS probability (LP) mechanism is proposed to balance the
exploration and exploitation. Owing to the navigation of
the targets, the pigeons of finding better solutions can be
evolved into the new PBs. Such PBs can be further used to
produce higher-level targets. In this way, targets and PBs
could efficiently promote each other so as to build a positive
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feedback between them. The details of the HINPIO are
given as follows.

3.1 Initialization

In initialization phase, the positions and velocities of
pigeons are initialized as same as (1) and (2). Moreover,
the targets are initialized as follows, specificly, indices ini

represents the initial generation, and d is the number of the
current dimension:

T ini
i,d = Bmin + rand · (Bmax − Bmin) (16)

where Bmax and Bmin are maximum value of bound and
minimum value of bound, respectively.

3.2 Selectivemutation strategy (SMS)

Inspired by DE algorithm, we adopted mutation, crossover,
and selection mechanism to establish connection between
different PBs to build the guiding targets. The targets
are random, preferable, and rapidly changed to guarantee
the diversity and quality of the population. Targets can be
divided into three ranks, namely primary targets (PT s),
intermediate targets (MT s), and high-level targets (T s).
PT s are first generated by mutation strategy, and evolve
into MT s after crossover. Finally, MT s are filtered to
become the T s. Three steps of construction are explained in
details as follows.

3.2.1 Mutation

Mutation strategy is first utilized to generate primary tar-
gets (PT s). Two mutation strategies “DE/rand/1/bin”
and “DE/rand/2/bin” can be randomly selected to gen-
erate PT s by a mutation factor ψ for each individ-
ual. What’s more, the vector used to generate the tar-
get must be superior because we cannot generate targets
from mediocrities because we need effective communi-
cations to economize time and space when facing com-
plexities. To balance performance and costs, we choose
personal best positions (PBs) of each pigeon PBi =
[PBi1, PBi2, . . . , PBi,d ], i ∈ [1, 2, . . . , NP ] as the basis
to implement mutation strategy, where i is the current
pigeon number, d is the current number of dimension of
the pigeon, and NP is the total number of the pigeons. In
initialization phase, we let every pigeon be a PB, with gen-
erations increasing, only the pigeons with better positions
can evolve into personal best ones. The primary targets are
generated by the following selective equation:

PT t
i = PBt

r1 + F1 · (PBt
r2 − PBt

r3) (17)

+F2 · (PBt
r4 − PBt

r5), ci(t) > ψ

PT t
i = PBt

i + F3 · (PBt
r1 − PBt

i) (18)

+F4 · (PBt
r2 − PBt

r3), ci(t) < ψ

where r1, r2, r3, r4, r5 are different numbers in the range
[1, NP ], which are also not the same as i. PBr1−r5 denote
five personal best pigeons that randomly selected from the
entire pigeon swarm. ci(t) is a uniform random number
in [0, 1] for individual i in the t-th generation. Fk, k =
[1, 2, 3, 4] is the mutation operator that determines the
magnification ratio between the vectors. In HTNPIO, F1, F2

and F3 are taken as different uniformly distributed random
number for each individual i to balance the exploration and
exploitation, in this paper, F4 is preset as 1.

Additionally, after the mutation, a boundary process
method is introduced for each dimension of a PT who
searches out of the search sapce as (19). In (19), t is the
current iteration number, and d is the current dimension,
and Bmax and Bmin are maximum and minimum value of the
boundary, respectively.

PT t
i,d = Bmin + rand · (Bmax − Bmin) (19)

Note that in the i-th PT vector, only the variables that
search out of boundary perform (19).

3.2.2 Crossover

Intermediate targets (MT ) are selected from PBs and PT s

by the binomial crossover strategy as (21). In (21), i ∈
[1, 2, . . . , NP ] denotes the current pigeon number, d is
the current dimension number, and drand is the number
randomly chosen from 1 to D.

MTi,d =
{

PBi,d , (rand ≤ CR) or d = drand

PT i,d , (rand > CR) and d �= drand
(20)

where MT i = [MT i,1, MT i,2, . . . , MT i,d ], i ∈
[1, 2, . . . , NP ]

CR =
{
0.5 × (1 + rand) , ci(t) > ψ

0.9 , ci(t) < ψ
. (21)

where rand is a uniformly number in the range [0, 1].
As is seen, for for different mutation strategy, value of
CR is different. For (17) and (18), CR is set as (19)
correspondingly. This can guarantee each mutation method
is utilized efficiently, which could maintain the diversity of
the pigeon group.

3.2.3 Selection

Selection is the last step of the first strategy, which aims
to filter out high-level targets from the intermediate targets.
The target group is also a dynamic population, old targets
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must be substituted by better ones. Selection part executes
the following functions to filter out the final targets.

T t+1
i =

{
T t

i , f (T t
i ) < f (MT t

i )

MT t
i, f (T t

i ) ≥ f (MT t
i )

(22)

where minimization problems are considered, f (T t
i ) is the

fitness value of the i-th target in the t-th generation, and
f (MT t

i ) is the fitness value of the i-th intermediate target
in the t-th generation. The smaller fitness value indicates
the closer distance to the global best position so that this
position will be selected as the new target for the next
generation. T t

i is the i-th target in the (t + 1)-th generation.
Selection strategy can make sure that pigeons will always
follow the targets with higher performance.

3.3 Levy-basedmap-compass strategy (LMS)

In levy-based map-compass strategy (LMS), pigeons fly
towards the targets and explore potential positions around
the targets. LMS is modified based on the original map-
compass strategy of PIO. Instead of a stable value R = 0.2
in PIO, the map-compass factor Rt

i,d in HTNPIO is set as
a uniform random number in [0, 0.25] for each variable d

of i-th pigeon, and varies with iteration t . Second, the levy-
flight model is introduced to LMS to enhance the random
search ability. Considering NP homing pigeons searching
within in a D-dimensional search space, the i-th pigeon’s d-
th (d ∈ [1, D]) dimensional position and velocity in the t-th
generation are updated according to (23) and (24):

V t+1
i,d = V t

i,d + rand · (T t
i,d − Xt

i,d) (23)

Xt+1
i,d = T t

i,d × (1 − e
−Rt

i,d ·t
) + χ · V t+1

i,d (24)

where Vi = [Vi,1, Vi,2, . . . , Vi,d ], i ∈ [1, 2, . . . , NP ]
is the velocity of the ith pigeon, and Xi =
[Xi,1, Xi,2, . . . , Xi,d ], i ∈ [1, 2, . . . , NP ] indicates the ith
pigeon’s position within the D-dimension search space, and
d ∈ [1, D]. Ti = [Ti1, Ti2, . . . , Ti,d ], i ∈ [1, 2, . . . , NP ],
is the ith high-level target. Rt

i,d is the map-compass factor
for the dth variable of the ith pigeon in t-th generation.
Furthermore, χ is the levy-flight step length.

The concept map of LMS is shown in Fig. 2, where
Pbesti is the personal best position of the i-th pigeon Xi ,
i ∈ [1, NP ] from the entire pigeon swarm. SMS can use
different Pbests to construct a high-level target; then, from
the concept map, the pigeon X can fly towards the target
position to explore better positions around this target via
LMS. Due to the two strategies, the pigeon may explore a
new potential search space in this iterative process.

Gbest

Pbest3

Pbest2

Pbest1

O

Target

Fig. 2 Schematic diagram of the LMS

3.4 Enhanced landmark strategy (ELS)

PIO utilized map-compass strategy to enhance local
exploitation capabilities and accelerate convergence in the
later search stage. In original map-compass strategy of
PIO, center of the current population is treated as the
landmark, all the pigeons move towards the landmark,
and the population is reduced with iteration. This method
is efficient to exploit accurate solutions, but it reduces
population diversity. To address the problem, in ELS, we no
longer use the center of the entire population as a landmark,
but select some elites of the targets and use their center
as a landmark to navigate the movement of the pigeons.
Specifically, the targets are divided into n groups with
each group m pigeons, then, pick an elite from each group
according the fitness value, and the center position of these
elites is calculated as Ct

e, where t is the current iteration
number. The selection of elite targets in groups is performed
in every generation, and only when a target defeats the
elite of the current group, can it become the new elite of
this group. Note that the group is never changed. What’s
more, we make ELS and LMS cross in each generation,
instead of only executing ELS in later iterations. In this way,
the exploration capabilities of PIO is effectively retained.
Additionally, in ELS, pigeons not only follow Ce, but also
adjust their routes according to the corresponding targets.

In ELS, i indicates the current pigeon number, and d is
the current dimension, the updating rule of the velocity Vi,d

and position Xi,d is as follows:

V t
i,d = V t−1

i,d + rand ·
(
T t

i,d − Xt−1
i,d

)
(25)

+rand · (Ct
e − Xt−1

i,d )

Xt
i,d = Ct

e + V t
i,d (26)

Notably, for LMS and ELS, the boundary process is not
the same as that of primary targets. If a pigeon searches out
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Fig. 3 Main idea of HTNPIO

Early stage Late stageGlobal best Global best

of boundary, it will be pulled back to the upper or lower
border as follows:

Xt
i,out =

{
Bmax, Xt

i,out > Bmax

Bmin, Xt
i,out < Bmin

(27)

3.5 LMS-ELS probability mechanism

Further, we propose an LMS-ELS probability (LP) mecha-
nism in HTNPIO to balance the exploration and exploita-
tion. The LP mechanism is a linearly incremental probabil-
ity to control the execution number of the LMS and ELS in
each generation. The LP mechanism is described as follows:

If randt
i > LP

{
yes, execute LMS

no, execute ELS
(28)

The linearly incremental LP is calculated by:

LP = t

tmax
, AP ∈ [0, 1] (29)

where i ∈ [1, NP ], and randt
i denotes a uniformly

distributed number in [0, 1] for the i-th pigeon in the t-th
generation, t and tmax mean the current generation and the
maximum generation, respectively.

