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Abstract
This paper develops a method to tune neuro-fuzzy controllers using metaheuristic optimization. The main purpose of this 
approach is that it allows neuro-fuzzy controllers to be tuned to achieve global performance requirements. This paper proposes 
a robust and intelligent control method based on adaptive neuro-fuzzy inference system (ANFIS) and pigeon-inspired opti-
mization (PIO) algorithm to govern the behavior of a three-degree-of-freedom (3-DOF) quadrotor unmanned aerial vehicle 
(UAV). UAVs are flying platforms that have become increasingly used in a wide range of applications. However, the most 
recent research has aimed to improve the quality of UAVs control in order to achieve its mission accurately. The quadrotor 
is chosen due to its simple mechanical structure; nevertheless, these types of UAVs are highly nonlinear. Intelligent control 
that uses artificial intelligence approach such as fuzzy logic is a suitable choice to better control nonlinear systems. The 
ANFIS controller is proposed to control the movement of UAV to track a given reference trajectory in 2-D vertical plane. The 
PIO is used to obtain the ANFIS optimal parameters with the aim of improving the quality of the controller and, therefore, 
to minimize tracking error. To evaluate the performance of the ANFIS-PIO, a comparison between the proposed control-
ler, ANFIS and proportional–integral–derivative (PID) controllers is illustrated. The results demonstrate that the proposed 
controller is more effective compared to the other controllers.

Keywords Unmanned aerial vehicle (UAV) · Robust control · Adaptive neuro-fuzzy inference system (ANFIS) · Pigeon-
inspired optimization (PIO)

1 Introduction

Unmanned aerial vehicles (UAVs) are aircrafts without 
human guidance. The UAVs technology has been continu-
ously evolving with exceptional growth over the last years 
[1], leading to the emergence of a large number of services 
offered and potential applications. Drones are not meant 
to only serve military purposes [2], but have also become 
widely used in civilian and industrial domain, such as logis-
tics and transportation [3, 4], photography and filmmaking 
[5], safety and security [6], mapping [7], agriculture [8, 9], 
monitoring [10, 11], surveillance [12], architecture [13, 14] 
and many other applications. Its use is increasing in most 
areas due to their low maintenance cost, ease of deployment, 
high mobility and hovering ability [15–17].

The aim of this study is to develop a robust and intelligent 
control method for nonlinear systems classes. This type of 
control method could estimate the unknown function and 
make the system controllable without precise knowledge 
of model. The introduction of expert knowledge into the 
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control system is accomplished by a human operator able to 
control without knowing the mathematical model of the sys-
tem. This approach is often referred to intelligent control and 
can be supplemented by a level of supervision that allows 
the adjustment of this knowledge according to the current 
situation of the system. It is in this context that a privileged 
place is devoted to fuzzy control.

Since the emergence of fuzzy logic, the control philoso-
phy of poorly defined processes or even completely unknown 
ones that cannot be mathematically modeled has undergone 
a radical change. This is due to the fact that conventional 
control laws are replaced by if (condition) then (action) 
rules. Fuzzy logic is often used in complex systems to over-
come the limitations of conventional mathematical tools. 
However, it has limitations, in particular on the accuracy 
of information expressed in natural language, providing a 
certain margin of instability.

In order to overcome these disadvantages, the current 
trend is to integrate these tools into hybrid architectures 
to reap the benefits of the advantages of fuzzy logic and 
artificial neural networks (ANNs). The use of neuro-fuzzy 
systems in command/control offers the possibility to model 
a priori knowledge and linguistic decision rules obtained 
by experts in the field. They take advantage of the capabili-
ties and benefits of fuzzy inference modeled by a parallel 
architecture.

Among all neuro-fuzzy systems, the adaptive neuro-fuzzy 
inference system (ANFIS) model has the lowest root mean 
square error, which is why it is the most widely used model. 
Various research works show that the adaptive neuro-fuzzy 
inference system, known as ANFIS, developed by Jang [18] 
is able to learn quickly the behavior of a system with high 
precision and even better than other methods, including 
ANNs.

The major benefit of ANFIS is that it allows integrat-
ing the user’s knowledge on inputs and outputs. However, 
the implementation of an ANFIS control system faces some 
challenges and difficulties, particularly in the choice of opti-
mal parameters. The accuracy of ANFIS-based controller 
results depends on many factors, including choice of inputs 
parameters, type and number of membership functions 
(MFs) and learning algorithm. The ANFIS model estab-
lishes a relationship between the input and output of a given 
process through learning process to determine the optimal 
distribution of the MFs, i.e., the best partitioning of each 
variable into fuzzy subsets.

