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Abstract—The pigeon-inspired optimization (PIO) algorithm is
a novel swarm intelligence optimizer inspired by the homing be-
haviors of pigeons. Although PIO has demonstrated effectiveness
and superiority in numerous fields, there are few results about the
theoretical foundation of PIO. This paper employs the average
gain model to estimate the upper bound for the expected first
hitting time of PIO in continuous optimization. The case study
and experiment result indicate that our theoretical analysis is
applicable to the general case where the population size and
problem size are both larger than 1, which is close to the practical
situation.

Index Terms—pigeon-inspired optimization (PIO), runtime
analysis, average gain, first hitting time

I. INTRODUCTION

Population-based swarm intelligence (SI) optimization al-
gorithms, such as particle swarm optimization (PSO) [1],
ant colony optimization (ACO) [2], brain storm optimization
(BSO) [3], have been successfully applied to solve various
complicated optimization problems over the last two decades.
Through simulating the behaviors of various swarms in the
nature, researchers propose an increasing number of SI opti-
mization algorithms, these algorithms are helpful to provide
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practical and efficient solutions for all kinds of optimization
problems.

Recently, a novel SI algorithm named pigeon-inspired opti-
mization (PIO) algorithm, inspired by the homing behaviors of
pigeons, was firstly proposed by Duan and Qiao in 2014 [4].Pi-
geons can easily find their homes through using three homing
tools: magnetic field, the sun and landmarks. The magnetic
field is employed to shape the map and adjust the homing
direction in accordance with the altitude of the sun. Landmarks
around pigeons guide them to fly close to the destination. In
order to mimic the natural phenomena, the PIO algorithm
utilizes two operators to describe the flocking behavior of
homing pigeons, i.e., the map and compass operator represents
effects of the magnetic field and the sun, the landmark operator
describes the effects of landmarks [5], [6].

Ever since this new SI optimization algorithm was pro-
posed, many research results have been obtained with respect
to the improvements and applications of PIO. A series of
comparative experiments on both some benchmarks and some
practical optimization problems have indicated that the PIO
has a better performance compared with other bio-inspired
algorithms. Duan and Qiao [4] applied PIO to solve air robot
path planning problems and found that the PIO outperformed
the standard differential evolution (DE) algorithm in conver-
gence speed and stability. To improve the performance of
the power system of the unmanned aerial vehicle (UAV),
a modified PIO algorithm named adjacent-disturbances and
integrated-dispatching pigeon-inspired optimization (ADID-
PIO) was proposed to optimize the design of parameters of
a dc brushless motor [6], the comparative experimental results
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showed that the convergence rate, the efficiency, and the stabil-
ity of ADID-PIO were better than those of basic PIO, BSO,
and predator-prey BSO (PPBSO) [7] in the design process
of dc brushless motor. A variant of the PIO named predator-
prey pigeon-inspired optimization (PPPIO) was presented to
solve the uninhabited combat aerial vehicle (UCAV) three-
dimension path planning problems in dynamic environment,
and the comparative simulation results showed that the PPPIO
algorithm was more efficient than the basic PIO, PSO and
DE [5]. For more applications of the PIO and its performance
comparisons with other bio-inspired algorithms, please refer
to [8]–[12].

Although PIO has demonstrated effectiveness and superiori-
ty in numerous fields, the theoretical foundation of PIO is still
weak [13]. Currently, the theoretical studies of PIO are mainly
based on empirical and intuitive statistical results, and rigorous
mathematical arguments are lacking [13]. Zhang and Duan [5]
conducted a preliminary convergence analysis of PIO by
treating the state of population sequence of the PIO algorithm
as a finite Markov chain. To the best of our knowledge, this
is the only literature concerning the convergence analysis of
PIO found so far.

Another theoretical issue is the runtime analysis. PIO is
mainly used to solve continuous optimization problems, i.e.,
the PIO is basically a continuous bio-inspired algorithm. Many
results on the runtime analysis of continuous EAs (evolution-
ary algorithms) have been achieved, while similar research on
PIO is still lacking. Through modeling the continuous EA as a
renewal process [14], [15], Agapie analyzed the computation
time of continuous EA, such as (1 + λ) ES, (µ + λ) ES [16].

In this paper, after a brief and clear description of PIO,
we introduce the average gain model [17] to estimate the
upper bound for the expected first hitting time of PIO in
continuous optimization. We consider the general case where
the population size and problem size are both larger than one,
which is close to the practical situation. In order to validate our
theoretical analysis, a case study and experiment are presented.

II. PIO AND ITS STOCHASTIC PROCESS MODEL

A. Introduction to PIO Algorithm

In the light of [4], the PIO uses two operators to mimic
the behavior of homing pigeons, which are map and compass
operator, landmark operator respectively.