In the early iterative process, the probability value is
far less than 1, so LMS has more execution opportunities
to provide the sufficient exploration in the entire solution;
conversely, in the lately process, the probability value
is extremely high to focus on ELS for accelerating the
convergence speed. Because of the LP probability, the
proposed HTNPIO can achieve the efficient compromise
between exploration and exploitation. Additionally, the
main idea of the proposed HTNPIO is shown in Fig. 3. The
figure illustrates that pigeons can explore as many potential
areas as possible in the fore-stage iteration, while in the
later stage, pigeons gathered to exploit the current optimal
positions. Fig. 4 Flowchart of the complete HTNPIO
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3.6 Procedure of HTNPIO

The complete flowchart of HTNPIO is in Fig. 4. The
corresponding Pseudo code is given in Algorithm 1. The
pseudo code of HTNPIO is completely showed in the chart.
In Algorithm 1, f [] means the objective function value
while Gbest represents the global best position. And the
value of CR is reset at the beginning of every generation to
promise the capacity of global search.

Algorithm 1 HTNPIO.

4 The computational complexity analysis

For decreasing computational cost when resolving practical
optimization issues, it is hoped that the computational
complexity of the algorithms are as low as possible. In this
section, the computational complexity of HTNPIO will be
calculated step by step.

First, number of the population (NP ), dimension of the
functions (D), and number of iterations (T/2) should be
reaffirmed for the complexity calculation of HTNPIO. It
should be noted that with the same maximum number of
function evaluations, HTNPIO evaluates both targets and
pigeons in an iteration, so the iteration number of HTNPIO
is half of that of PIO. Therefore, the number of iterations of
PIO is T .

In the initial phase, HTNPIO initializes both targets and
pigeons, thus, the complexity is O(2NP × D), which is as
twice as that of classical PIO.

In the main loop of HTNPIO, SMS selects (17) or
(18) to generate primary targets, and adopts crossover and
selection strategy to produce high-level targets. The compu-
tational complexity of selected mutation strategy, crossover,
and selection is computed as O [(T − 1)/2 × NP × D],
O [(T − 1)/2 × NP × D], O [(T − 1)/2 × NP × D],
respectively. Therefore, the computational complexity
of SMS is O [3(T − 1)/2 × NP × d]. Further, ELS or
LMS is selected by LP mechanism to update the loca-
tion of pigeons, thus the computational complexity is
O [(T − 1)/2 × NP × D].

Therefore, the total computational complexity of HTN-
PIO is O(2×T ×NP ×D). The computational complexity
of conventional PIO can be simplified asO (T × NP × D).
It can be concluded that the computational complexity of
HTNPIO is with the same order of magnitudethat as that of
PIO. Considering that when solving real-world optimization
issues, the computational cost is rather high, so such extra
time cost can be acceptable.

5 Visual simulation of the performance
of strategies of HTNPIO

In order to prove the effectiveness of HTNPIO’s strategies,
we visualize the search behavior of HTNPIO on several 2D
function graphs, three 2 − D functions are chosen from
CEC2017 test suite. The three functions are the 2−D shifted
and rotated rastrigin’s function, 2 − D shifted and rotated
schaffer’s function, given by

z(x, y) =
D∑

i=1

(x2
i − 10cos(2πM(xi − o5i )) + 10) (30)
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Fig. 5 (a) The 3-D surface and contour distribution of the 2-D multimodal rastrigin’s function. (b) Contour map of the progressive searching
performance of PIO. (c) Contour map of the progressive searching performance of the proposed HTNPIO

Figure 5(a) shows the three-dimensional graphics and
contour distribution of the 2 − D shifted and rotated
Rastrigin’s function, which is the 5th function of CEC2017.
It is obvious that there are lots of local optima around the
global minimum (x = −27, y = 56, z = 500), making
searching groups easily get stuck in the local optima.
Figure 5(b) and (c) separately demonstrate the iterative
progression step by step performed by conventional PIO
and the proposed HTNPIO with thirty individuals. The
maximum iteration is set to 20, and the performance of the
algorithms will be dynamically displayed at the 1-th, 5-th,
10-th, and 20-th iteration.

Figure 5(b) shows the convergence behavior of the
conventional PIO. In the figure, the red five-pointed star
is the preset global optima. The yellow six-pointed star is
the obtained global optima. The black spots represent the
personal best pigeons, and the green X is the center pigeon.
In PIO, the global best position is found around (−10, 25)
and has been trapped into local optima. This is because
the monotonous global optimal learning strategy leads to
the deficiency of the population diversity, therefore cannot
effectively guide pigeons to jump out of the local optima.

Figure 5(c) visualizes the searching performance of the
proposed HTNPIO. In Fig. 5(c), the red five-pointed star
indicates the preset global optima, and the yellow six-
pointed star is the obtained global optima. The black spots
are the personal best pigeons, the orange spots represent
the high-level targets, and the orange star are the head
pigeons. We can see that in HTNPIO, the construction and
the dispersion strategies make the targets and the pigeons
decentralized throughout the iteration. Even though the
global best position is obtained, the high-level targets can
still navigate pigeons to explore potential places and create
population diversity in the later iteration. As can be seen
in the figure, at the 1-th iteration, the global best pigeon is
far from the global optima (x = −27, y = 56). However,
at around 5-th iteration, several high-level targets are
generated near the global optima, and successfully navigate
pigeons to explore the global optima. What’s more, even
the ELS allows more pigeons to learn from the elites, the
population diversity is still retained thanks to the instruction
of the SMS and the LMS. Ultimately, by comparison, we
can see that the three strategies we proposed in HTNPIO are
effective in improving the global search capability.
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Fig. 6 (a) The 3-D surface and contour distribution of the 2-D multimodal Scaffer’s F7 function. (b) Contour map of the progressive searching
performance of PIO. (c) Contour map of the progressive searching performance of the proposed HTNPIO
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Fig. 7 (a) The 3-D surface and contour distribution of the 2-D multimodal Schwefel’s function. (b) Contour map of the progressive searching
performance of PIO. (c) Contour map of the progressive searching performance of the proposed HTNPIO

Figure 6(a) displays the three-dimensional graphics and
contour distribution of the 2−D shifted and rotated Schaffer’s
F7 function, which is the 6 − th test function of CEC2017.
The global optimal of the function is set around (73, −27).
Figure 6(b) and (c) visualizes the searching performance of
conventional PIO and the proposed HTNPIO, respectively.

In Fig. 6(b), the conventional PIO approached the global
best position at the 10 − th iteration, however, because the
local optimal points become complicated near the global
optima, the conventional PIO can not accurately find the
global best position. The explanation of the phenomenon
is the decreasing of the population diversity, therefore PIO
is trapped into local optima. Differently, the Fig. 6(c)
shows that the proposed HTNPIO successfully searched
the global best position within 20 iterations. The same
phenomenon can be found in Fig. 7. This is attributed
to the appropriate combination of the proposed SMS,
LMS and ELS, enhancing exploration and exploitation
ability.

6 Experimental results on CEC2017
benchmark

The CEC2017 benchmark suite [4] is a proven effective
test set for evaluating single swarm intelligent algorithms.
This test set contains 30 enormously complex shifted
rotated instances including unimodal, multimodal, rotated
and shift rotated hybrid and composition problems. The
search range of each function is in the range [-100,100].
Table 1 introduces the information of the 30 functions in
CEC2017 benchmark.

In order to further evaluate of the performance of
HTNPIO, five state-of-the-art PIO variants including
conventional PIO [20], BQPIO [34], HCLPIO [70], CPIO-
C [27], and LFPIO [18] and other 10 algorithms with
excellent performance involving DEBSO [81], HCLPSO
[46] , PSO-DLS [71], SADE [51], LSHADE [60], MPEDE

[26], DELMFO [41], HCLDMSPSO [65], CMSRSSSA
[76], and EESHHO [42] are fairly run to make comparisons
on the CEC2017 test benchmarks with 30 − D and 50 − D

problems. For all algorithms, the maximum number of the
fitness evaluations (maxFEs) is given as 10000 × D. The
population size of the applied algorithms is 30. What’s
more, the maximum number of iterations is assigned to
the maxFEs divided by the population size. Therefore, for
the aforesaid algorithms excluding LFPIO, HTNPIO and
DELMFO, their maximum iterative search number is set to
10000 × D/30. Because HTNPIO executes the evaluation
for both each pigeon and its corresponding high-level target
in each iteration, the maximum iterative number is set to
10000D/60. Similarly, for DELMFO, each moth and its
corresponding flame are both evaluated in a generation, so
the maximum number iteration of DELMFO is also set
to 10000D/60. As for LFPIO, the individuals are updated
twice in an iteration, therefore, the maximum iteration
number of LFPIO is also calculated as 10000D/60.