Sugeno-type fuzzy inference system model not only pro-
vides more accurate to find relationships between input and 
output variables but it is also computationally more efficient 
than the Mamdani type. Mamdani-type fuzzy inference gives 
an output that is a fuzzy set. Sugeno-type inference gives 
an output that is either constant or a linear mathematical 
expression. It has also an advantage that it can be combined 

with optimization techniques so that the system can effec-
tively adapt to the system’s characteristics.

Despite their methodical capabilities, they suffer from 
the problem of setting/control parameters. A key point is to 
find a way to automatically adjust the parameters during the 
execution of the algorithm.

Evolutionary algorithms (EAs) are robust and practical 
methods to automate the search for good solutions. They are 
proposed as a way to find solutions close to global optima 
for complex problems. A wide variety of optimization prob-
lems in different areas, in which EAs have been success-
fully applied, demonstrated its effectiveness. This concept 
must be applied to improve research and achieve effective 
convergence.

2  Related works

Various design methods have been widely described in the 
literature that allow to specify the different parameters of a 
fuzzy controller. They are mainly based on a learning pro-
cess, which iteratively defines the best set of parameters for 
a given fuzzy controller structure. Currently, researchers 
have focused in particular on the following approaches: (a) 
optimization of MFs, (b) optimization of fuzzy rules, and (c) 
simultaneous optimization of MFs and fuzzy rules.

Several researches have been carried out on the optimiza-
tion of the fuzzy controller MFs using genetic algorithms 
(GAs) [19–23]. Thrift is the first to introduce a method of 
optimization of fuzzy rules by GA; he used three bits to 
encode each rule [24]. In 1993, Lee and Takagi proposed 
a method for simultaneous optimization of MFs and fuzzy 
rules [25]. Several methods on the same concept were used 
in these works [26–29]. Other optimization techniques of 
tuning fuzzy systems use swarm intelligence [30–36].

Metaheuristics are mostly derived from natural-based 
metaphors, inspired by some biological or physical pro-
cesses. For example, particle swarm optimization (PSO) is 
inspired by the social foraging behavior of swarms of birds 
or fishes [37], ant colony optimization (ACO) algorithm is 
inspired by the foraging behavior of real ants in the nature 
[38], and artificial bee colony (ABC) algorithm is inspired 
by the foraging behavior of honey bee swarms [39]. New 
algorithms have also emerged recently, including the fire-
fly algorithm (FA) [40], the bat algorithm (BA) [41], grey 
wolf optimizer (GWO) [42] and pigeon-inspired optimi-
zation (PIO) [43]. PIO algorithm is a novel swarm intel-
ligence optimizer, recently introduced by Duan and Qiao in 
2014. This bio-inspired approach comprises two individual 
operators: map/compass operator and landmark operator. 
The first focuses on the embodiment of the impact of the 
sun and magnetic field on navigation; the latter highlights 
the landmark. Only a few years after its introduction, many 
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variants of PIO algorithms were derived and widely applied 
to various applications in different areas [44–58]. Despite 
the effectiveness of the PIO, the ability of global searching 
is still not optimistic in complex optimization problems. In 
order to overcome this weakness in PIO, a Gaussian factor 
is introduced to balance the importance between exploration 
and exploitation results. In this paper, this Gaussian PIO 
algorithm (GPIO) is used to determine the optimal distribu-
tion of the MFs in an ANFIS controller.

This paper presents an effective method to control an 
UAV. This technique uses a PIO algorithm to design an 
ANFIS controller of type Takagi–Sugeno first order by 
optimizing the MFs parameters and the fuzzy rules. The 
rest of the paper is organized as follows: The description 
of the UAV model and the problem formulation are given 
in Sect. 3. ANFIS system with its architecture and learning 
algorithm is introduced in Sect. 4. The purpose of Sect. 5 
is to present the PIO algorithm that will later be used for 
the optimization of ANFIS parameters. Section 6 presents 
autonomous ANFIS MFs tuning using a PIO. Section 7 
details the proposed control design and strategy. In Sect. 8, 
simulation results and comparisons are given to demonstrate 
the effectiveness, quality and efficiency of the proposed 
hybrid controller. Section 9 gives the conclusions.

3  Model description and problem 
formulation

3.1  Description of the quadrotor model

It is primordial to introduce the reference coordinates to 
describe the full structure of the quadrotor. The quadrotor 
body is defined in y, z axes frame. As shown in Fig. 1, the 
origin is located in the center of gravity of the 3-DOF quad-
rotor. The Euler angle � represents the orientation, defining 
the roll angle about the horizontal axis.

Therefore, the quadrotor is modeled to fly in two dimen-
sions y − z plane with a roll angle � as shown in Fig. 1.

The state of the quadrotor is therefore 
[
y, z,�

]T and there 
are two inputs u1 and u2 , which represent the thrust and the 
moment about the x-axis, respectively.

3.2  Equation of motion

Since our drone is modeled in two dimensions, we have y 
and z plane and a roll angle � as seen before. The equations 
describing the movement are written as follows:

(1)ÿ =
u1

m
sin (𝜙),

where m is the mass and Ixx is the moment of inertia.
The equations of motion can be written as follows:

The state space description of the quadrotor is as follows:

So, the first derivative of the state vector is expressed in 
Eq. (6). The first three parameters of the x vector represent 
velocities, and the last three parameters represent accelerations.

The vector 
[
u1, u2

]
 is the input signals that can drive the 

dynamical system; by specifying the properties of u1 and u2 , 
we can change the state of the quadrotor.
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m
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Fig. 1  Quadrotor configuration design
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4  ANFIS system

The proposed neuro-fuzzy network is a five-layer architec-
ture that includes the elements of a fuzzy Sugeno-type sys-
tem [18]. Looking at Fig. 2, let’s explain how the network 
works layer by layer.

Layer 1 (Fuzzification): This layer contains adaptive 
nodes. The outputs are the fuzzy degree of membership of 
the inputs, which are calculated as follows:

where �Ai
,�Bj

 denote the membership degrees obtained from 
this layer.

Fuzzifying the inputs is conducted by MF such as piece-
wise linear, trapezoidal, triangular, singleton and Gaussian. 
Among the abovementioned MFs, in this paper the Gaussian 
function has been used for its smooth and concise notation. 
Therefore, �Ai

(x) is expressed by;

where ai , bi , ciand �i are the premise parameters.
Layer 2 (Weighting of fuzzy rules): This layer contains 

nodes with symbol M, which indicates fixed node. The firing 
strength wk is calculated at this layer by using membership 
values calculated in the fuzzification layer, and the outputs 
are computed as follows:

(7)O1
i
= �Ai

(x), i = 1, 2,

(8)O1
j
= �Bj

(y), j = 1, 2,

(9)

Triangular:�Ai
(x) = max

(
min

(
x − ai

bi − ai
,
ci − x

ci − bi

)
, 0

)
, i = 1, 2,

(10)

Trapezoidal:�Ai
(x) = max

(
min

(
x − ai

bi − ai
, 1,

di − x

di − ci

)
, 0

)
, i = 1, 2,

(11)Gaussian:�Ai
(x) = exp

(
−

(
x − ci

)2
�2
i

)
, i = 1, 2,

Layer 3 (Normalization): All nodes in this layer are 
fixed nodes and called by N. Each node obtains the nor-
malization by computing the ratio of the kth rule’s fir-
ing strength (truth values) to the sum of all rules firing 
strength. The output O3

k
 at this step is given by:

Layer 4 (Defuzzification): Each node of this layer calcu-
lates the weighted consequent values of rules as indicated 
in Eq. (14).

where wk represents the output of the third layer and {
pk, qk, rk

}
 are consequent.

Layer 5 (Summation): The output of this layer is calcu-
lated by summing the outputs of all incoming signals from 
the previous layer (defuzzification) to produce the overall 
ANFIS output.

5  Gaussian pigeon‑inspired optimization 
algorithm

5.1  Pigeon‑inspired optimization

PIO algorithm is a metaheuristic inspired by the natural 
behaviors of homing pigeons. This new swarm intelligence 
algorithm has been recently proposed by Duan and Qiao 
[43]. Pigeons find their way back home using three tools: 
earth’s magnetic field, sun and landmarks. Evidence indi-
cates that pigeons are able to use the earth’s magnetic field 
to find their destination over long distances. According to 
the researchers, the sun is also involved as a form of sun 
navigation that uses homing pigeons, since pigeons are 
able to distinguish differences in altitude between the sun 
at the home base and at the point of release.