(1) Map and compass operator. Pigeons are random-
ly initialized in a D-dimension search space RD. The to-
tal number of pigeons is Np, (D,Np ∈ Z+). The posi-
tion and velocity of the k-th pigeon at the t-th iteration
are denoted as x⃗k(t) = (xk1(t), xk2(t), · · · , xkD(t)) and
v⃗k(t) = (vk1(t), vk2(t), · · · , vkD(t)) respectively, where k =
1, · · · , Np,t = 0, 1, · · · .

The new velocity v⃗k(t) and position x⃗k(t) at the t-th
iteration are updated as follows:

v⃗k(t) = v⃗k(t − 1) · e−Rt + r · (P⃗g(t − 1) − x⃗k(t − 1)), (1)

x⃗k(t) = x⃗k(t − 1) + v⃗k(t), (2)

where R ∈ (0, 1) is the map and compass factor, r ∼ U(0, 1)
is a uniform random variable, P⃗g(t − 1) is the best position
found so far until the (t− 1)-th iteration by the entire swarm
(i.e., the global best position).

When the number of loops reaches the required number of
iterations, the map and compass operator stops execution, and
switches to the landmark operator.

(2) Landmark operator. We take maximization problem
into consideration. Sort all pigeons from largest to smallest
according to their fitness values. The total number of pigeons
in every generation will be halved, and the pigeons in the
lower half of the line sorted by fitness values are abandoned.
Let X⃗C(t) be the center of the pigeons’ positions at the t-
th generation, the position updating rule for each pigeon k at
iteration t can be given by:

Np(t) = ceil

(
Np(t − 1)

2

)
, (3)

X⃗C(t) =

Np(t)∑
j=1

x⃗j(t) · fitness (x⃗j(t))

Np(t)
Np(t)∑
j=1

fitness (x⃗j(t))

, (4)

x⃗k(t) = x⃗k(t−1)+r·
(
X⃗C(t) − x⃗k(t − 1)

)
, k = 1, 2, · · · , Np.

(5)
In the equations above, Np(t) represents the number of

pigeons in the t-th generation, Np(0) = Np. The function
ceil(·) returns the smallest integer value greater than or equal
to each input value, obviously, after a quantity of iterations,
Np(t) = ceil(Np

2t ), as Np
2t ∈ (0, 1), thus Np(t) will remain

1, therefore X⃗C(t) will be the current best position in the
t-th generation. r ∼ U(0, 1) is a uniform random variable
independent of both x⃗k(t) and X⃗C(t).

The implementation procedure of PIO is described be-
low [4], as shown in Algorithm 1.

B. Description of the Optimization Problem

Without loss of generality, we assume that the PIO algo-
rithm analyzed in this paper is used to tackle maximization
problems in continuous search space.

Definition 1 (maximization problem): Let S =
D∏

i=1

[−ai, ai] ⊂ RD, ai > 0 be a D-dimensional continuous

search space, and let f : S → R be a D-dimensional function.
A maximization problem is to find a global optimum x⃗∗ ∈ S,
such that f∗ ∆

= f (x⃗∗) = max
x⃗∈S

f (x⃗).

The function f : S → R is called the objective function
of the maximization problem. We do not require f to be
continuous, but it must be bounded. Furthermore, we only
consider the unconstrained optimization.

In addition, the following properties are assumed.
(1) The subset containing global optimal solutions in S is

non-empty.

1166



Algorithm 1 Pigeon-Inspired Optimization (PIO) Algorithm
Input: Np: number of individuals in pigeon swarm.

D: dimension of the search space.
R: the map and compass factor.
Nc1 max: the maximum number of generations that the map and compass
operation is carried out.
Nc2 max: the maximum number of generations that the landmark operation
is carried out.

Output: P⃗g : the global best position.
1. Initialization
Set initial values for Nc1 max, Nc2 max, Np, D, R.
Set initial position x⃗k and velocity v⃗k for each pigeon, k = 1, · · · , Np.
2. Map and compass operations
for t = 1 to Nc1 max do

for k = 1 to Np do
Calculate v⃗k(t) and x⃗k(t) according to equations (1), (2);

end for
Evaluate x⃗k(t), k = 1, · · · , Np and update P⃗g(t);

end for
3. Landmark operations
for t = Nc1 max + 1 to Nc2 max do

Rank all the pigeon individuals according to their fitness values;
Np(t) = ceil

(
Np(t−1)

2

)
;

Keep Np(t) individuals with better fitness value, and abandon the others;
Calculate X⃗C(t) and update x⃗k(t), k = 1, · · · , Np according to
equations (4), (5);
Evaluate x⃗k(t), k = 1, · · · , Np and update P⃗g(t);

end for
4. Output
P⃗g(Nc2 max) is output as the global optimum.

(2) Let S∗ (ε) = {x⃗ ∈ S|f (x⃗) > f∗ − ε} be the global op-
timum ε-neighborhood. Each element of S∗ (ε) might as well
be considered as an optimum of the maximization problem.

