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Abstract: As a recent swarm-based intelligent optimization algorithm, Pigeon Inspired Optimization (PIO), is motivated by the
natural bio-mechanism of pigeons for their superior skills in destination finding and navigating. The standard PIO has been suc-
cessfully implemented to solve complex optimization problems. Similar to other swarm intelligent techniques, PIO is suitable
to solve global optimization problems for its robustness in adapting to dynamic environments, where the convergence rate is
generally limited, since the algorithm does not employ much local information to establish a most promising direction for optima
searching. In this paper, we propose a novel hybridized optimization algorithm, Nelder-Mead Pigeon Inspired Optimization (NM-
PIO), incorporating the global optimization ability of PIO and the capability of fast local convergent of the Nelder-Mead Simplex
method. With the implementation of synthesizing a bio-inspired optimization algorithm and a direct local search method, feasi-
ble global optimal solution can be found with a faster convergence rate, compared with the original PIO algorithm. Numerical
experiments for several well-known benchmarks are conducted to study the performance of this algorithm. The results reveal
that our hybridization strategy is effective and efficient for solving global optimization problems.
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1 Introduction

Mathematical optimization is the procedure of searching

the best solution from a collection of alternatives with re-

spect to a given objective function or multi-objective func-

tions, under some constraints. Optimization techniques

are extensively utilized in numerous applications like job

scheduling, resources allocating, path planning, physical de-

signing, system controlling.

Real-world optimization problems are often NP-hard,

which are extremely challenging to solve. Therefore, many

problems have to be solved by trials and errors. One essential

group of algorithms have been developed by drawing inspi-

ration from population-based intelligence [1], named swarm

intelligence, which studies the cooperative behavior among

the natural species. Particle Swarm Optimization (PSO) [2]

[3] [4] is a popular swarm intelligent algorithm inspired by

the social behavior of a moving bird flock or fish school. In-

dividual of the swarm are considered as particles, position-

s of which represent candidate solutions to the continuous

objective function. During the process of PSO, each indi-

vidual particle determines its next movement by balancing

the effects among individual inertial, historical individual fit-

ness values, neighborhood (swarm) fitness values, and some

random perturbations. Pigeon Inspired Optimization (PIO)

[5] is motivated by the natural bio-mechanism of pigeons

for their superior skills in destination finding and navigat-

ing. The standard PIO has been successfully implemented to

solve complex optimization problems in various scenarios.

Compared with standard PSO, PIO possesses faster conver-

gence rate and ability to avoid local extremes [6].

Though swarm-based intelligent meta-heuristic optimiza-

tion algorithms are much more capable to solve global op-

timization problems than local search methods [7], the con-

vergence rate of a swarm intelligence algorithm is normally

slower compared with a direct local search method.

In this paper, we propose a hybridized optimization

method named Nelder-Mead Pigeon Inspired Optimization

(NMPIO), for solving unconstrained optimization problems.

The major contribution of this work is a novel approach of

introducing a fast direct local search strategy in the process

of the standard PIO. NMPIO integrates the Nelder-Mead

Simplex operations [8] in the position-updating process of

candidate solutions, which accelerates the local search effi-

ciency where the ability of global optimizing is maintained.

By incorporating the bio-inspired optimization algorithm

with local search operations, feasible global optima can be

found with a faster convergence rate, compared with the s-

tandard PIO algorithm.

This paper is organized as follows. Section 2 discusses

some recent hybridized swarm intelligence optimization ap-

proaches related to our work. Section 3 presents the pro-

posed NMPIO method after a brief introduction of the stan-

dard Nelder-Mead Simplex method and the standard PIO al-

gorithm. Numerical experiments and results are illustrated

in Section 4, where the performance of NMPIO working on

benchmarks are studied. Section 5 summarizes this work.

2 Related work

A desired optimization algorithm should have a good bal-

ance between the adaptivity of global optimization and the

ability of fast local search. Hybridized swarm intelligence

optimization algorithms are of significant importance in re-

cent trends of optimization, since a balanced combination of

a swarm-based algorithm and a direct local search method

will enhance the performance of each searching algorithm.

A modified Ant Colony Optimization (ACO) model un-

derlying the foraging strategy of certain ant species is pro-

posed [9] with incorporating key operations of the tabu-

search method in the development of a standard ACO algo-

rithm. The numerical results demonstrate the feasibility and

effectiveness of this hybrid algorithm in solving electromag-

netic (EM) design problems. Hybridized by PSO and differ-

ential evolution (DE), DEPSO [10] provides the bell-shaped

mutations with consensus on the population diversity along

with the evolution, while keeps the self-organized particle
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swarm dynamics. The standard PSO algorithm is improved

by incorporating a hybridization strategy with the Nelder-

Mead Simplex method [11]. With the implementation of

combining modified simplex search method and a mutation

heuristic strategy to the modified PSO method, the algorithm

achieves a faster convergence rate and allows more possibil-

ities to resolve the problem of local convergent.

A recent simple combination of the Nelder-Mead Simplex

method and PSO is investigated for a signal source search

and localization scenario [12]. The strategy of introducing

a fast local search technique in a bio-inspired optimization

method speeds up the searching process. Demonstrated by

experiments on benchmarks and an interpolated 2.4GHz sig-

nal distribution environment, the hybridized algorithm out-

performs the standard Nelder-Mead method and PSO regard-

ing the accuracy and the rate of convergence. To handle

multi-objective problems, the standard PSO algorithm is ex-

tended by introducing a mutation operator. Indicated by the

experimental results, this method is highly competitive with

respect to some of the best multi-objective evolutionary al-

gorithms [13] [14].

Quantum theory is introduced in the standard PIO pro-

cess to increase the local search capacity and randomness of

population positions [15]. This improved Bloch Quantum-

behaved PIO (BQPIO) can avoid the premature convergence

problem and suitable for multi-modal applications. PIO al-

gorithm is improved with a modified fitness function to solve

complex constrained application problems in hypersonic ve-

hicle trajectory optimization [16]. Hybridized Predator-Prey

PIO (PPPIO) algorithm is applied to speed up the conver-

gence rate and to keep global optimization for an automat-

ic landing system of a fixed-wing unmanned aerial vehicle

(UAV) in the longitudinal plane [17].

3 Methodology

Direct methods like the Nelder-Mead Simplex algorithm

have rapid convergence rates but may easily fall into a local

optimum for a global optimization problem. Though swarm

intelligence optimization algorithms generally lack the abil-

ity of fast local search, they have relatively strong adaptivity

of global optimization compared with direct methods.

The idea of our hybrid approach is to combine the ad-

vantages of the Nelder-Mead Simplex and the standard PI-

O algorithm. The goal is to design a balanced combination

of a swarm intelligence algorithm and a direct local search

method, to enhance the overall performance in the rate of

convergence and global optimization. In this section, we

start with introducing the Nelder-Mead Simplex algorithm

and the standard PIO, then describe our proposed hybrid op-

timization method NMPIO.

3.1 Nelder-Mead Simplex method
The Nelder-Mead Simplex (NM) algorithm [8] is a di-

rect local search method for nonlinear unconstrained opti-

mization problem without the needing of gradient informa-

tion. This algorithm iteratively generates a new scale of the

simplex formulated on the local behavior of the objective

function by using five procedures: ordering, reflection, ex-

pansion, contraction and shrinkage, where a simplex is an

n-dimensional geometry of nonzero volume that is the con-

vex hull of n + 1 vertices for an n-dimensional optimiza-

tion problem. Figure 1 is an illustration of the simplex op-

erations for a two-dimensional optimization problem. For

a two-dimensional minimization problem, in each iteration,

the worst vertex (red dot) with the largest value will be up-

dated by another position (blue dot pointed by the arrow) to

form a new simplex along with the remaining vertices, where

the yellow dot denotes the centroid of the simplex. Hence the

generated simplex will eventually converge to the optimum

value of the objective function [18].

initial simplex centroid reflection expansion contraction shrinkage

Fig. 1: Illustration of Nelder-Mead Simplex operations

For a two-dimensional minimization problem, denote

x1, x2, x3 as the vertices of the initial simplex, and the cen-

troid of the simplex is given as x̄ = 1
2

∑2
i=1 xi, denote f(xi)

to be the fitness value on vertex xi, the NM operations are

given as follows.

Step 1 Rank the vertices based on the corresponding fitness

value f(xi) such that f(x1) ≤ f(x2) ≤ f(x3).

Step 2 Compute the reflection point xr = (1 + ρ)x̄ − ρx3.

If f(xr) ≤ f(x2), replace x3 with xr and go back to

Step 1.

Step 3 If f(xr) < f(x1), compute the expansion point
xe = (1 + ρξ)x̄ − ρξx3. If f(xe) < f(xr), re-

place x3 with xe. If f(xr) ≤ f(xe), then replace x3

with xr and go back to Step 1.

Step 4 If f(x2) ≤ f(xr) < f(x3), compute the outside
contraction point xc = (1 + ργ)x̄ − ργx3. If

f(xc) ≤ f(xr), replace x3 with xc and go back

to Step 1. Compute the inner contraction point
xcc = (1 − γ)x̄ + γx3, if f(xcc) < f(x3), replace

x3 with xcc and go back to Step 1.

Step 5 If f(xr) < f(xc) or f(x3) ≤ f(xcc), compute the

shrinkage points x2 = σx2+(1−σ)x1, x3 = σx3+
(1− σ)x1, and go back to Step 1.

The values of the Nelder-Mead parameters ρ, ξ, γ, σ are

given in Tabel 2.

3.2 Pigeon Inspired Optimization
Pigeon Inspired Optimization (PIO) method [5] is a re-

cent swarm-based optimization algorithm inspired by the so-

cial behavior of destination finding and navigating of the pi-

geon flock. This algorithm contains two stages of operations.

The first is a map and compass operator modeling the bio-

mechanism of pigeons shaping the map by using magnetore-

ception and adjusting the flying direction by regarding the

altitude of the sun. The second is a landmark operation sim-

ulating the landmark effect of pigeons when they fly close

to the destination. Pigeons will fly straight to the destination

if they are familiar with the neighboring landmarks, other-

wise they will follow those pigeons that can recognize the

landmarks.
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3.2.1 Map and compass operation

Define the position and velocity of pigeon i at time t as

xi(t) and vi(t), the updating equations of position and ve-

locity are given in Equation (1) and Equation (2),

vi(t+ 1) = e−rtvi(t) + q1 (xg(t)− xi(t)) (1)

xi(t+ 1) = xi(t) + vi(t+ 1) (2)

where r > 0 is the map and compass factor, q1 is a random

number uniformly distributed in (0, 1), and xg(t) is the glob-

al best position among all pigeon positions at time t generat-

ed by comparing the fitness values obtained by all pigeons.

3.2.2 Landmark operation

Pigeons rely more on their familiar neighboring landmark-

s for navigation when they get close to the destination. In

the landmark operation, select those multi-agents with better

fitness values as leading pigeons that are familiar with the

landmarks, followed by the rest pigeons. Denote NC as an

iteration threshold of PIO operations, in other words, when

i < NC, do the map and compass operation, otherwise per-

form the landmark operation, where i is the current number

of iterations. In each iteration of the landmark operation, half

of the pigeons with worse fitness values will be reduced to

accelerate the searching process of the entire pigeon flock.

The center position of the remaining pigeons is calculated

in Equation (3), and identified as the reference flying direc-

tion for the pigeon flock in the process of position updating

shown in Equation (4),

C(t+ 1) =

∑
Np

xi(t)fitness((xi(t)))
∑

fitness(xi(t))
(3)

xi(t+ 1) = xi(t) + q2 (C(t+ 1)− xi(t)) (4)

where q2 is a random number uniformly distributed in

(0, 1), C(t) is the central position of the remaining pi-

geons, Np(t) denotes the current number of population at

time t, Np(t + 1) = 1
2Np(t), fitness(xi(t)) is chosen

as (fmin(xi(t)) + ε)−1 for a minimization problem, and

fitness(xi(t)) = fmax(xi(t)) for a maximization problem.

3.3 NMPIO method
The motivation of this proposed hybridized algorithm, N-

MPIO, originates from the dilemma between fast conver-

gence and global optimization when considering either per-

forming NM or PIO exclusively. To resolve the conflict, we

attempt to design an algorithm that incorporates the superi-

orities of those two optimization techniques.

Shown in Figure 2, NMPIO algorithm can be considered

as a combination of two components: Group 1 and Group 2.

Group 1 is a NM component formed by the best (D + 1)
ordered agents driving the M agents moving to the direction

where the NM algorithm calculated. M denotes the number

of agents for a D-dimensional minimization problem.

Group 2, form by the remaining (M − D − 1) agents,

can be considered as a linear combination of three PIO sub-

components in Equation (1) - (4): an inertia component to

Initialize random population of M agents

Evaluate fitness value for each agent

Order the M agents by fitness values

Form Group 1 of D+1 agents 
with top fitness values

Form Group 2 of M-D-1 
remaining agents

Execute Nelder-Mead
Simplex operations

Update the position of the 
worst vertex

Select the best NM 
individual

Phase change
# iteration < NC

Compare and choose the 
best individual 

Execute map and compass 
operations and select the 

best PIO individual

Update the velocities and 
positions of M-D-1 agents

Execute landmark 
operations

Combine the updated M 
agents

No

Yes

Converge End

No

Yes

Fig. 2: Flowchart of NMPIO algorithm

keep the agents moving along their previous directions, a so-
cial component which encourages the agents to move to the

best position that the swarm has found so far, and a cognitive
component which causes each agent to return to its individ-

ual best position.

Therefore, with the implementation of this hybrid ap-

proach, the drawback of relatively slow convergence in PIO

is improved by introducing the NM component. Simulta-

neously, the limitation of local optimization within the NM

algorithm is ameliorated by the social component.
The pseudocodes of NMPIO for a minimization problem

are specified in Algorithm 1 and Algorithm 2.

4 Numerical experiments

The goal of the following numerical experiments is to an-

alyze the proposed NMPIO algorithm in comparison with

the standard Pigeon Inspired Optimization, Particle Swarm

Optimization, and Nelder-Mead Simplex algorithm, with re-

spect to the ability of fast local search and the adaptivity of

global optimization.

Three typical two-dimensional benchmark functions are

applied due to their differences in complexity and conver-

gence behavior.

• Rosenbrock function

f1 = (1− x1)
2
+ 100

(
x2 − x2

1

)2
(5)
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Algorithm 1 Initialization of the NMPIO algorithm

Input: numDimension, numPopulation, initialPositions, initialVe-

locities

Initialize random numPopulation agents, and generate initialPosi-

tions and initialVelocities.

for i = 1 to numPositions do
Compute fitness(initialPositions(i)) values f(·)

end for
fsorted = sort(f(·))
indexNM = find(f(·) ≤ fsorted(numDimension+ 1))
indexPIO = find(f(·) > fsorted(numDimension+ 1))
positionNM = initialPositions(indexNM )

positionPIO = initialPositions(indexPIO)

Find the position of global best individual gbest
Collect the (numDimension+1) agents with positionNM as

group GNM

Collect the remaining agents with positionPIO as Group GPIO

Algorithm 2 Main code of the NMPIO algorithm

Input: numDimension, positionNM , positionPIO , gbest, max-

Iterations, compassFactor, NC

Initialize the group of agents, and generate initial positions and

velocities.

for Nc = 1 to maxIterations do
if Nc ≤ NC then

Form GNM and GPIO according to the fitness values of

the numPopulation agents

Execute the NM operations to GNM

Update the position of the worst simplex vertex, and find

gbestNM , the position of best GNM agents

Execute the PIO map and compass operations to GPIO ,

and find gbestPIO , the position of best GPIO agents

Get the global best position gbest between gbestNM and

gbestPIO , where gbest will be applied in the next iteration

Combine the updated (numDimension + 1) simplex

vertices and the remaining PIO agents

end if
if Nc > NC then

Form GNM and GPIO according to the fitness values of

the numPopulation agents

Execute the PIO landmark operations to GPIO

Get the global best position gbest between gbestNM and

gbestPIO , where gbest will be applied in the next iteration

Combine the updated (numDimension + 1) simplex

vertices and the remaining PIO agents

end if
end for

The Rosenbrock function reaches its global minimum

at (1, 1):

min(f1) = f(1, 1) = 0 (6)

• Rastrigin function

f2 = 20 + x2
1 + x2

2 − 10 (cos(2πx1) + cos(2πx2))
(7)

The Rastrigin function achieves its global minimum at

(0, 0):

min(f2) = f(0, 0) = 0 (8)

• Ackley function

f3 = 20 + e− 20e−
1
5

√
1
2

∑2
i=1 x2

i − e
1
2

∑2
i=1 cos(2πxi)

(9)

The global minimum of the Ackley function locates at

(0, 0):

min(f3) = f(0, 0) = 0 (10)

Swarm-based optimization algorithms will perform differ-

ent search paths in each run, since random terms are included

in their formulas. Consequently, it is inappropriate to com-

pare the performance of these algorithms for a certain run.

To deal with this problem, we take 30 independent runs with

same random initial positions and measure the averaged per-

formance. In each run, we perform 20 iterations, and mea-

sure the L1-norm error between the computational and real

minimum function values. Numerical experiments are con-

ducted on an Intel i7-4770 3.40 GHz desktop computer with

16 GB memory.

For PSO, PIO, NM and NMPIO, the selected algorithmic

parameters are given in Table 1 and Table 2.

Table 1: Swarm-based parameters for PSO/PIO/NMPIO

Algorithm PSO PIO NMPIO
No. of agents 20 20 20

Iterations 20 20 20

Map and compass factor - 0.5 0.5

NC - 6 6

Inertial weight 0.6 - -

global best weight 2 - -

personal best weight 2 - -

Table 2: Nelder-Mead parameters for NM/NMPIO

Algorithm NM NMPIO
Reflection parameter ρ 1 1

Expansion parameter ξ 2 2

Contraction parameter γ 0.5 0.5

Shrinkage parameter σ 0.5 0.5

4.1 Case A: Rosenbrock function
Figure 3 shows that the neighboring region around the op-

tima is quite flat, which means the changes of fitness values

are too small to follow for gradient-based optimization meth-

ods.

Demonstrated in Figure 4, the NM method has the slow-

est rate of convergence, since the fitness values vary slightly

in the Rosenbrock function, and the updating of the worst

vertex in the NM operations intuitively calculate and com-

pare the differences of fitness values acquired at neighbor-

ing vertices. Meanwhile, the standard PSO achieves a 10−4

magnitude of accuracy in 20 iterations.

Among all the methods, the proposed NMPIO algorith-

m provides the fastest rate of convergence. Compared

with the standard PIO, NMPIO converges faster in the hy-

bridized landmark operations and achieves much better ac-

curacy (10−19 magnitude) with 20 iterations.
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Fig. 3: Surface plot of the Rosenbrock function
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Fig. 4: Convergence results on the Rosenbrock function

4.2 Case B: Rastrigin function
Figure 5 shows that there are multiple local extremes lo-

cated in the surface plot of the Rastrigin function, which

makes it quite difficult to solve for local search methods.

Revealed in Figure 6, as we can expect, the NM method

converges to a local optima with accuracy over 101 magni-

tude. Though in some special cases when the initial posi-

tions are located near the global optima, the NM method can

provide a very rapid convergence rate, the overall average

performance of it is poorer than swarm-based global opti-

mization algorithms.

The NMPIO and PIO algorithm successfully find the glob-

al optima with accuracy of 10−3 magnitude, and outperform

the standard PSO regarding both the rate of convergence and

the accuracy.

4.3 Case C: Ackley function
Similar to the Rastrigin function, the Ackley function has

multiple local extremes as shown in Figure 7.

In this case, demonstrated in Figure 8, the NM method ac-

tually is capable to find the global optima with the accuracy

of 10−2 magnitude. This may results from the fact that the

fitness values of the Ackley function vary significantly in lo-

cal neighborhood, which provides more intuition for the NM

method to search for the best direction that the function val-

ue changes most rapidly. Meanwhile, the NMPIO provides

the best performance considering both the accuracy (10−9
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Fig. 5: Surface plot of the Rastrigin function
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Fig. 6: Convergence results on the Rastrigin function

magnitude) and the rate of convergence, compared with N-

M, standard PIO and PSO.

4.4 Summary of numerical experiments
Compared with the standard PIO technique, demonstrated

in the results of the numerical experiments, NMPIO is ca-

pable to solve complex global optimization problems with a

faster convergence rate, while the problem of the premature

of numerical solutions with PIO is also ameliorated (See Fig-

ure 4 and Figure 8). The NM component introduced in the

NMPIO method accelerates the local search efficiency com-

pared with the standard PIO. Meanwhile, the social compo-
nent in NMPIO keeps the ability for global optimization.

5 Conclusions

In this work, to solve the dilemma between fast conver-

gence and global optimization, the NM operations are in-

troduced to the standard PIO algorithm to generate a novel

hybridized global optimization algorithm, NMPIO.

With the implementation of synthesizing the NM and

the PIO operations, feasible global optimal solution can be

found. The results of the numerical experiments reveal that

the proposed hybrid algorithm NMPIO outperforms the stan-

dard PIO, PSO, and the NM method on three typical bench-

mark functions regarding the rate of convergence and global

optimization, indicating that the proposed algorithm is well-

balanced for global optimization problems.
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Fig. 7: Surface plot of the Ackley function
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Fig. 8: Convergence results on the Ackley function

In the future, we will analyze the convergence of NMPIO,

and apply this algorithm for some more computationally ex-

pensive optimization benchmarks with different dimensions,

like CEC2014 and CEC2017 problem sets.
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