The PIO has two different operators: the map and com-
pass operator and the landmark operator [43, 49]. The two 
operators are designed by some calculation rules, which 
can be adapted to many problems.

The map and compass operator and landmark opera-
tor are based on magnetic field and sun, and landmarks, 
respectively.

(12)O2
k
= wk = �Ai

(x) × �Bj
(y), i, j = 1, 2,

(13)O3
k
= wk =

wk∑
wi

=
wk

w1 + w2

, k = 1, 2.

(14)O4
k
= wkfk = wk

(
pkx + qky + rk

)
, k = 1, 2.

(15)O5 =

2�
k=1

wkfk =

∑2

1=1
wkfk

w1 + w2

.

Fig. 2  The equivalent typical ANFIS architecture
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5.1.1  Map and compass operator

In mathematical PIO model, consider N  pigeons in D− 
dimension search space. A pigeon i is modeled by a vector 
of position Xi =

(
xi1, xi2,… , xiD

)
 and a velocity vector noted 

Vi =
(
vi1, vi2,… , viD

)
.

At iteration t < T1
max

 , the navigation cues for each pigeon i 
are provided by the map and compass operator, and the new 
position Xi and new velocity Vi of pigeon i are updated as 
follows:

where t  and t − 1 are the current iteration and the previ-
ous iteration, T1

max
 is the maximum iteration of the current 

operator, S is the map and compass factor, R is a random 
number within [0, 1] and Xg is the current global best posi-
tion (Fig. 3).

5.1.2  Landmark operator

This operator takes over the navigation system of pigeons 
when T1

max
< t < T2

max
 , where T2

max
 is the maximum iteration 

of PIO. In landmark operator, the number of pigeons in every 
generation is reduced by half NP . The generation of position 
is given as follows:

(16)Vi(t) = Vi(t − 1) ⋅ e−St + R ⋅

(
Xg − Xi(t − 1)

)
,

(17)Xi(t) = Xi(t − 1) + Vi(t),

(18)NP(t) =
NP(t − 1)

2
,

where Xc is the center (average) of all positions of the 
pigeons at the tth iteration and the weight w

(
Xi(t)

)
 is cal-

culated by Eq. (21),

where f
(
Xi

)
 is the value of cost (fitness) function of the 

pigeon i at iteration t and � is an arbitrary nonzero constant 
(Fig. 4).

5.2  Gaussian pigeon‑inspired optimization

PIO has a fast convergence speed, but to avoid the possi-
bility of premature convergence to local minima. PIO also 
has the common problem, which is how a poor balance 
between exploration and exploitation results. To formulate 
a more efficient model, a Gaussian distribution, or also 
known as normal distribution, is introduced into the PIO 
algorithm [59, 60]. It is added to the position iteration.

(19)Xc =

∑
Xi(t) ⋅ w

�
Xi(t)

�

NP

∑
w
�
Xi(t)

� ,

(20)Xi(t) = Xi(t − 1) + R ⋅

(
Xc − Xi(t − 1)

)
,

(21)w
(
Xi

)
=

{
f
(
Xi

)
, for maximization

1

f (Xi)+�
, for minimization

,

Fig. 3  Map and compass operator model of PIO
Fig. 4  Landmark operator model
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5.2.1  Gaussian distribution

The random number R has an obvious feature that the ran-
dom output R is a uniform distribution. It has a significant 
advantage which is the full search capability. In many 
cases, the optimization algorithm should have the ability 
to ensure that the destination is correct when carrying out 
a focused search. The method to get a random number, 
which satisfy the uniform distribution rule, is not good 
enough to meet the requirements. The searching equation 
in the PIO landmark operator satisfies the latent premise of 
Gaussian distribution, and it can be improved for achieving 
the global best.

The position update formula of the improved landmark 
operator is given as:

where p is a flexible parameter used in order to balance the 
Gaussian distribution and the uniform distribution; R1 and 
R2 are two random numbers between 0 to 1.

where Q is a random number created according to the Gauss-
ian distribution between 0 and 1; T2

max
 is the maximum 

iteration.

6  Autonomous ANFIS MF tuning using a PIO

ANFIS controllers are designed to use linguistic information 
from expert knowledge in the form of fuzzy reasoning rules. 
The rules are expressed in the following form:

if input X is A and input Y is B then output is C.where 
the premises or antecedents A and B are linguistic terms 
that correspond to the qualitative values associated with the 
basic variables X and Y . These linguistic terms are described 
by fuzzy sets defined by MFs. Figure 5 illustrates a typical 
set of MFs. The consequent (conclusion) C represents the 
behavior associated with the conditions of validity described 
by the antecedent. There are two types of expressions for 
C , Sugeno and Mamdani. In Sugeno type, C of each rule 
is given as a linear combination of inputs. However, in a 
Mamdani type, C is expressed by a set of MFs.

In general, fuzzy rules are expressed with simple 
’’if–then’’ relationship, which are easily obtained from 
expert knowledge. However, the MF design is a delicate 
and time-consuming process; it involves the determination 
of where each MF should be located in the variable space.

(22)

Xi(t) =

{
Xi(t − 1) + 2

(
R
1
− 0.5

)
⋅

(
X
c
− Xi(t − 1)

)
⋅ mn if (R

2
> p)

Xi(t − 1) + 2
(
R
1
− 0.5

)
⋅

(
X
c
− Xi(t − 1)

)
⋅ 2n if

(
R
2
≤ p

) .

(23)

{
m = |Q|
n = 0.5 − 0.25

t

T2
max

,

Figure  5 shows typical forms representative of the 
Gaussian-type MFs. In this type, each MF is determined 
by two parameters, which are mean and deviation. As for 
other types of MFs, such as trapezoidal and triangular, simi-
lar parameters also exist for the determination of the MFs 
shapes. Therefore, the use of PIO as a global optimization 
method to search a set of these parameters that are optimal 
improves the best control performance of the ANFIS.

Figure 6 describes the strategy of using a PIO algorithm 
for MFs tuning in ANFIS controller. In the proposed ANFIS-
PIO model, the MF parameters of the inputs and outputs 
of the ANFIS are represented by each particle. As the aim 
of the PIO is to minimize the control error of the ANFIS 
controller, the adopted objective function of PIO is defined 
by mean-squared error (MSE) and root mean-squared error 
(RMSE) in order to calculate the fitness of the solution. To 
compute the MSE and RMSE errors values, the measured 
output of ANFIS and the desired output are used as given in 
Eqs. (22) and (23):

(24)MSE =
1

n

n∑
i=1

(
yi − ŷi

)2
,

(25)RMSE =

√√√√1

n

n∑
i=1

(
yi − ŷi

)2
.

Fig. 5  A typical set of MFs in an ANFIS controller

Fig. 6  The proposed method of tuning ANFIS MF by PIO
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Here, yi is the reference output, yi is the measured output 
by ANFIS, and n is the number of samples.

6.1  PIO representation of solutions

The NFIS controller is composed by many input and output 
MFs. That is why it will require a better use of the subpopu-
lation concept.

The solution for a problem is associated with a population 
of homing pigeons composed a subpopulation p by vector 
with r positions sp =

{
p1, p2, p3,… , pr

}
 , where each compo-

nent pi represents a homing pigeon (agent). Each subpopula-
tion represents one possible solution.

However, each homing pigeon position is composed by 
the MFs parameters for the antecedents and consequents, 
which are real values.

The number of agents in each subpopulation (size of the 
subpopulation) depends on the number of MFs defined by 
user.

6.2  PIO for ANFIS MF tuning

The integration of PIO algorithm with ANFIS controller is 
made as follows:

1. The subpopulation is defined as a vector of parameter 
values of the input and output MFs.

2. The parameters are the antecedents (premises) and con-
sequents (conclusions) of each fuzzy set. Each agent 
(homing pigeon) is composed by these parameters.

3. To check the performance of the ANFIS, it is rolled up 
from an initial set of parameters.

4. The information about these parameters is used as input 
arguments for the implementation of each sub-popula-
tion adaptability (adjustment) and the achievement of 
the evolution of the population.

5. The cycle is repeated to complete the defined number 
of iterations performed by the user. The best value set 
for the MFs parameters is found at the end of each PIO 
iteration.

7  Controller design

An adaptive controller represented by an automatically 
tuning ANFIS by a PIO algorithm for a better and optimal 
choice of ANFIS MFs parameters. The adaptation law of 
these parameters is responsible for reducing tracking errors.

The auto-tuning (self-optimization) of ANFIS parameters 
by PIO specifically aims to find the optimal MFs design. 
This leads to automatically adjusting the fuzzy rules because 
the two parts (MFs and fuzzy rules) cannot be dissociated. 
Moreover, the optimization by the PIO, whose sole objective 

is the improvement of a numerical criterion, often leads to 
the presence of more precise fuzzy rules at the end of the 
optimization process, which leads to better results. It is 
within this framework that our motives and interests lie in 
the design of neuro-fuzzy controllers by PIO.

In our study, an ANFIS controller applied to a totally 
autonomous UAV tracking trajectory, modeled to fly in 
two dimensions (yz) plane with an angle � which is the roll 
angle, both y and z equations that describe the trajectory 
and the roll angle � are considered as an objective function. 
To improve controller, an optimization approach based on 
PIO algorithm is proposed to obtain the optimal parameters 
leading to the optimal or ideal trajectory and therefore to 
completion of the specified movement resets the control.

The trajectory to follow is defined by the vector RT , which 
consists of two elements {y(t), z(t)} as shown in Fig. 7.

Given the reference trajectory

And the measured trajectory is defined by the vector RC

where yC(t)  and zC(t)  are the calculated parameters by the 
controller.

For each parameter defining the trajectory, we consider a 
controller with two inputs, an output Δu(t) , error e(t) and its 
variation Δe(t) , the variation of the command, which allows 
to adjust to each moment the command u(t) , applied to the 
system (Fig. 8). The fuzzy rules constituting the base of the 
controller, in this case, have two premises.

7.1  PIO implementation procedure

According to the UAV modeling in Sect. 2, and to the pro-
posed feedback control, initialize the plant, i.e., trajectory 
information including the coordinates of the two dimensions 
y–z plane and the roll angle �.

(26)RT (t) =

[
y(t)

z(t)

]
.

(27)RC(t) =

[
yC(t)

zC(t)

]
,

Fig. 7  Quadrotor trajectory tracking in 2D plane
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Being Tmax the PIO iteration, P is the population, N is the 
subpopulation number, and [a, b] is the universe of discourse 
of each fuzzy set (or the input space). As a start, to store the 
best subpopulation result the algorithm shown below generates 
the vector global best solution with N positions.

The procedure for implementing the PIO is described as 
follows.

Step 1: generate the initial subpopulation SP with pigeons 
in the interval [a, b].

Step 2: initialize the parameters of PIO algorithm: the 
dimension of the solution space D , population size N , the 
number of iterations for the two PIO operators T1

max
 and T2

max
 

( T2
max

> T1
max

 ) and the map and compass factor S.
Step 3: define each subpopulation SP with a randomized 

position and velocity. Find the current best solution by com-
paring the fitness of each subpopulation SP.

Step 4: operate map and compass operator. Firstly, using 
Eqs. (16) and (17), update the velocity and position of every 

agent (pigeon). Then, find the new best solution by comparing 
all the subpopulation’s fitness.

Step 5: if Tmax > T1
max

 , stop the map/compass operator and 
operate next operator. Otherwise, go to Step 4.

Step 6: rank all subpopulations according to their fitness 
values. According to Eq. (18), half of subpopulations with low 
fitness follow the subpopulations with high fitness. Then, cal-
culate the center position of all subpopulations using Eq. (19), 
and this center represents the desirable destination.

Step 7: Update the position of each individual based on 
the improved landmark operator according to Eqs. (22) and 
(23); all subpopulations adjust their flying direction. Next, 
store the best solution parameters and the best fitness value, 
and update the global optimum.

Step 8: if Tmax > T2
max

 , stop the landmark operator, and 
output the results. Otherwise, go to Step 7.

8  Simulation results

In this section, we analyze the performances of our pro-
posed method in order to control an UAV moving along a 
specified trajectory. The model is implemented in MAT-
LAB/Simulink programming software. A simulation was 
made for illustrative purpose. The UAV is commanded to 

Fig. 8  Optimization ANFIS 
controller with PIO block 
diagram

Table 1  Parameters of 
quadrotor

Symbol Value

m 0.2 kg

Ixx 0.1 kg m2

g 9.81 m/s2

Fig. 9  PID z measured
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flight following a pre-defined trajectory as a function of 
time defined by y(t) and z(t).

To validate the superior performance of the proposed 
controller, the control system performance obtained by the 
ANFIS-PIO controller is compared with those obtained by 
PID and ANFIS controllers.

The simulation results are obtained with a vertical tra-
jectory in 2D space. The desired trajectory input is defined 
as:

Table 1 shows the parameters of the quadrotor used in 
the following simulations.

Finally, the three control inputs y, z,� were shown below.
Trajectory tracking simulation has been presented in 

this section, and some simulation results are given to illus-
trate the control performances of the developed control-
ler. The trajectory tracking responses of the three used 
controllers are shown in this section, from which it can 
be observed that the reference trajectory can be tracked 
effectively in case of the proposed ANFIS-PIO controller.

With the evaluation of the results, it’s seen that ANFIS-
PIO controller has successfully followed the reference 
but PID controller has given the poor results compared to 
other controllers.

yd(t) = 2 sin (t) and zd(t) = 5 sin (t).

Figures 9, 10, 11 and 12 show the PID results; this con-
troller can reproduce the tracking trajectory with error of 
MSE = 6.42 × 10−2 and RMSE = 0.25.

The simulation result obtained by the ANFIS is 
given in Figs. 13, 14, 15 and 16. It can be seen that real-
izes a good approximation of the system with an error 
MSE = 5.47 × 10−10 and RMSE = 2.34 × 10−5.

Fig. 10  PID y measured

Fig. 11  PID � measured

Fig. 12  PID trajectory measured
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Fig. 13  ANFIS z measured

Fig. 14  ANFIS y measured

Fig. 15  ANFIS � measured
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Figures 17, 18, 19, 20, 21, 22, 23, 24, 25 and 26 show 
the ANFIS-PIO simulation results. The tracking parameter 
performances are shown in Figs. 17, 20 and 23. The trajec-
tory tracking performance is illustrated in Fig. 26, where the 

Fig. 16  ANFIS trajectory measured

Fig. 17  ANFIS-PIO z measured

measured trajectory of the UAV and the reference trajec-
tory are shown together. The results obtained show that the 
performances of our approach are superior compared to the 
other controllers. The validity of the proposed controller is 
proved by MSE < 10−30 and RMSE < 10−15 . Figures 18, 19, 
21, 22, 24 and 25 show the tracking parameters errors. It can 
be seen that the trajectory tracking error is zero.

The PIO algorithm provides an improvement, by com-
paring ANFIS performances with the same ANFIS opti-
mized by PIO, a significant increase in accuracy. A clear 
improvement of the precision in the trajectory tracking is 
thus visible. The RMSE used to measure the accuracy of 
the control model decreases by 1010 times.

We used an evolutionary algorithm approach that is 
PIO. A PIO exploration of this search space is performed 
to identify subsets of more relevant parameters and accu-
rate by a new MF distribution that adapts well to each lin-
guistic variable that leads to minimizing the error between 
the desired trajectory and the calculated one.
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Fig. 18  Error test data ( z parameter)

Fig. 19  Error train data ( z parameter)

Fig. 20  ANFIS-PIO y measured

Fig. 21  Error test data ( y parameter)

Fig. 22  Error train data ( y parameter)
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9  Conclusion

In this work, we show the application of artificial intelli-
gence to command and control systems, a method to tune 
neuro-fuzzy controllers using pigeon-inspired optimiza-
tion (PIO) algorithm. The main advantage of this approach 
is that it allows adaptive neuro-fuzzy inference system 
(ANFIS) controllers to be tuned to achieve global perfor-
mance requirements. In addition, the PIO algorithm was 
implemented to find the optimal distribution of parameters 
in the design of the ANFIS controller to improve the per-
formances in ANFIS controllers. This proposed ANFIS-
PIO controller is proposed to control the movement of 
three-degree-of-freedom (3-DOF) unmanned aerial vehi-
cles (UAVs) to track a given reference trajectory. The case 
study was implemented using simulations. We conclude 

Fig. 23  ANFIS-PIO � measured

Fig. 24  Error test data ( � parameter)

Fig. 25  Error train data ( � parameter)

Fig. 26  ANFIS-PIO measured trajectory
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that dynamically adjusting the ANFIS parameters by PIO 
optimization method has improve the quality of results 
and minimize tracking error. The proposed controller has 
been proven to have better performance in comparison 
with already developed controllers on the same control 
problem.
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