6.1 Indicators of comparisons

The error mean (Mean) and standard deviation value (STD)
are utilized as evaluation indicators for the above compared
algorithms. They are defined as follows:

Error = f (Gbest) − optima (31)

Mean =
∑runs

1 Error

runs
(32)

ST D =
√

sumruns
1 [f (Gbest) − mean]2

runs − 1
(33)

here, error is the difference between the searched global best
fitness value and the optima of the function. Mean refers
to the average value of the errors with the multiple running
number on each CEC2017 benchmark function while STD
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Table 1 CEC2017 Benchmark
instances with search range:
[-100, 100]

Types No. Instances

Unimodal f1 Shifted and Rotated Bent Cigar Instance 100

f2 Shifted and Rotated Sum of Different Power Instance 200

f3 Shifted and Rotated Zakharov Instance 300

Multimodal f4 Shifted and Rotated Rosenbrock’s Instance 400

f5 Shifted and Rotated Rastrigin’s Instance 500

f6 Shifted and Rotated Expanded Scaffer’s F6 Instance 600

f7 Shifted and Rotated Lunacek Bi Rastrigin Instance 700

f8 Shifted and Rotated Non-Continuous Rastrigin’s Instance 800

f9 Shifted and Rotated Levy Instance 900

f10 Shifted and Rotated Schwefel’s Instance 1000

Hybrid f11 Hybrid Instance 1 (N=3) 1100

f12 Hybrid Instance 2 (N=3) 1200

f13 Hybrid Instance 3 (N=3) 1300

f14 Hybrid Instance 4 (N=4) 1400

f15 Hybrid Instance 5 (N=4) 1500

f16 Hybrid Instance 6 (N=4) 1600

f17 Hybrid Instance 7 (N=5) 1700

f18 Hybrid Instance 8 (N=5) 1800

f19 Hybrid Instance 9 (N=5) 1900

f20 Hybrid Instance 10 (N=6) 2000

Composition f21 Composition Instance 1 (N=3) 2100

f22 Composition Instance 2 (N=3) 2200

f23 Composition Instance 3 (N=4) 2300

f24 Composition Instance 4 (N=4) 2400

f25 Composition Instance 5 (N=5) 2500

f26 Composition Instance 6 (N=5) 2600

f27 Composition Instance 7 (N=6) 2700

f28 Composition Instance 8 (N=6) 2800

f29 Composition Instance 9 (N=3) 2900

f30 Composition Instance 10 (N=3) 3000

denotes the standard deviation. The number of runs is set
to 30.

Moreover, we conducted the Wilcoxon signed-rank test
[16] with a significance level of 0.05 to compare the
proposed method with each of the other methods. If the
p-value on the Wilcoxon signed-rank test is less than
0.05, a significant difference between the two comparative
algorithms will occur. Otherwise, there is no significant
difference between them.

6.2 Parameters setting

Table 2 displays the main parameters of each algorithm
from the literature. Most of the parameters come from
literature recommendations, and a few are adjusted for
better performance. For example, in the CPIO-C method,
instead of a = 0.7 and b = 0.1, we use a = b = 0.5. This

is because a = b = 0.5 can provide better performance for
CPIO-C on the CEC2017 benchmark. Furthermore, [A∼B]
represents that A linearly decreases or increases to B with
the increasing of generation. Precisely, [A∼B] denotes two
possible cases. If A>B, A will dynamically decrease to B
with the number of the iteration increasing; otherwise, A
will increase to B.

6.3 Comparison with PIO algorithms

The proposed HTNPIO algorithm is made comparisons
with five PIO algorithms (PIO, BQPIO, CPIO-C, HCLPIO,
LFPIO) on the 30 CEC2017 problems with 30-D,50-D in
this section. For each indicator of an instance in Tables 3
and 4, the best result is bolded. For the six PIO algorithms,
their population size and the maximum number of the
fitness evaluations (FEs) are uniformly set as mentioined
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Table 2 Pivotal Parameter
Settings within 100-D in the
range [-100,100]

Algorithms Year Parameter Settings Ref.

PIO 2014 R = 0.3 [20]

BQPIO 2014 R = 0.2, m = [1 ∼ 0.8] [34]

HCLPIO 2018 R = 0.2, ap = 0, bp = 0.25 [70]

CPIO-C 2018 R = 0.3, a = b = 0.5, c = 1.2495, [27]

d = 1.0500, e = 2, f = −0.7, n = 0.95

LFPIO 2018 R = 0.2, rou = 0.0001, r = [0 ∼ 1] [18]

SADE 2009 Cr = 0.3, Strategy = 4, K = 4, LP = 50 [51]

LSHADE 2014 arc rate = 2.6, min popsize = 4 [60]

H = 5

HCLPSO 2015 a = 0, b = 0.25, c1 = [2.5 ∼ 0.5], [46]

c2 = [0.5 ∼ 2.5], W = [0.99 ∼ 0.2] ,
K = [3 ∼ 1.5], g1 = g2 = 15

DEBSO 2015 pr0 = 0.2, pr1 = 0.8, pr11 = 0.4, [81]

pr21 = 0.5, M = 5, CR = 0.5, F = 0.5

MPEDE 2016 Ng = 20, CRm = 0.5, Fm = 0.5, l = 0.2 [26]

PSO-DLS 2017 c1 = c2 = 1.49445, N = 3, [71]

M = 10, W = [0.9 ∼ 0.4]
DELMFO 2018 CR = 0.7, R = rand(), [41]

σ = 0.6, δ = 0.15

HCLDMS 2021 W = [0.99 ∼ 0.2], c1 = [2.5 ∼ 0.5], [65]

-PSO c2=[0.5∼2.5]

EESHHO 2021 All parameters adaptive [42]

CMSRSSSA 2021 c1 = c2=[0,1], F1=1, CR1=0.1, [76]

F2=0.8, CR2=0.12,F3=1, CR3=0.9

HTNPIO CR1 = 0.5(1 + rand), F1 = rand,

CR2 = 0.9, F2 = 1, R = 0.25rand(1, D)

μ = 0, σθ = 1, η = 0.1

above, and the maximum number of the FEs is regarded
as the termination criterion. Each of the six PIO methods
repeatedly run 30 times on each CEC2017 function. The
mean and the std value of errors obtained by each algorithm
for 30 runs on each CEC2017 function are reported. Rank
of each algorithm on each function is also calculated and
displayed in the tables. Moreover, the Wilcoxon test is
performed and shown following the rank value, a “(+)”
represents HTNPIO is significantly better than the specific
algorithm on the current problem, a “(-)” means HTNPIO
is significantly worse than the specific algorithm on the
current problem, while a “(≈)” suggests there are no
significant difference between two algorithms.

Table 3 shows that HTNPIO provides the first final
rank on 30 CEC2017 instances with 30 − D problems.
The newly proposed HCLPIO wins the second place and
LFPIO obtains the third rank. For 30 instances with
30 − D, HTNPIO ranks first among PIOs for 26 times
out of 29 functions, exhibiting extremely competitive
performance, while HCLPIO provides the best solutions
on the multimodel function F7, F8, and F10. However, the

Wilcoxon test suggests HCLPIO only outperforms HTNPIO
on F7, and F10, and shows similar performance with
HTNPIO on F8. Additionally, HTNPIO also ranks behind
CPIO-C and LFPIO on F10. Except for the 3 function, the
Wilcoxon test showed that HTNPIO outperformed other
PIO algorithms on other functions with a great advantage.

Table 4 shows that HTNPIO can provide the first final
rank on 30 CEC2017 instances with 50−D problems. Sim-
ilarly to instances with 30-D, the HCLPIO wins the second
place and LFPIO obtains the third rank, respectively. Among
30 CEC2017 instances with 50-D, HTNPIO ranked first for
25 times, while HCLPIO provides the best solutions on the
multimodel function F5, F8 and F10, and LFPIO acquires
the first rank on the unimodel F3. However, the wilcoxon
test demonstrates that though LFPIO ranks before HTN-
PIO, there are no significant difference between two set of
error data provided by LFPIO HTNPIO. comprehensively,
the Wilcoxon test shows that HTNPIO outperformed other
PIO algorithms with a great advantage on 50−D problems.

Overall, HTNPIO beats other PIO algorithms by a huge
margin in both 30 and 50 dimension problems in CEC2017
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Table 3 Comparisons of HTNPIO and five PIO algorithms on 30 CEC2017 instances with dimension 30

Instances Indicators HCLPIO LFPIO CPIO-C PIO BQPIO HTNPIO

F1 Mean 2.45E+03 2.79E+03 3.12E+07 1.33E+11 6.33E+11 7.76E-05

Std 2.41E+03 3.91E+03 1.13E+08 1.79E+10 2.59E+09 2.87E-04

Rank 2(+) 3(+) 4(+) 5(+) 6(+) 1

F3 Mean 2.55E+04 7.61E-01 2.98E+03 2.88E+10 2.89E+13 3.27E-10

Std 1.07E+04 8.96E-01 6.19E+03 8.28E+10 2.19E+04 8.90E-10

Rank 4(+) 2(+) 3(+) 5(+) 6(+) 1

F4 Mean 9.39E+01 8.22E+01 2.22E+02 5.40E+04 3.22E+05 2.00E+01

Std 2.82E+01 2.59E+01 9.87E+01 1.56E+04 6.58E+02 2.82E+01

Rank 3(+) 2(+) 4(+) 5(+) 6(+) 1

F5 Mean 6.73E+01 1.23E+02 1.23E+02 7.05E+02 2.65E+03 3.94E+01

Std 1.01E+01 3.42E+01 3.41E+01 5.84E+01 3.11E+01 1.23E+01

Rank 2(+) 3(+) 3(+) 5(+) 6(+) 1

F6 Mean 1.30E+00 2.38E-03 1.99E+01 1.43E+02 1.67E+02 1.74E-13

Std 9.32E-01 1.01E-02 7.93E+00 1.28E+01 7.77E+00 5.77E-14

Rank 3(+) 2(+) 4(+) 5(+) 6(+) 1

F7 Mean 9.04E+01 1.92E+02 2.18E+02 2.80E+03 1.30E+04 1.19E+02

Std 1.10E+01 3.90E+01 5.35E+01 3.01E+02 7.66E+01 5.12E+01

Rank 1(-) 3(+) 4(+) 5(+) 6(+) 2

F8 Mean 6.70E+01 1.16E+02 1.21E+02 6.40E+02 2.83E+03 7.47E+01

Std 1.33E+01 2.67E+01 3.11E+01 5.14E+01 2.50E+01 2.76E+01

Rank 1(≈) 3(+) 4(+) 5(+) 6(+) 2

F9 Mean 4.63E+02 2.79E+03 2.52E+03 4.05E+04 2.34E+05 5.57E-01

Std 3.49E+02 1.82E+03 1.57E+03 6.19E+03 1.11E+03 1.47E+00

Rank 2(+) 4(+) 3(+) 5(+) 6(+) 1

F10 Mean 2.36E+03 3.12E+03 3.73E+03 1.01E+04 3.60E+04 6.19E+03

Std 3.32E+02 4.97E+02 5.95E+02 6.17E+02 2.74E+02 3.10E+02

Rank 1(-) 2(-) 3(-) 5(+) 6(+) 4

F11 Mean 1.11E+02 1.25E+02 2.52E+02 3.14E+05 4.47E+09 1.67E+01

Std 3.56E+01 4.71E+01 1.27E+02 8.56E+05 2.38E+02 1.85E+01

Rank 2(+) 3(+) 4(+) 5(+) 6(+) 1

F12 Mean 1.11E+06 2.79E+05 9.92E+06 2.96E+10 3.83E+11 1.59E+04

Std 7.57E+05 2.00E+05 1.89E+07 7.31E+09 2.91E+08 1.21E+04

Rank 3(+) 2(+) 4(+) 5(+) 6(+) 1

F13 Mean 1.20E+04 1.29E+04 3.60E+04 3.14E+10 9.50E+10 8.91E+01

Std 1.06E+04 1.27E+04 2.83E+04 1.12E+10 2.25E+07 4.67E+01

Rank 2(+) 3(+) 4(+) 5(+) 6(+) 1

F14 Mean 1.57E+05 2.16E+04 2.19E+04 1.44E+08 1.06E+09 3.75E+01

Std 2.19E+05 1.42E+04 6.87E+04 1.34E+08 1.08E+05 1.20E+01

Rank 4(+) 2(+) 3(+) 5(+) 6(+) 1

F15 Mean 8.69E+02 7.37E+03 2.63E+04 9.17E+09 5.38E+10 1.48E+01

Std 1.35E+03 8.00E+03 1.97E+04 3.46E+09 2.42E+06 1.80E+01

Rank 2(+) 3(+) 4(+) 5(+) 6(+) 1

F16 Mean 8.94E+02 1.18E+03 1.01E+03 7.57E+03 4.48E+04 6.87E+02

Std 1.60E+02 2.69E+02 2.59E+02 2.14E+03 3.00E+02 5.07E+02

Rank 2(≈) 4(+) 3(+) 5(+) 6(+) 1

F17 Mean 2.50E+02 5.29E+02 3.59E+02 6.59E+04 1.67E+08 7.95E+01

Std 1.40E+02 2.64E+02 1.49E+02 1.23E+05 1.84E+02 6.44E+01

Rank 2(+) 4(+) 3(+) 5(+) 6(+) 1
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Table 3 (continued)

Instances Indicators HCLPIO LFPIO CPIO-C PIO BQPIO HTNPIO

F18 Mean 2.62E+05 1.63E+05 6.00E+05 1.11E+09 2.59E+09 1.31E+02

Std 2.95E+05 1.12E+05 1.62E+06 6.44E+08 2.02E+06 8.60E+01

Rank 3(+) 2(+) 4(+) 5(+) 6(+) 1

F19 Mean 2.30E+03 7.36E+03 1.04E+04 9.06E+09 5.68E+10 1.60E+01

Std 3.06E+03 1.05E+04 1.19E+04 3.37E+09 7.97E+06 5.66E+00

Rank 2(+) 3(+) 4(+) 5(+) 6(+) 1

F20 Mean 3.36E+02 5.37E+02 4.60E+02 2.00E+03 8.05E+03 9.12E+01

Std 1.04E+02 2.10E+02 1.73E+02 1.78E+02 1.51E+02 7.67E+01

Rank 2(+) 4(+) 3(+) 5(+) 6(+) 1

F21 Mean 2.71E+02 3.30E+02 3.20E+02 8.82E+02 3.50E+03 2.34E+02

Std 1.23E+01 2.81E+01 2.18E+01 6.41E+01 3.75E+01 2.12E+01

Rank 2(+) 4(+) 3(+) 5(+) 6(+) 1

F22 Mean 5.68E+02 2.35E+03 2.20E+03 1.03E+04 3.75E+04 1.00E+02

Std 1.07E+03 1.91E+03 1.91E+03 5.16E+02 2.98E+02 1.45E-13

Rank 2(+) 4(+) 3(+) 5(+) 6(+) 1

F23 Mean 4.44E+02 5.02E+02 4.62E+02 1.73E+03 6.35E+03 3.82E+02

Std 2.33E+01 3.76E+01 4.24E+01 2.52E+02 4.05E+01 2.49E+01

Rank 2(+) 4(+) 3(+) 5(+) 6(+) 1

F24 Mean 5.63E+02 6.27E+02 5.36E+02 2.05E+03 1.29E+04 4.47E+02

Std 2.84E+01 7.06E+01 5.34E+01 3.72E+02 5.10E+01 9.56E+00

Rank 3(+) 4(+) 2(+) 5(+) 6(+) 1

F25 Mean 4.07E+02 4.06E+02 4.76E+02 1.84E+04 1.46E+05 3.86E+02

Std 1.43E+01 2.30E+01 5.07E+01 4.81E+03 1.28E+02 2.01E+00

Rank 3(+) 2(+) 4(+) 5(+) 6(+) 1

F26 Mean 1.52E+03 2.19E+03 2.23E+03 1.42E+04 9.41E+04 4.48E+02

Std 9.78E+02 1.36E+03 8.40E+02 2.52E+03 7.46E+02 4.76E+02

Rank 2(+) 3(+) 4(+) 5(+) 6(+) 1

F27 Mean 5.56E+02 5.57E+02 5.83E+02 3.25E+03 1.52E+04 5.03E+02

Std 1.60E+01 2.54E+01 2.89E+01 7.70E+02 7.36E+01 6.78E+00

Rank 2(+) 3(+) 4(+) 5(+) 6(+) 1

F28 Mean 4.41E+02 4.02E+02 5.20E+02 1.21E+04 7.47E+04 3.11E+02

Std 2.23E+01 3.69E+01 6.57E+01 2.79E+03 2.90E+02 3.37E+01

Rank 3(+) 2(+) 4(+) 5(+) 6(+) 1

F29 Mean 7.73E+02 9.46E+02 9.39E+02 1.31E+05 2.56E+07 4.64E+02

Std 1.33E+02 2.56E+02 2.19E+02 2.34E+05 3.07E+02 6.52E+01

Rank 2(+) 4(+) 3(+) 5(+) 6(+) 1

F30 Mean 6.72E+03 5.96E+03 7.91E+05 4.49E+09 8.04E+10 3.01E+03

Std 2.31E+03 2.87E+03 8.40E+05 2.06E+09 8.54E+06 6.25E+02

Rank 3(+) 2(+) 4(+) 5(+) 6(+) 1

Number of first rank 3 0 0 0 0 26

+/-/≈ 25/2/2 28/1/0 28/1/0 29/0/0 29/0/0

Final rank 2 3 4 5 6 1

test suite. The success of HTNPIO is mainly attributed
to the effective interactions between different individuals.
Further, the proper combination of PIO and differential
evolutionary strategies not only enhances the global search

ability of PIO, but also maintains the local exploitation
capability. Therefore, the performance is greatly enhanced.
Next, HTNPIO will be compared with other state-of-the-art
swarm intelligence algorithms.
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Table 4 Comparisons of HTNPIO and five PIO algorithms on 30 CEC2017 instances with dimension 50

Instances Indicators HCLPIO LFPIO CPIO-C PIO BQPIO HTNPIO

F1 Mean 1.35E+05 4.05E+03 2.58E+08 2.59E+11 3.17E+10 6.16E+02

Std 2.85E+03 4.72E+03 8.94E+08 2.66E+10 5.47E+09 8.87E+02

Rank 3(+) 2(+) 4(+) 6(+) 5(+) 1

F3 Mean 3.30E+04 2.79E+01 4.25E+04 2.61E+11 1.03E+05 3.97E+01

Std 5.92E+01 2.40E+01 3.55E+04 1.22E+12 2.92E+04 5.89E+01

Rank 3(+) 1(≈) 4(+) 6(+) 5(+) 2

F4 Mean 1.32E+02 1.14E+02 6.81E+02 1.28E+05 7.36E+03 5.38E+01

Std 4.71E+01 4.90E+01 2.62E+02 2.25E+04 2.00E+03 3.31E+01

Rank 3(+) 2(+) 4(+) 6(+) 5(+) 1

F5 Mean 1.42E+02 2.80E+02 2.44E+02 1.24E+03 5.35E+02 2.48E+02

Std 2.69E+01 5.45E+01 5.45E+01 7.30E+01 4.53E+01 6.97E+01

Rank 1(-) 4(≈) 2(≈) 6(+) 5(+) 3

F6 Mean 1.18E+00 1.04E-02 3.17E+01 1.57E+02 6.71E+01 7.77E-03

Std 1.08E-01 2.09E-02 9.61E+00 1.24E+01 5.52E+00 4.25E-02

Rank 3(+) 2(+) 4(+) 6(+) 5(+) 1

F7 Mean 1.86E+02 4.26E+02 5.76E+02 5.45E+03 1.10E+03 1.27E+02

Std 2.07E+01 8.13E+01 1.25E+02 4.43E+02 8.66E+01 4.75E+01

Rank 2(+) 3(+) 4(+) 6(+) 5(+) 1

F8 Mean 1.48E+02 2.96E+02 2.56E+02 1.24E+03 5.38E+02 1.81E+02

Std 2.75E+01 4.97E+01 5.88E+01 9.03E+01 2.95E+01 1.02E+02

Rank 1(≈) 4(+) 3(+) 6(+) 5(+) 2

F9 Mean 3.71E+03 1.07E+04 9.65E+03 1.06E+05 1.98E+04 6.27E+01

Std 4.44E+02 4.08E+03 2.94E+03 1.10E+04 4.08E+03 1.56E+02

Rank 2(+) 4(+) 3(+) 6(+) 5(+) 1

F10 Mean 4.60E+03 5.71E+03 6.45E+03 1.73E+04 1.36E+04 1.01E+04

Std 8.81E+02 7.62E+02 1.16E+03 6.76E+02 2.66E+02 2.94E+03

Rank 1(-) 2(-) 3(-) 6(+) 5(+) 4

F11 Mean 2.93E+02 2.36E+02 5.70E+02 1.76E+06 3.30E+03 5.11E+01

Std 2.40E+01 1.01E+02 3.01E+02 3.73E+06 1.11E+03 1.65E+01

Rank 3(+) 2(+) 4(+) 6(+) 5(+) 1

F12 Mean 2.74E+06 1.93E+06 8.68E+07 1.36E+11 5.88E+09 4.98E+04

Std 5.79E+04 1.02E+06 1.20E+08 3.28E+10 2.23E+09 3.30E+04

Rank 3(+) 2(+) 4(+) 6(+) 5(+) 1

F13 Mean 1.63E+03 5.62E+03 5.01E+05 9.91E+10 4.97E+08 1.31E+03

Std 3.63E+03 5.61E+03 2.32E+06 2.27E+10 2.98E+08 1.87E+03

Rank 2(≈) 3(+) 4(+) 6(+) 5(+) 1

F14 Mean 9.29E+05 4.93E+04 1.31E+05 5.95E+08 1.81E+06 7.34E+01

Std 6.81E+03 3.22E+04 1.71E+05 3.18E+08 1.54E+06 2.78E+01

Rank 4(+) 2(+) 3(+) 6(+) 5(+) 1

F15 Mean 6.75E+03 7.37E+03 5.48E+04 3.48E+10 8.53E+07 7.18E+01

Std 6.63E+03 6.52E+03 1.74E+05 8.84E+09 9.95E+07 2.27E+01

Rank 2(+) 3(+) 4(+) 6(+) 5(+) 1

F16 Mean 1.49E+03 1.79E+03 1.79E+03 1.52E+04 3.44E+03 7.94E+02

Std 3.69E+02 3.98E+02 3.66E+02 3.56E+03 6.70E+02 2.57E+02

Rank 2(+) 3(+) 3(+) 6(+) 5(+) 1

F17 Mean 1.00E+03 1.53E+03 1.45E+03 4.22E+06 2.19E+03 5.49E+02

Std 2.29E+02 3.28E+02 4.88E+02 4.63E+06 3.10E+02 2.58E+02

Rank 2(+) 4(+) 3(+) 6(+) 5(+) 1
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Table 4 (continued)

Instances Indicators HCLPIO LFPIO CPIO-C PIO BQPIO HTNPIO

F18 Mean 1.34E+06 3.05E+05 3.20E+06 1.78E+09 1.20E+07 9.73E+03

Std 3.13E+04 1.54E+05 3.88E+06 9.24E+08 7.57E+06 1.29E+04

Rank 3(+) 2(+) 4(+) 6(+) 5(+) 1

F19 Mean 1.57E+04 1.67E+04 1.79E+04 1.47E+10 1.64E+07 2.88E+01

Std 1.02E+04 1.32E+04 1.47E+04 4.42E+09 2.45E+07 1.10E+01

Rank 2(+) 3(+) 4(+) 6(+) 5(+) 1

F20 Mean 7.83E+02 1.24E+03 1.11E+03 3.66E+03 1.89E+03 3.13E+02

Std 2.35E+02 3.48E+02 3.07E+02 2.99E+02 2.33E+02 1.40E+02

Rank 2(+) 4(+) 3(+) 6(+) 5(+) 1

F21 Mean 3.58E+02 4.99E+02 4.38E+02 1.51E+03 7.04E+02 2.75E+02

Std 2.12E+01 5.85E+01 4.56E+01 1.20E+02 6.02E+01 2.03E+01

Rank 2(+) 4(+) 3(+) 6(+) 5(+) 1

F22 Mean 5.35E+03 6.65E+03 7.00E+03 1.77E+04 1.36E+04 5.08E+02

Std 2.67E+03 6.61E+02 1.11E+03 7.43E+02 7.47E+02 2.24E+03

Rank 2(+) 3(+) 4(+) 6(+) 5(+) 1

F23 Mean 6.41E+02 7.98E+02 6.84E+02 3.13E+03 1.21E+03 4.93E+02

Std 3.46E+01 9.09E+01 5.71E+01 4.67E+02 7.64E+01 1.71E+01

Rank 2(+) 4(+) 3(+) 6(+) 5(+) 1

F24 Mean 8.76E+02 9.36E+02 7.78E+02 3.63E+03 1.36E+03 5.64E+02

Std 2.71E+01 9.36E+01 7.49E+01 4.47E+02 8.24E+01 1.99E+01

Rank 3(+) 4(+) 2(+) 6(+) 5(+) 1

F25 Mean 5.97E+02 5.45E+02 9.37E+02 6.32E+04 4.67E+03 5.45E+02

Std 4.40E+01 3.12E+01 2.74E+02 1.08E+04 9.40E+02 4.22E+01

Rank 3(+) 2(≈) 4(+) 6(+) 5(+) 1

F26 Mean 3.06E+03 4.44E+03 3.78E+03 2.99E+04 1.03E+04 3.00E+02

Std 5.63E+02 2.44E+03 1.12E+03 4.30E+03 9.36E+02 3.04E-13

Rank 2(+) 4(+) 3(+) 6(+) 5(+) 1

F27 Mean 8.66E+02 8.44E+02 9.53E+02 6.48E+03 2.22E+03 5.63E+02

Std 4.16E+01 1.03E+02 9.81E+01 1.10E+03 2.34E+02 3.11E+01

Rank 3(+) 2(+) 4(+) 6(+) 5(+) 1

F28 Mean 5.62E+02 4.98E+02 9.90E+02 2.30E+04 4.22E+03 4.94E+02

Std 2.81E+01 3.34E+01 3.23E+02 3.31E+03 6.12E+02 2.86E+01

Rank 3(+) 2(≈) 4(+) 6(+) 5(+) 1

F29 Mean 1.43E+03 1.43E+03 1.87E+03 3.03E+06 4.47E+03 5.45E+02

Std 2.17E+02 3.44E+02 3.74E+02 3.35E+06 7.01E+02 2.09E+02

Rank 2(+) 2(+) 4(+) 6(+) 5(+) 1

F30 Mean 9.89E+05 1.01E+06 5.65E+07 2.32E+10 3.06E+08 6.10E+05

Std 2.31E+04 3.25E+05 3.57E+07 7.65E+09 1.14E+08 2.41E+04

Rank 2(+) 3(+) 4(+) 6(+) 5(+) 1

Number of first rank 3 1 0 0 0 25

+/-/≈ 25/2/2 24/1/4 27/1/1 29/0/0 29/0/0 /

Final rank 2 3 4 6 5 1

6.4 Comparison with other ten state-of-the-art
algorithms

In this part, the proposed HTNPIO is further made compar-
isons with other ten algorithms (LSHADE, CMSRSSSA,

EESHHO, SADE, MPEDE, DELMFO, HCLDMSPSO,
HCLPSO, PSODLS and DEBSO) on the 30 CEC2017 prob-
lems with 30 − D, 50 − D. Note that for the sake of space,
HCLDMSPSO is abbreviated as HDMSPSO. The parame-
ters of all algorithms are listed in Table 2. The population
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A novel high-level target navigation pigeon-inspired optimization for global optimization problems
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A novel high-level target navigation pigeon-inspired optimization for global optimization problems
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size and maximum number of FEs are fairly set as 30 and
10000D for all compared algorithms. All 11 algorithms
are executed for 30 times on each CEC2017 instance. For
comparison, the mean and std of errors obtained by each
algorithm are reported. What’s more, rank of each algorithm
on each function is also shown in the tables. For each indi-
cator of an instance in Tables 5, 6 and 7, the best result
is bolded. Additionally, a “(+)” performed by the wilcoxon
test represents that HTNPIO is significantly better than the
specific algorithm on the current problem, a “(-)” means
HTNPIO is significantly worse than the specific algorithm
on the current problem, while a “(≈)” suggests there are no
significant difference between two algorithms.

Comparison results of 11 algorithms on 30−D CEC2017
instances are shown in Table 5. Overall, the proposed HTN-
PIO beat all the compared algorithms including extremely
competitive LSHADE. The average rank of HTNPIO is 3.59
and the final rank of HTNPIO is 1. The newly presented
CMSRSSSA ranks second, and defeats LSHADE by a nar-
row margin. What’s more, HTNPIO obtains 9 first ranks out
of 29 functions, which is the most among all algorithms. It
includes a multi-model problem F6, hybrid functions F11,
F13, F14, F15, F18, F19 and F20, and a composition F28.
It means that HTNPIO has a very prominent advantage in
dealing with the complex problem. Moreover, on the uni-
model problems F1 and F3, HTNPIO ranks 5th and 4th. It
means that the local exploitation capability of HTNPIO is
also not bad compared with the advanced algorithms. Speci-
fically, from wilcoxon test, HTNPIO can provide better
solutions than LSHADE on 16 functions and provide worse
solutions than LSHADE on 4 functions. Further, HTNPIO
and LSHADE obtain similar solutions on 9 functions.

Table 6 lists the comparative results of 11 algorithms
on 50 − D CEC2017 functions. On the 50 − D problems,
HTNPIO can also has the minimum average and final rank
over all other algorithms. Newly presented CMSRSSSA and
HCLDMSPSO rank 2nd and 3rd, respectively. LSHADE
obtains the 4th rank in this experiment. What’s more,
HTNPIO gains 6 first ranks, including 4 hybrid functions
F14-15, F19-20, and 2 compositions F22 and F26, followed
by MPEDE and HCLDMSPSO both with 5 first ranks.
Hence, it gives a demonstration of the good performance of
HTNPIO on 50 − D CEC2017 functions.

To sum up, HTNPIO has the best performance on
both 30 − D and 50 − D CEC2017 problems com-
pared with LSHADE, CMSRSSSA, EESHHO, SADE,
MPEDE, DELMFO, HCLDMSPSO, HCLPSO, PSODLS
and DEBSO. Precisely, HTNPIO has a prominent advan-
tage on the hybrid and composition problems on both
30 − D and 50 − D CEC2017 problems, verifying that
the proposed strategies successfully enhanced the explo-
ration ability of PIO. What’s more, the performance of
HTNPIO on unimodel problems is also not bad, and the

solutions of HTNPIO to most CEC2017 problems is accu-
rate. It demonstrates that the proposed combination of SMS,
LMS and ELS is effective, and the exploitation capability
is also maintained. Thus, HTNPIO can provide extremely
competitive performance.

6.5 Statistical distribution analysis

The reported mean and standard deviation value of the
errors could not reveal the distribution of the optimal data
for 30 runs in details. To make up for this defect, we utilized
the violin plot to illustrate the distribution of the optimal
results by different algorithms. Figures 8 and 9 respectively
shows the error of the optimal results for all functions of
30−D and 50−D in the CEC2017 test suite obtained from
the 11 algorithms over 30 independent runs. Note that in
order to make the comparison results clearer and easier to
display, all errors take the logarithm of 10 (log10). What’s
more, F25 and F30 are not shown in figures because the
comparison results provided by all algorithms cannot be
distinctly differed in the violin plot.

Figure 8 shows the statistical distribution of 30-D error
values of 30 runs obtained by 11 advanced algorithms.
Overall, the proposed HTNPIO can provide consistent
distribution for most functions. Specifically, HTNPIO
shows extremely competitive performance on F3, F6, F9,
F11, F13-F15, F17-F29, and can provide the best and
consistent solutions on F6, F11, F13-F15, F18-20, F28.

Figure 9 shows the statistical distribution of 50-
D error values of 30 runs obtained by 11 advanced
algorithms. For most functions, the proposed HTNPIO
can provide promising solutions compared with the
applied algorithms. Specifically, HTNPIO shows stable and
competitive performance on F6, F7, F11, F13-F17, F19-
F20, F21-F23, F26-F29, and can provide the best and
consistent solutions on F14-F15, F19-20, F26.

6.6 Convergence performance analysis

Convergence curves of LFPIO, HCLPIO, LSHADE,
CMSRSSSA, SADE, PSODLS, HCLPSO and HTNPIO on
the 30 − D and 50 − D CEC2017 problems are plotted
in Figs. 10 and 11, respectively. The convergence graphs
are plotted by calculating an average of fitness value at a
specific number of iteration.

For 30 − D problems, HTNPIO gains the first rank on
F11, F13, F14-F15, F18-F20 and F28. In these functions, the
convergence speed of HTNPIO is fast. Though LSHADE
and SADE converges faster than HTNPIO in the early stage,
HTNPIO can achieve the most accurate in the latter stage.
For F20, the fitness curve of HTNPIO is not converging fast
,however, it continues to converge, and finally achieves the
best solution.
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Fig. 8 Violin plots for the log10
error values obtained by all the
algorithms (CMSRSSSA,
DELMFO, SADE,
HCLDMSPSO, PSODLS,
HCLPSO, DEBSO, EESHHO,
MPEDE, LSHADE and
HTNPIO, respectively) over 30
runs for 30 dimensions
benchmark functions
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Fig. 8 (continued)

For 30 − D problems, HTNPIO gains the first rank on
F14-F15, F19-F20, F22 and F26. Specifically, from the
figures, HTNPIO gets a huge advantage on composition
problems F22 and F26. What’s more, HTNPIO has the
fastest convergence rate on these problems compared with
other algorithms.

From above, HTNPIO has an outstanding convergence
performance. This is mainly attributed to the effective
balance of global exploration and local exploitation.
More specifically, SMS and LMS contribute to global
exploration, and ELS focuses on local exploitation. Further,
LP mechanism effectively balance the exploration and
exploitation.

6.7 Impact of differentψ values on the performance
of HTNPIO

ψ determines how often different mutation strategies are
performed, which is of vital importance for HTNPIO. In this
section, we compare HTNPIO with different ψ values on
the 30− D problems in CEC2017 to verify the impact of ψ

on the performance of HTNPIO. The selected value ofψ are

0.2, 0.3, 0.4, 0.5, 0.55 (applied in this paper), 0.6, 0.7, 0.8.
In this experiment, except for ψ , other parameters are kept
the same as those in Table 2. What’s more, the population
size and maximum number of function evaluations are still
set as 30 and 300000, respectively. The maximum number
of iterations is 5000 (both targets and pigeons are evaluated
in an iteration, separately). The results are comparatively
shown in Table 7.

In Table 7, HTNPIO with ψ=0.4 obtains the first overall
rank, and HTNPIO with ψ=0.2, 0.3, 0.5, 0.55, 0.6 provide
better performance than with ψ=0.7 and 0.8. Though HTN-
PIO with ψ=0.55 is not ranked first, it is applied to make
comparisons with other algorithms in CEC2017 test set and
real-world optimization problems. This is because HTNPIO
shows comprehensive performance and can obtain good
rank among different algorithms with ψ=0.55. Addition-
ally, the performance of HTNPIO increases first and then
decreases with the increase of ψ value. This demonstrates
that just using “DE/rand/1/bin” or “DE/rand/2/bin”
alone cannot provide better performance for HTNPIO, and
only by combining the two mutation strategies properly,
HTNPIO achieves better performance.
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Fig. 9 Violin plots for the log10
error values obtained by all the
algorithms (CMSRSSSA,
DELMFO, SADE,
HCLDMSPSO, PSODLS,
HCLPSO, DEBSO, EESHHO,
MPEDE, LSHADE and
HTNPIO, respectively) over 30
runs for 50 dimensions
benchmark functions
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Fig. 9 (continued)
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Fig. 9 (continued)

7 Experimental results on real-world
optimization problems

In this part, 5 real-world optimization problems are chosen
from the reported literatures to further examine the ability of
HTNPIO to solve practical engineering problems. The five
real-world problems involve 3 different static economic load
dispatch (ELD) instances [13], a hydrothermal scheduling
problem [13], and a PV model parameter estimation
problem [72]. Five algorithms with superior performance
(LSHADE, CMSRSSSA, PSODLS, SADE, and DELMFO)
and two advanced PIO algorithms (LFPIO and HCLPIO)
in CEC2017 test set are applied to make comparisons with
HTNPIO.

7.1 Static economic load dispatch (ELD) instances

Three static economic load dispatch (ELD) problems are
chosen from the IEEE CEC2011 real-world benchmark,
which are defined as follows:

Minimize : F =
NG∑

i=1

fi(Pi) (34)

where fi(Pi) = aiP
2
i + biPi + ci, i = 1, 2, 3, · · · , NG is

the cost function of the i-th generating unit, and ai , bi , ci

are cost coefficients. Moreover Pi is the real power output
of the i-th generator. NG is the number of online generating
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Fig. 10 Convergence graphs for the log10 mean fitness values obtained by selected algorithms over 30 runs for 30 dimensions benchmark functions

units to be dispatched. Additionally, the cost function for
unit with value point loading effect is as follows:

fi(Pi) = aiP
2
i + biPi + ci + abs(eisin(fi(P

m
i in − Pi))) (35)

where ei and fi are the cost coefficients corresponding to
valve point loading effect. What’s more, ELD problems are
also constrained by energy balance, which are discussed as
follows:

Power balance constraints:

NG∑

i=1

Pi = PD + PL (36)

Generator constraints:

Pmin
i ≥ Pi ≥ Pmax

i (37)

Generator constraints: where PD and PL represent total
system loads and losses, respectively. Pmin

i and Pmax
i are

lower and upper bounds for power outputs of the i-th
generating unit.

Ramp rate limits:

Pi − P t−1
i ≤ URi, power generation increases.

(38)
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Fig. 11 Convergence graphs for the log10 (mean fitness values) obtained by selected algorithms over 30 runs for 50 dimensions benchmark
functions

−Pi + P t−1
i ≤ DRi, power generation dcreases.

(39)

where P t−1
i is the power generation of the i-th unit at

previous hour, URi and DRi represent the upper and lower
ramp rate limits. Further, the inclusion of ramp rate limits
modifies the generator operation constraints is calculated
by:

max(Pmin
i , URi − Pi) ≤ Pi ≤ min(Pmax

i , P t−1
i − DRi)

(40)

Prohibited operating zones

Pi ≤ P PZ
a andPi ≥ P PZ

b (41)

where P PZ
a and P PZ

b are the lower and upper limits of a
provided zone for the i − th generating unit.

7.2 Hydrothermal scheduling problem

The hydrothermal scheduling problem is extremely com-
plex because of nonlinear relationships of the decision
variables, cascaded nature of hydraulic network, water carry
delays and so on. Therefore, it is difficult to obtain promis-
ing optimization results utilizing traditional optimization

methods. The objective function to be minimized in a
hydrothermal scheduling problem is the total fuel cost of
thermal units for the given short term as follows:

Minimize : F =
M∑

i=1

fi(PT i) (42)

where fi is the cost function for thermal unit’s power
generation PT i at i-th interval. M is the total number of
intervals. fi is calculated as follows:

fi(PT i) = aiP
2
T i + biPT i + abs(eisin(fih(P

m
ihin − Pih)))

(43)

Demand constraint:

PT i +
N∑

k=1

PH(k,i) = PD(i) + PL(i) (44)

where PH(k,i) represents the power generated by the k-th
hydro unit at the i-th interval. PD(i) and PL(i) represents
the power demand and power loss. N is the total number of
hydro units. Thermal generator constraint:

Pmin
T ≥ PT i ≥ Pmax

T (45)
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Hydro generator constraint:

Pmin
H(k) ≥ PH(k,i) ≥ Pmax

H(k) (46)

Reservoir capacity limit:

V min
(k) ≥ V(k,i) ≥ V max

(k) (47)

where V presents the volume of each reservoir’s storages.
Water discharge constraint:

Qmin
(k) ≥ Q(k,i) ≥ Qmax

(k) (48)

Hydraulic continuity constraint:

V(k,i+1) = V(k,i) +
∑

j=�(k)

(
Q(j,i−τ) + S(j,i−τ)

)
(49)

−Q(k,i) − S(k,i) + R(k,i)

Hydro power generation equation:
PH(k,i) = c(1,k)V

2
(k,i) + c(2,k)Q

2
(k,i) + c(2,k)

(
V(k,i)Q(k,i)

)
(50)

+c(4,k)V(k,i) + c(5,k)Q(k,i) + c(6,k)

where c(1−6,k) denote constant coefficients of the k-th
reservoir.

7.3 Parameter estimation of photovoltaic (PV)
models

Estimation of parameters of PV models can be treated as an
optimization process with specific constraints. In this issue,
three models including single diode model, double diode
model, and PV model are adopted. The equivalent circuit
for the three models are as Fig. 12.

In the three models, the parameters to be optimized are:

X = [Iph, ISD, Rs, Rsh, n] (51)

where their bounds are shown in Table 8.
The objective function for estimating the PV model’s

parameter is the root mean square error (RMSE). The
error is the difference between all pairs of measured and
calculated current results. Precisely, RMSE is expressed as
follows:

RMSE(X) =
√

∑N
k=1Fe (VL, IL, X)

N
(52)

7.4 Comparison results of real-world optimization
problems

The optimization results of HTNPIO and 5 other algorithms
on 5 real-world optimization problems are shown in the
Table 9. The best, worst, mean and standard deviation (STD)
value of each problem’s objective function are shown in
the table. Notably, the best and the secondary entry of each
indicator is highlighted in bold.

Fig. 12 Equivalent circuits of single diode, double diode and PV
models

For instance 1, the proposed HTNPIO beats all the
competitors in the mean, STD, and worst value.

For instance 2, HTNPIO obtained the first rank in STD
value, and provided the second best results in the worst,
mean and best value, following LSHADE.

For instance 3, HTNPIO acquires the best STD and
maximum objective function value of the 140-D ELD
problem, and beat all competitors except LSHADE in mean
and best value. However, the results provided by HTNPIO
and LSHADE differ by less than 1%, which is acceptable.

For the 96-D hydrothermal scheduling problem, HTN-
PIO beat all the advanced compared algorithms with huge
advance.
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Table 8 Upper and lower
bounds of parameters of 3
different PV models

Parameter Single diode & double diode PV module

Lower Upper Lower Upper

bound bound bound bound

IPH (A) 0 1 0 2

ID, ID1, ID2 (μA) 0 1 0 50

Rs (�) 0 0.5 0 2

RSH (�) 0 100 0 2000

Ns, Np 1 2 1 50

In the fifth instance, for single-diode model, HTNPIO,
LSHADE and SaDE can all acquire similar and stable
RMSE value in independent 30 runs; for PV model,
HTNPIO, CMSRSSSA, LSHADE, and SaDE can similarly
obtain the best RMSE results.

In summary, HTNPIO can always provide first-rate
results and rank first in all real-world optimization
problems, which shows extremely competitive performance
compared with other state-of-the-art algorithms.

Additionally, computation time is an important factor
of an algorithm, especially when dealing with real-
world problems. Figure 13 displays the time taken by
each algorithm to handle different real-world optimization
problems. Moreover, the time for each of the 30 runs is
given. In the figures, the x-axis represents the time each
algorithm ran, the y-axis represents the number of runs. It
is observed that the computational time of HTNPIO is a
little more than that of HCLPIO, CMSRSSSA and LFPIO,
but much less than that of SaDE in the first two case, and
time for LSHADE and HTNPIO is similar. For the third
instance, HTNPIO consumes less time than CMSRSSSA
and SaDE, and similar to HCLPIO. For instance 4, the time
consumed by HTNPIO is far less than that of LSHADE and
SaDE, and similar to that of HCLPIO and PSODLS. What’s
more, time for instance 5 of HTNPIO is almost the least,
however, HTNPIO can still provide the best solutions in the
problems. Comprehensively, the time taken by HTNPIO to
process real-world problems is always stable. Though the
computational time of HTNPIO is not always ranked first, it
is sitll acceptable because HTNPIO can provide promising
and extremely competitive solutions for each instance.

8 Discussion

The conventional PIO algorithm utilizes map-compass oper-
ator and landmark operator to achieve rapid convergence.
However, the conventional PIO is still trapped into local
optima especially when solving complicated shifted rotated
and non-continuous composition optimization problems.
Major reasons are listed as follows:

First, map-compass operator makes pigeons only learn
from a global best individual in the current iteration, leading
to insufficient information interchanges among the whole
population. Such interchanges of information makes the
pigeons susceptible to the loss of diversity, such as losing
some potential pigeons. In this case, the pigeons are easily
stuck into local optima and it is hard for them to jump out
of the local optima.

Second, landmark operator forces a reduction in the
number of pigeons in the later iteration, accelerating the
lack of population diversity in the later iteration. In each
generation, the population size decreases by 1/2, causing
insufficient examplars to guide the search pigeon, which
limits the ability to jump out of local optima. This can be
clearly demonstrated by Figs. 5, 6 and 7 in Section 5, where
the group in PIO accelerate convergence and then came
together in 10-th iteration. However, the population in PIO
is concentrated around the current best point (x=-10,y=25)
and loses the global search ability, so it cannot jump out of
the local optimum in the 20-th iteration. This’s the downside
when PIO handles problems. The same conclusion can be
drawn from the Fig. 7.

To address the above problems, although most presented
PIO variants [8, 27, 31, 34, 70, 71, 75] adopt various
strategies to improve the propoties of PIO, those works
seldom consider how to refrain the drawvacks of the tedious
learning strategy in the map-compass operator. Therefore,
most existing PIOs are also easy to got caught into the local
optimum when solving out the complex problems such as
IEEE CEC2017 test suite.