(3) For any ε > 0, the Lebesgue measure of S∗ (ε), denoted
as m (S∗ (ε)) > 0.

The first assumption describes the existence of global opti-
ma for the problem. The second assumption presents a rigor-
ous definition of global optimum for continuous maximization
problems. The third assumption shows that there always exist
solutions whose objective values are distributed continuously
and arbitrarily close to the global optimum, which makes the
maximization problem solvable.

C. Stochastic Process Model of PIO

Our runtime analyses are based on representing the PIO
algorithm as a stochastic process. In this section, we explain
the notations and terminologies used throughout the rest of
this article.

Definition 2 (state of pigeon swarm): The state of
pigeon swarm at iteration t(t = 0, 1, · · · ) is de-
fined as η⃗ (t) =

(
x⃗1(t), · · · , x⃗Np(t), P⃗g (t)

)
, where

x⃗1(t), · · · , x⃗Np(t), P⃗g (t) ∈ S.
Definition 3 (state space of pigeon swarm): The set

of all possible pigeon swarm states is called the state
space of pigeon swarm, denoted as Ω = SNp+1 ={

η⃗ =
(
x⃗1, · · · , x⃗Np , ξ⃗

)
|x⃗k ∈ S, k = 1, · · · , Np; ξ⃗ ∈ S

}
.

Definition 4 (ε-global optimum state space
of pigeon swarm): The ε-global optimum state
space of pigeon swarm is defined as Ω∗ (ε) ={

η⃗ =
(
x⃗1, · · · , x⃗Np , ξ⃗

)
|∃x⃗k ∈ S∗ (ε) , k = 1, · · · , Np; ξ⃗ ∈ S

}
.

Later in this article, we will discuss the first hitting time of
pigeon swarm sequence to Ω∗ (ε).

Definition 5 (discrete time stochastic process of PIO): The
discrete time stochastic process associated with PIO algorith-

m is denoted as
{

η⃗ (t) =
(
x⃗1(t), · · · , x⃗Np(t), P⃗g (t)

)}+∞

t=0
,

whose state space is Ω.

According to [5],
{

η⃗ (t) =
(
x⃗1(t), · · · , x⃗Np(t), P⃗g (t)

)}+∞

t=0
is Markovian.

III. ESTIMATION OF EXPECTED FIRST HITTING TIME
UPPER BOUND OF PIO

A. Brief Introduction to Average Gain Model

The average gain model is built on a time-
discrete non-negative stochastic process represented
by {Xt}∞

t=0. The expected one-step change
δt = E (Xt − Xt+1|Xt, Xt−1, · · ·X0) , t ≥ 0 is called
average gain. For any ε > 0, denote the first hitting time as
Tε = min {t ≥ 0 : Xt ≤ ε}.

Theorem 1: [17] Suppose {Xt}∞
t=0 to be a Markov process

with Xt ≥ 0 for all t ≥ 0. Let h : [0, A] → R+ be a mono-
tone increasing, integrable function. If E (Xt − Xt+1|Xt) ≥
h (Xt) when Xt > ε > 0 , then it holds for Tε that

E (Tε|X0) ≤ 1 +

∫ X0

ε

1

h (x)
dx. (6)

B. Expected First Hitting Time Upper Bound of PIO

For any pigeon swarm η⃗ (t) =
(
x⃗1(t), · · · , x⃗Np(t), P⃗g (t)

)
,

t = 0, 1, · · · , denote its fitness function as F (η⃗ (t)), suppose
f (·) to be the objective function of the considered maximiza-
tion problem, we define

F (η⃗ (t))
∆
= max

{
f (x⃗1 (t)) , · · · , f

(
x⃗Np (t)

)
, f
(
P⃗g (t)

)}
.

As P⃗g (t) is the best position found so far until the t-th
iteration by the entire swarm (i.e., the global best position),
we can let F (η⃗ (t)) = f

(
P⃗g (t)

)
, therefore {F (η⃗ (t))}+∞

t=0 is
a monotonic non-decreasing sequence.

Let Xt = f∗ − F (η⃗ (t)) , t = 0, 1, · · · , then Xt − Xt+1 =
F (η⃗ (t + 1)) − F (η⃗ (t)).

Let q∗
t = min

y⃗∈Ω\Ω∗(ε)
P (η⃗ (t + 1) ∈ Ω∗ (ε) |η⃗ (t) = y⃗), t =

0, 1, · · · .
Let α = min {F (z⃗) − F (y⃗) |z⃗ ∈ Ω∗ (ε) , y⃗ ∈ Ω\Ω∗ (ε)},

as F (z⃗) > f∗ − ε, F (y⃗) ≤ f∗ − ε, we get α > 0 provided
that α exists.

Now, we conclude the expected first hitting time upper
bound of PIO as below:

Theorem 2: Suppose Tε = min {t ≥ 0 : