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Abstract: Path planning of unmanned aerial vehicles (UAVs) in threatening and adversarial areas is a
constrained nonlinear optimal problem which takes a great amount of static and dynamic constraints
into account. Quantum-behaved pigeon-inspired optimization (QPIO) has been widely applied
to such nonlinear problems. However, conventional QPIO is suffering low global convergence
speed and local optimum. In order to solve the above problems, an improved QPIO algorithm,
adaptive operator QPIO, is proposed in this paper. Firstly, a new initialization process based on
logistic mapping method is introduced to generate the initial population of the pigeon-swarm. After
that, to improve the performance of the map and compass operation, the factor parameter will be
adaptively updated in each iteration, which can balance the ability between global and local search.
In the final landmark operation, the gradual decreasing pigeon population-updating strategy is
introduced to prevent premature convergence and local optimum. Finally, the demonstration of
the proposed algorithm on UAV path planning problem is presented, and the comparison result
indicates that the performance of our algorithm is better than that of particle swarm optimization
(PSO), pigeon-inspired optimization (PIO), and its variants, in terms of convergence and accuracy.

Keywords: pigeon-inspired optimization (PIO); unmanned aerial vehicle (UAV); path planning;
quantum behavior; adaptive operator

1. Introduction

Unmanned aerial vehicles (UAVs) have been widely and more extensively applied for various
practical military and civilian missions, e.g., disaster circumstances, modern warfare, and weather
monitoring in recent years, which benefit from their strong viability, low cost, and excellent
maneuverability [1,2]. Autonomous navigation and guidance are the most important requirements
of the UAV system, of which the basic component is path planning. Generally, path planning aims
not only to generate a trajectory to a target in avoiding obstacles or collisions (assuming reference
flight conditions and providing maps of the environment), but also to optimize a given function under
kinematic and/or dynamic constraints [3]. The classical UAV path planning problem can be modeled
as a nonlinear optimization problem aiming to find a flyable path from a given start position to a target
position [4]. There does not exist an algorithm that provides an exact analytic solution to such a problem.
A series of methods have been proposed and widely applied to solve the optimization problem, such
as simulated annealing algorithm [5], artificial potential field algorithm [6], A* algorithm [7], RRT
algorithm [8], polynomial optimization method [9], and heuristic approaches [10].

In recent decades, inspired by the organized behavior of natural biological groups, numerous
swarm-intelligence optimization algorithms have been proposed to be applied to UAV path
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planning problem [11,12]. Notable examples include ant colony optimization algorithm (ACO) [13],
particle swarm optimization algorithm (PSO) [14], fruit fly optimization algorithm (FOA) [15], and
pigeon-inspired optimization algorithm (PIO) [16]. Various merits, including simple structure,
general problem adaptability, and rapid search rate, make swam-intelligence optimization
algorithms a promising tool for solving UAV path planning problems, especially under varied and
complex environments.

The ACO algorithm can imitate the behavior of pheromone-mediated information transferred
among ant colonies to optimize path planning problems [17]. However, ACO usually incurs a large
number of calculations, and it is easy to fall into the local optimum. To address these problems, direction
guidance and chaotic theory were applied to ACO for efficiency improvement [18,19]. By adding
the chaos disturbance factor and direction guiding factor into the ACO, the direction of the search is
strengthened, and the ACO can jump out of the local optimum. An improved ACO with redefined
heuristic information function and pheromone updating method was applied to multi-UAV path
planning to generate initial path [20]. With the redefined updating method, the probability of falling
into local optimum and the global search ability are improved.

Besides, fruit fly behavior-inspired algorithm, named FOA, has been successfully applied to
solve optimal path planning problems. Similar to the other swarm-intelligence algorithms, the
conventional FOA still has the drawback that it easily falls into a local optimum. In order to improve
the search efficiency and global search ability of the conventional FOA, Zhang et al. proposed a
novel angle-encoded FOA with mutation adaptation mechanism (θ-MAFOA) and adopted the novel
algorithm to the UAV path planning problem [21]. With the mutation adaption mechanism, the ability
of exploitation and exploration of FOA are balanced.

PSO is a random search algorithm and has been widely applied to UAV path planning [22]. To avoid
falling into the local optimum, integrating the PSO with other intelligence algorithms becomes even
more efficient. Vincent made a comparison of parallel genetic algorithm and PSO for real-time UAV
path planning to avoid poor solutions [23]. The generated UAV path is composed of vertical helices,
line segments, and circular arcs, and a multi-objective cost function was established to evaluate the
characteristic of the path by using this planning method. A hybrid differential evolution (DE) and
quantum-behaved particle swarm optimization (DEQPSO) were used to plan the route for UAV on the
sea [24]. Optimizing the design parameters is also another effective method for performance improvement.
With the hybrid PSO strategy [25], the accuracy and the convergence rate of UAV path planning can
be further increased by adding a contraction factor. Asma Ayari also proposed another improved PSO
algorithm that satisfies Gaussian dynamic distribution and reduces the randomness of particles [26].

PIO is a novel swarm-intelligence optimization algorithm which is inspired by the behavior of
pigeon homing with the help of landmark, map, and compass [27]. The PIO algorithm is composed of
two operators, i.e., map and compass operator and landmark operator. Since PIO has demonstrated its
fast convergence rate and adaptability in nonlinear optimizations, it has been widely applied to UAV
path planning problems [28], multiple spacecraft position problem [29], and multi-UAV cooperation
control [30,31]. In order to further improve the convergence rate and avoid the premature convergence
problem, new biological behavior characteristics were introduced into PIO. Some predatory-prey
pigeon-inspired optimization (PPPIO) algorithms were proposed and applied to UAV path planning in
3D static and dynamic environment [32,33]. The most recent hybrid pigeon-inspired optimization with
quantum theory (QPIO) was proposed to solve the premature convergence problem and continuous
optimization problems [34]. However, the existing PIO algorithm and its variants did not perform
initial route optimization process. PPPIO, along with QPIO, failed to take account of global search and
local search synchronously. Moreover, the path generated by QPIO is not smooth, and the existing
problem of population decline too fast in landmark operator.

To address the above shortcomings, we introduce some adaptive operators into conventional
QPIO to improve the capability of searching appropriate solutions. The chaotic strategy is introduced
in our algorithm to generate some initial solutions with wider solution space coverage. Differing
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from other conventional swarm-intelligence algorithms, the map and compass factor R, varying with
the number of iterations, is adopted to balance global search ability and local search ability in our
algorithm. At the landmark operator, a new population updating equation is proposed to increase
the search diversity. Simulation results and comparisons verify the feasibility and effectiveness of our
proposed algorithm.

The rest of the paper is organized as follows: Section 2 describes the preliminaries, including
the problem formulation of UAV path planning and the theory of QPIO. Section 3 shows
the implementation procedure of UAV path planning using our proposed adaptive operator
quantum-behaved pigeon-inspired optimization (AOQPIO). Then, we compare the quality of the
path produced by PIO, PSO, QPIO, and AOQPIO in Section 4. Section 5 is the conclusion.

2. Preliminaries

2.1. Problem Formulation

UAV needs to plan a safe and short flying path from starting position to target position. However,
numerous obstacles and no-fly zones fulfill complex environments, such as urban, indoor, or forest
area. It is crucial to take the constraints of nonlinear dynamics and unstructured environment into
account. Further, the fly speed and altitude changing need to be also considered. In the paper, we
model the above planning problems as a mixed objective optimization problem with constraints on
UAV dynamic and threats, and assume that UAVs satisfy following dynamics.

.
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where η =
[

θ φ ψ
]

are Euler angles; and Ω = [ p q r ] are angular velocities; X = [ x y z ]

and V = [ u v w ] are position and linear velocities respectively in the North-East-Down
inertial reference.

Further, the threats in the environment are simplified as cylinders that denoted by distinct vectors,
including position coordinates (xk, yk, zk), radius rk, and corresponding threat levels tk. Threat level tk
is used to indicate the impact degree of threats on the UAV path.

By taking fly time, path length, and security requirements into account, the UAV path planning
problem can be established as the following optimization problem:

minJ = c1 Jl + c2 Jt + c3 Jac1 + c2 + c3 = 1 (3)

The cost function J is consisted of Jl , Ja, and Jt, which represent path length cost, the altitude cost and
the threat cost, respectively. The path length cost and altitude cost can be directly obtained by

Jl =
n
∑

i=1
li2, (4)

Ja =
n
∑

i=1
hi, (5)

where n is the amount of path segments; li and hi are the length and the average altitude above the
sea level of the i-th path segment, respectively. To simplify the total threat cost model, an efficient
approximation is adopted to the exact solution. In our work, threat cost, which can be obtained by five
points, of each edge connects two discrete points along the edge [16].
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where d0.1,k is the length between the 1/10 point and the k-th threat center. We divide the line segment
between two discrete points (xi−1, yi−1, zi−1), (xi, yi, zi) into five segments of the same length, and
select five of them. The threat cost of the line segment between two discrete points is approximately
equal to the total cost of the selected five points. Threat computation model is shown in Figure 1.
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2.2. QPIO

QPIO, which consists of two operators—the quantum behavior map and compass operator
and the landmark operator, is an emerging variant of PIO algorithm. The quantum behavior is
introduced to PIO to increase the local search capacity as well as the randomness of the position, so
that the QPIO algorithm has the ability to improve the optimization efficiency and avoid premature
convergence problem.

2.2.1. Map and Compass Operator with Quantum Behavior

Each pigeon has its position Xi = [ Xi,1 Xi,2 · · · Xi,D ] and speed Vi =

[ Vi,1 Vi,2 · · · Vi,D ] in every feasible position of pigeon, where i = 1, 2, 3 · · ·Np. Np, and
D refers to the number of feasible solutions and their dimensions, respectively. In the D dimensional
solution space, the position and speed of individuals are updated as follows:

Vi(t) = Vi(t− 1) ∗ e−Rt + rand ∗ (Xg − Xi(t− 1)), (7)

Xi(t) = Xi(t− 1) + Vi(t), (8)

where Vi(t) and Xi(t) are the speed and position of the pigeon i at iteration t; Xg represents the best
position that the whole pigeon obtained by comparing the positions of all the pigeons until iteration
t − 1; rand ∈ (0, 1) is a randomly generated number; R ∈ (0, 1) refers to the map and compass
factor. Importantly, the map and compass factor R is a constant value that plays an important role in
convergence of the algorithm. The smaller R becomes, the larger value of e−Rt becomes. Therefore,
pigeons inherit a greater speed, which is conducive to fast convergence and better global search ability;
conversely, large R would lead to only local search.

In order to improve the optimization efficiency and avoid premature convergence problem,
quantum-behaved theory is added to the conventional PIO (7)–(8) [35,36].

Xi(t) =

{
Pi(t) + ε ∗ |m_besti(t)− Xi(t− 1)| ∗ ln(1/m) ∗ e−Rt ϕ > 0.5
Pi(t)− ε ∗ |m_besti(t)− Xi(t− 1)| ∗ ln(1/m) ∗ e−Rt ϕ < 0.5

, (9)

Pi(t) = ϕ ∗ Xpi(t) + (1− ϕ) ∗ Xg, (10)

m_besti(t) = 1
N

N
∑

i=1
Xpi(t), (11)
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where m_besti is the mean value of best pigeon positions, and Xpi(t) is the local best solution that
pigeon i has obtained before the iteration t; ε is the expansion-contraction coefficient:

ε = 1− q ∗ (t/Nc1max), (12)

where q is an experimentally defined parameter; Nc1max refers to the maximum number of generation;
ϕ and m are random numbers in the given interval [0, 1].

2.2.2. Landmark Operator

In each iteration loop, the landmark operator will sort fitness values of the current individual,
and round off each half after discarding the poor quality individuals. The position Xc(t) of remaining
pigeon center is used as a landmark and the reference direction of the flight. The update formula is
as follows:

Np(t) = Np(t− 1)/2, (13)

Xc(t) = ∑ Xi(t)∗ f itness(Xi(t))
Np∑ f itness(Xi(t))

, (14)

Xi(t) = Xi(t) + rand ∗ (Xc(t)− Xi(t)), (15)

In the Equations (13) and (14), Np is the population of pigeons and f itness(Xi(t)) is the quality of
the pigeon individual which is constructed by the cost function according to Equations (3)–(6).

Remark. For the minimum optimization problems such as the path planning problem, we can choose
f itness(Xi(t)) = 1

J+eps , where J is the optimization function described in Equation (3) and eps refers to
the relative accuracy of the float point.

3. Method

In this section, the population initialization process of QPIO is optimized by logistic mapping
and the map and compass factor R is modified to balance the global and local search ability. In the
landmark operator, new population updating and pigeon position Xi updating strategies are given.

3.1. Initialization Process

QPIO presents the best convergence rate among all PIO algorithms, but it is still suffering
from a major disadvantage that is vulnerable to fall into local optimum [37]. Specifically, when the
initialization is away from the global optimum, this error will guide other pigeons to search in wrong
spaces and even leading, eventually, to failure. Since most initialization of pigeon population is
achieved by random distribution, their performance quality could not be ensured in conventional
methods. Therefore, the chaotic strategy is introduced in our algorithm to generate some initial
solutions that can obtain wider solution space coverage.

Chaos is a kind of seemingly random motion appearing in the decisive dynamic system. Chaotic
motion has three distinct characteristics: (1) high sensitivity to initial values; (2) ergodicity of motion
trajectories; (3) randomness. These properties of chaos can be used to initialize the pigeon with chaotic
variables. Logistic mapping is a common method used in this paper to produce chaotic variables, and
avoid premature convergence [38]. In the initialization process, the logistic mapping strategy is used
to make the pigeon position random and traversable, so that it has the opportunity to jump out of the
local optimum and find the global optimum, thus effectively avoiding premature convergence. The D
dimensions vector u1 = (u1,1, u1,2 . . . u1,D) ∈ [0, 1]D is generated randomly. Then, a chaotic sequence
U with N vectors u1, u2, . . . uN is obtained according to the recurrence Equation (16):

un+1 = µ ∗ un(1− un), n = 0, 1, 2, · · ·N − 1 0 < u1 < 1. (16)
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After the chaos process, the chaos sequence U is converted into the problem solution space
[Xmin, Xmax]

D. The corresponding individual initialization formula can be converted as

Xi,j = Xmin,j + un ∗ (Xmax,j − Xmin,j), j = 1, 2 · · ·D. (17)

Initialization of pigeon by chaotic sequence is based on the generation of initial values, from which
the initial population can be determined by selecting the best one. Although it does not change the
stochastic nature of AOQPIO initialization, the chaotic process improves the diversity of population
and the ergodicity of pigeon search by applying chaotic theory.

3.2. Adaptive Map and Compass Factor Strategy

The selection of parameters significantly has an impact on the result. Conventional methods
of choosing appropriate parameters can be roughly divided into two categories [39]: parameter
adjustment and parameter control. Parameter adjustment is used for parameters preset before the
beginning, and the parameters that are kept constant throughout the execution of the algorithm.
Parameter control means that parameters run with the initial value at the beginning of the algorithm.
Then, they can be adaptively updated according to the operation of the algorithm.

QPIO is simple to be implemented as its parameter number is limited. However, it still poses a
great challenge to adjusting the parameters in QPIO. As mentioned in a previous section, the turning
of map and compass factor R can adjust the algorithm on better global or local searching capability.
If R is set to some constant values, the algorithm is not capable of coordinating the global and local
search synchronously during the optimization procedure. Thus, we aim to find a function with the
following ideal characteristics. The initial value of R is small with gradual changes; as the independent
variable increases, it rapidly reaches the preset values [40].

R(τ) =
1

a + b ∗ e−τ
(18)

τ = −10 +
Nc ∗ 20
Nc1max

(19)

Apparently, R(τ) belongs to [0, 1/a]; τ ∈ [−10, 10] is determined by the number of iteration and its
maximum; Nc is the number of iteration; parameter b can adjust the rising speed. Specifically, the
value of R is coincident with conventional QPIO algorithm when the value of a is set to 1.

By using the dynamic parameters tuning strategy (18) and (19), R is small at the beginning and it
gradually increases after fully global search. The local search is better completed accordingly. With the
consideration on the value range of R and the balance of global-local search, we set a = 1 and b = 100
in this paper.

3.3. Adaptive Compression Factor Strategy

The number of pigeons decreases by half after each iteration in a conventional QPIO algorithm,
according to Equation (14). However, if the pigeon number decreases too fast, only one pigeon
can survive after a small amount of iterations eventually, which prevents globally searching for the
algorithm. The optimization performance is reduced in the later searching stage. Besides, the landmark
operator in the conventional QPIO do not consider the waypoints distribution, which will influence
the smoothness of the planning path.

To address the above problem, we propose a new pigeon number updating strategy in the
landmark operator.

Np(t) = w ∗ NPmax −Ndec, (20)

where w ∈ [0, 1] is constant and Ndec is a constant parameter in the initial. The new formula of pigeon
position updating in the landmark operator is shown, as below.
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ω = s + (1− s) ∗ cos(t ∗ π/Nc2max), (21)

Xi(t) = Xi(t) + rand ∗ω ∗ (Xc(t)− Xi(t)), (22)

where s ∈ (0, 1) is a constant and Nc2max is the maximum number of generation after the landmark
operation finished.

3.4. Procedures of AOQPIO

Differing from other conventional PIO algorithms, the process of the proposed method in this
paper has mainly three improvements. Firstly, the chaotic strategy is introduced in our algorithm to
generate some initial solutions with wider solution space coverage. Further, the map and compass
factor R, varying with the number of iterations, is adopted to balance global search ability and local
search ability. Last but not least, the new population updating equation is proposed to increase
the search diversity at the landmark operator period. Overall, the complete procedure of AOQPIO
algorithm can be presented as the following Algorithm 1:

Algorithm 1: AOQPIO Algorithm.

/*Initialization*/
1 Set initial values for D, Np, Nc1max, Nc2max, q, w, Ndec;
2 Generate the chaos sequence U according to Equation (20);

3
Set initial path Xi = [ Xi,1 Xi,2 · · · Xi,D ], velocity Vi = [ Vi,1 Vi,2 · · · Vi,D ] for pigeon

according to Equation (21);

4
Calculate fitness values of different pigeon individuals, Set Xpi = Xi,

Xg = argmin[calculate_ f itness(Xpi)];
/*Map and compass operations with quantum-behavior*/

5 for Nc = 1:Nc1max

6 Generate parameter ϕ, ε, m;
Update parameter R according to Equations (22) and (23);

8 Sum the Xpi(i) for each i;
10 Calculate m_best according to Equation (15);
11 for i = 1:Np

12 Calculate Pi according to Equation (14);
13 Update Vi according to Equation (11);
14 Update Xi with quantum-behavior according to Equation (10);
15 new_fitness = calculate_fitness(Xi(Nc));
16 If new_fitness < Fitness(i) then Fitness(i) = new_fitness; Xpi=Xi;
18 end if
19 Xg = argmin[calculate_ f itness(Xpi(Nc))];
20 end for
21 end for
22 /*Landmark operator*/
24 for Nc = Nc1max+1:Nc2max

25 Rank all the available pigeon individuals according to their fitness values;
26 Update the population of pigeon Np according to Equation (24);
27 Calculate the center of the pigeons Xc(Nc) according to Equation (18);
28 for i = 1:Np

29 Update Xi according to Equation (26);
30 Evaluate Xi, and update Xpi and Xg according to line (16)–(20);
31 end for
32 end for
33 /*Output*/
34 Xg is output as the global optimal of the fitness function
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3.5. AOQPIO-Based UAV Path Planning

In order to further illustrate AOQPIO, in this paper, to solve UAV path planning problem, the
detailed steps of AOQPIO-based UAV path planning are described in this section. If the user-defined
number of control points of the UAV path is D, then the path planner should determine D1 = 3 ∗ D
coordinate parameters, namely X1, X2, · · · , XD1, where (Xi, XD+i, X2D+i), i = 1, 2, · · · , D denote the
three dimensional coordinates in solution space. The point (xi, xD+i, x2D+i) in solution space can
be transformed into the point (x(i), y(i), z(i)) in the real flying space by the following transform
equation [41]:  x(i)

y(i)
z(i)

 =

 cos ξ sin ξ 0
− sin ξ cos ξ 0

0 0 1


 xi

xD+i
x2D+i

+

 xstart

ystart

zstart

, (23)

where the (xstart, ystart, zstart) represents the coordinate of the given start point in the flying space, and
the ξ is the angle that the x-axis in solution space counterclockwise rotate to parallel segment start and
goal point. The implementation procedure of AOQPIO algorithm applied to UAV path planning can
be described as follows:

Step 1: Environmental modeling, initialize terrain and threat information, including the center
coordinates of threats, radius, and threat level of the threat;

Step 2: According the environment model, build the path planning optimization function on the
basis of Equations (3)–(6), and initialize the detailed information about the path planning task;

Step 3: The population information and algorithm parameters are initialized, including the
population size Np, the number of waypoints D, the solution dimension D1, the operation operator
parameter, and the number of iteration Nc1max and Nc2max for two operators, and Nc2max > Nc1max;

Step 4: Initialize individual velocity and position information by chaos sequence method
according to Equations (16) and (17). Compare the fitness value f itness(), which is defined based on
the optimization function, of each pigeon and find the current best position of pigeons;

Step 5: Operate the map and compass operator. Firstly, we update the parameter R according
to Equations (18) and (19). Next, we update the velocity and position of each pigeon using
quantum-behaved method. Then, we compare all the pigeons’ fitness value and update the new
global best position Xp;

Step 6: If the number of iterations Nc > Ncmax1, the iteration switches from the map compass
operator to the landmark operator, otherwise, it returns to the step 5;

Step 7: Operate the landmark operator. According to the adaptation value, update the number of
pigeons by Equation (20), then calculate the center of the pigeon according to Equation (14) and adjust
the position of each pigeon to fly to the center of the pigeon with adaptive compression factor strategy
according to the Equations (21) and (22);

Step 8: If the number of iterations Nc > Ncmax2, the iteration terminates, and the result is output,
otherwise, it returns to the step 7.

Step 9: Transform the best solution result into the waypoint in real flying space according to
Equation (24).

To illustrate this procedure further, the pseudocode of this procedure is also given as the following
Algorithm 2.
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Algorithm 2: AOQPIO Based path planner.

/*Environment modeling*/
1 Initialize terrain and threat information, including:
2 The mathematical form of terrain in Equation (28);
3 The center coordinates of threats, radius and threat level of the threats in Table 1;

/*Problem modeling*/
Build the path planning optimization function on the basis of Equation (3)

/*Initialization*/

4
Set initial values for D = 30, D1 = 3 ∗ D = 90, Np = 150, Nc1max = 150, Nc2max = 200, q = 0.5, w = 0.8,

Ndec = 10;
5 Generate the chaos sequence U according to Equation (20);

6
Set initial value Xi = [ Xi,1 Xi,2 · · · Xi,D1 ], Vi = [ Vi,1 Vi,2 · · · Vi,D1 ] for pigeon according

to Equation (21);

7
Divide the Xi into [ Xi,1 Xi,2 · · · Xi,D ], [ Xi,D1+1 Xi,D+2 · · · Xi,2D ],

[ Xi,2D+1 Xi,2D+2 · · · Xi,D1 ], the same to Vi

8
Calculate fitness values of different pigeon individuals with cost function, using the real coordinate

transformed by the position value in solution space according to Equation (27);
9 Set Xpi = Xi, Xg = argmin[calculate_ f itness(Xpi)];

/*Map and compass operations with quantum-behavior*/
10 for Nc = 1:Nc1max

11 Generate parameter ϕ, ε, m;
12 Update parameter R according to Equations (22) and (23);
13 Sum the Xpi(i) for each i;
14 Calculate m_best according to Equation (15);
15 for i = 1:Np

16 Calculate Pi according to Equation (14);
17 Update Vi according to Equation (11);
18 Update Xi with quantum-behavior according to Equation (10);
19 new_fitness = calculate_fitness (Xi(Nc));
20 If new_fitness < Fitness(i) then Fitness(i) = new_fitness; Xpi=Xi;
21 end if
22 Xg = argmin[calculate_ f itness(Xpi(Nc))];
23 end for
24 end for
25 /*Landmark operator*/
26 for Nc = Nc1max+1:Nc2max

27 Rank all the available pigeon individuals according to their fitness values;
28 Update the population of pigeon Np according to Equation (24);
29 Calculate the center of the pigeons Xc(Nc) according to Equation (18);
30 for i = 1:Np

31 Update Xi according to Equation (26);
32 Evaluate Xi, and update Xpi and Xg according to line (16)–(20);
33 end for
34 end for
35 /*Output*/
36 Xg is output as the global optimal of the fitness function
37 Transform the best solution result into the coordinate of point in real flying space according to Equation (27)
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Table 1. The parameters used in experiments of different algorithms.

Parameters AOQPIO PIO QPIO PSO

Np 150 150 150 150
D 30 30 30 30

Nc1max 150 150 150 200
Nc2max 200 200 200 — —

w 0.8 — — — — — —
s 0.5 — — — — — —
a 1 — — — — — —
b 100 — — — — — —
q 0.5 — — 0.5 — —

4. Results and Discussion

To validate the efficiency of AOQPIO algorithm on UAV path planning problem, the optimization
results in 3D environment are presented. The 3D environment containing a complex undulating terrain
as shown in Figure 2, can also be found in [42]:

z(x, y) =
∣∣∣∣sin(x/5 + 1) + sin(y/5) + cos

(
α ∗
√

x2 + y2
)
+ sin(β ∗

√
x2 + y2)

∣∣∣∣, (24)

where α, β are constant parameters, and z represents the altitude of a certain point.
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Compared with existing swarm-intelligence algorithms, i.e., PIO, QPIO, PSO, we utilized path
distance, cost, and altitude variations to evaluate the performance of above algorithms. All of the
experiments were conducted by MATLAB 2014a on a PC with 2.4GHz CPU. The corresponding
parameters used in the algorithms are presented in following Table 1.

To verify the generalization ability of the proposed algorithm in different environments,
experiments, which were utilized by the mentioned algorithms, were carried out in three maps
with different threat sources. The corresponding parameters of the threat sources in the three maps
are provided as supplementary in the enclosure. The start coordinates of the planning mission were
(18,20,2) and the target coordinates were (90,105,2).

Apparently, the planning results calculated by AOQPIO, indicated with a green line in Figures 3a,
4a and 5a, are smoother than the results of other algorithms. Convergence curves of the cost values
in the three scenarios are displayed in Figures 6–8. According to the altitude value in Figures 3b, 4b
and 5b, most of the waypoints generated by our algorithm are lower than those of other algorithms.
Further, according to the convergence results of cost function value, our algorithm has the ability of
converging more stably and quickly when compared with other three algorithms.
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Figure 4. (a) is the result of all algorithms and (b) is the result of optimal UAV altitude of the experiment
carried out in map 2.



Algorithms 2019, 12, 3 12 of 16

Algorithms 2019, 12, 3 12 of 16 

 
(b) 

Figure 4. (a) is the result of all algorithms and (b) is the result of optimal UAV altitude of the 
experiment carried out in map 2. 

(a) 

 
(b) 

Figure 5. (a) is the result of the experiment and (b) is the result of optimal UAV altitude of the 
experiment carried out in map 3. 

0 5 10 15 20 25 30 350

1

2

3

4

Waypoint

Al
tit

ud
e 

va
lu

e/
km

 

 

QPIO
PSO
AOQPIO
PIO

0 5 10 15 20 25 30 350

1

2

3

4

Waypoint

Al
tit

ud
e 

va
lu

e/
km

 

 

QPIO
PSO
AOQPIO
PIO

Figure 5. (a) is the result of the experiment and (b) is the result of optimal UAV altitude of the
experiment carried out in map 3.
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Figure 6. The comparative curves of iteration of the algorithms of the experiment carried out in map 1.
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Figure 7. The comparative curves of iteration of the algorithms of the experiment carried out in map 2.
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Figure 8. The comparative curves of iteration of the algorithms of the experiment carried out in map 3.

The curve of the cost iteration in map 1 shows that our algorithm convergences at the eighth
iteration and the convergence value is 73.8954, which is lower than the convergence value of other
algorithms. Similar experiment results obtained on the above three test scenarios verify that the
performance of AOQPIO is independent of changed battlefield environments that mainly mean
different enemy threats. Clearly, the modifications provided in this paper had a positive effect
on AOQPIO.

To avoid the influence of random initial values, another 40 experiments in each map were carried
out and the average values of path length, cost, and searching time were calculated. The statistical
results are listed in Table 2. From the results in map 1, the path generated by AOQPIO is 5.9% lower
than those of other algorithms, and cost decreases by at least 0.4% separately. Similar to the experiment
carried out in map 1, our algorithm also has the best efficiency and can generate the shortest path in
the experiments carried out in map 2 and map 3. Comprehensively comparing the statistical data of
all algorithms on the three maps, AOQPIO still shows its superiority to other algorithms in terms of
searching ability and efficiency.

Table 2. The statistical results of path length, cost, and running time of the algorithms in the three maps.

Algorithm
Path Length(km) Cost Searching Time (ms)

Map1 Map2 Map3 Map1 Map2 Map3 Map1 Map2 Map3

AOQPIO 155.4329 154.3672 152.2775 78.8326 58.2366 63.1964 2755 2632 2553
PIO 177.4352 171.2873 165.4109 79.9846 61.3127 65.3127 3127 2607 2515

QPIO 165.2263 160.4521 169.5543 79.1623 63.0571 65.4218 2743 2613 2538
PSO 170.5448 168.6482 170.3458 79.5647 63.8452 68.8647 2716 2596 2491

From the experiment results showed above, we can see that AOQPIO is significantly superior to
other swarm-intelligence algorithms tested in this paper. The chaotic strategy indeed can improve
the global search ability of the basic QPIO. Furthermore, the adaptive operator strategies help the
AOQPIO to search more fully and carefully. With the adaptive compression factor, a smoother path can
be generated by AOQPIO. In a word, the proposed AOQPIO has the advantage over the conventional
QPIO, as well as PSO and PIO algorithms in terms of searching ability, stability, and robustness.

5. Conclusions

The AOQPIO algorithm for UAV path planning in 3D undulating terrain was proposed in this
paper. Various improvements have been incorporated into conventional QPIO algorithms to ensure
the convergence rate and avoid local optimum. By utilizing logistic mapping method, the introduced
pigeon population initialization procedure improved the diversity of population and the ergodicity of
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pigeon, which can accelerate overall convergence rate. Further, the adaptive map and compass factor is
allowed to vary in each iteration during the process of AOQPIO algorithm, which ensures a balanced
global and local search ability. To prevent the fast decrease and algorithm premature convergence
at some local optimum, a new population updating strategy was presented regarding these issues.
Simulation and comparison results showed that our algorithm has a better convergence rate, and the
UAV path obtained by our algorithm has the lowest cost among all existing algorithms.
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