To address the mentioned issues, we have proposed
a HTNPIO algorithm, which adopts SMS and LMS to
generate high-level targets and efficiently navigate the
search of pigeons, and adopts ELS to make full use of the
brilliant convergence capability of PIO. What’s more, the
LMS-ELS probability mechanism is proposed to balance
the exploitation and exploration of HTNPIO.

First, HTNPIO’s learning strategies are diversified, not
as single as PIO, therefore, HTNPIO effectively guarantees
the diversity of the population, so that it is more possible
to find optimal solutions. Second, HTNPIO inherits the
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Fig. 13 The execution time for each run on 5 real-world optimization problems achieved by HTNPIO, SaDE, LSHADE, DELMFO, PSODLS,
CMSRSSSA, LFPIO and HCLPIO
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good convergence ability of PIO. What’s more, HTNPIO
emphasizes to balance the exploration and exploitation in
each search stage, thus effectively improves the global
search ability and convergence accuracy of PIO. In detailed,
the advantages of each strategy are demonstrated as follows.

Selected mutation strategy (SMS) facilitates the informa-
tion interaction of personal best individuals in the popula-
tion, and further generates high-level targets to efficiently
navigate the search behavior of pigeons. SMS employs two
kinds of mutation strategies to provide random and effec-
tive information interactions between personal bests (PBs)
to generate targets (T s), as the data in T s is diversified and
high-level, SMS can acquire large exploration scopes in the
solution space and contribute to enhance the global search
ability. Because of the application of the two mutation
strategies, SMS also employs two kinds of crossover strate-
gies to perform dimensional update for each pigeon, which
can further improve the population diversity of targets.
Selection strategy is executed to maintain the high-level tar-
gets, and guarantee the whole population to develop in a
better direction.

Compared with PIO’s map and compass strategy,
HTNPIO’s levy-based map-compass strategy (LMS) has the
advantage of providing more diverse learning exemplars.
LMS allows pigeons to explore diverse and high-level
targets, and obtain a larger search range around potential
solutions in the space. What’s more, levy flight model
is an effective method to accomplish irregular movement
with random steps, thus, the proper application of levy
flight model makes the search more random, which could
further intensify the global search ability of HTNPIO in
the entire iteration. The advantages of SMS and LMS
can be demonstrated by CEC2017 test suite. In Tables 5
and 6, HTNPIO obtains the most first ranks in multi-
modal and composition problems such as F11-F15, F18-F20
and F26-F28, which exhibits the superior global search
capability of HTNPIO, verifying that the diversity of
HTNPIO is maintained well. This can also be visualized
and demonstrated by Figs. 5, 6, 7 in Section 5. In the above
figures, the points (HTNPIO individuals) are scattered over
a wide range in the search space, validating that HTNPIO
has still maintained a good population dispersion in the 20-
th iteration. So even in the last iteration, the individuals of
HTNPIO are not clustered together, and even some points
are scattered far from the global optimum, which provides
the possibility for subsequent searches to find possible
better values, which guarantees global search capability.

The advantage of ELS is that it provides fast and accurate
convergence. ELS enables individuals to exploit around
elites in the late iteration, which effectively accelerates
convergence and gains accurate solutions. What’s more,
ELS also performs dimensional updates, which means that
ELS is more likely to outcrop the optimal value of the

potential area. The advantages of the strategy can also be
demonstrated by Figs. 5 and 7 in Section 5. From Figs. 5 and
7 convergence in the later stage, however, the individuals
also scatter to be able to explore potential somehow.

The advantage of a linear LMS-ELS probabilistic
selection mechanism is that it can effectively balance the
exploration and exploitation of HTNPIO in different stages
of iteration. In early iterations, this mechanism selects most
of the pigeons to perform LMS to explore potential solutions
in the solution space, while in the later stage, more pigeons
are forced to execute the ELS to exploit the current best
solutions. By this mechanism, the algorithm tries to search
for potential solutions in a wide search range in the early
iterative stage, and quickly taps the optimal region in the
later iterative stage to search for a more accurate solution.

Based on the above advantages, the proposed HTNPIO
outperforms other five advanced PIO variations and ten state-
of-the-art on both 30 and 50 dimension problems in IEEE
CEC2017 test suite, and can provide extremely competitive
performance on real-world optimization problems. The
main numerical achievements of HTNPIO are as follows:

In CEC2017 test suite, the HTNPIO can attain solutions
on F1 with 30 − D whose mean error is only 7.76 × 10−5,
on F3, the accuracy of the solution provided by HTNPIO
is about 10−10. On these two problems, HTNPIO improves
the accuracy of PIO by more than 1010 times. HTNPIO also
owes outstanding performance on F6, and the average error
value from the optimal solution is only 1.74× 10−13, which
ranks first among all compared algorithms. HTNPIO also
performs best on multimodel problems F11, F13, F14, F15,
with an improvement of the accuracy of the PIO variant
by more than 10 times. On F18 and F19, HTNPIO could
provide solutions with accuracy more than 3 times higher
than other advanced algorithms. On 50 − D problems,
HTNPIO improves the accuracy of PIO by at least 10 times
on all functions. what’s more, on F14 and F15, HTNPIO
can provide solutions with error 7.34 and 7.18, respectively,
which 5 times more accurate than LSHADE. HTNPIO’s
solution to the F26 has an average error value of 508 from
the true optimum, which is 10 times more accurate than all
other state-of-the-art algorithms. Additionally, the solutions
of HTNPIO on F26 is 300, competing all competitors.
Comprehensively, compared with PIO variants, HTNPIO
has huge advantages. HTNPIO can get 26 firsts on 29 30−D

problems, and 25 first ranks on 29 50 − D problems, with
undoubtedly first final rank on both 30 − D and 50 −
D problems. When compared to other highly competitive
advanced algorithms, HTNPIO can get 9 first place on 29
30−D functions, which wins the most first ranks among all
algorithms. With an average rank of 3.59, HTNPIO wins the
first final rank. On 50 − D problems, HTNPIO ranks first
for 6 times, which is also the most among competitors. The
average rank of HTNPIO is 3.69, which is also the best.
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However, the disadvantages and limitations of HTNPIO
are as follows:

First, key parameters of HTNPIO such as CR and F

in the selection mutation strategy rely on experience and
cannot be adaptively adjusted according to the specific
problem, which limits the performance of HTNPIO on some
problems. Second, SMS and LMS may cause excessive
dispersion of pigeons in the search space, which is effective
for multi-modal and complex problems, but may result
in inaccurate results for simple or single-mode problems.
For example, HTNPIO cannot provide the best solutions
on unimodal problems in CEC2017 when comparing with
advanced algorithms. HTNPIO also fails to provide the
best solution on the 15-D ELD instance and the best mean
result on double-diode model instance in the real-world
optimization problems. Third, LMS or ELS is selected
by a linear probability mechanism, however, the linear
probability may not provide the best trade off between
exploration and exploitation on some specific problems. For
example, for a unimodal problem, a large number of scattered
searches in early stage can lead to slow convergence and
inferior accuracy within a certain number of iterations.
Moreover, when HTNPIO’s decentralized search does not
find potential positions, and at this time, individuals in the
population perform more LMS to accelerate convergence,
which will reduce the possibility of jumping out of the local
optimum. Therefore, to optimize and improve HTNPIO, it
is necessary to consider the adaptive changes of parameters
and the adaptive execution of strategies, which is also the
possible direction of future work.

Additionally, from the computational complexity anal-
ysis and computational time, HTNPIO is not the fastest,
however, the computational time of HTNPIO is also promis-
ing because HTNPIO can acquire rather accurate solu-
tions. Therefore, HTNPIO has a relatively broad application
outlook with short computing time, low computing cost,
and strong global optimization ability. Authors recommend
HTNPIO can be used for solving complex problems such
as multimodal, hybrid or composition problems instead
of low-dimensional simple problems. Also, HTNPIO can
be utilized to solve engineering problems that have high
demands on accuracy and computation time. Furthermore,
HTNPIO can be improved for multi-objective optimization
and fuzzy mathematical programming [61, 62].

9 Conclusion

This paper proposed a new PIO variant named HTNPIO,
where three strategies, namely selective mutation strat-
egy (SMS), levy-based map-compass strategy (LMS) and
enhanced landmark strategy (ELS) are included. What’s

more, an LMS-ELS probability (LP) mechanism is pro-
posed to balance the exploration and exploitation. Firstly,
in SMS, differential strategy makes interactions among
different personal best pigeons to generate random high-
level targets. The establishment of these high-level targets
expands the search scopes of the pigeons in the solu-
tion space, thereby increasing the likelihood of finding the
global optima. Secondly, LMS is executed to explore poten-
tial places around these high-level targets instead of the
current global best. In this process, the pigeons’ search
trajectory is more diverse so the chances of the pigeons
finding the optimal solution are greatly increased. Thirdly,
we present the ELS to accelerate convergence and improve
the accuracy of solutions. Furthermore, we propose an
LP mechanism to balance the exploration and exploita-
tion in the complete iterative process. Experimental results
shows that HTNPIO defeats all the competitors on 30 − D

and 50 − D CEC2017 problems. Moreover, HTNPIO also
exhibits first-rate performance on the 5 real-world optimiza-
tion problems compared with advanced algorithms. Hence,
HTNPIO has big improvements in global search capability,
local exploitation ability, and steadily.

In the future, HTNPIO can be used for solving various
constrained engineering problems.
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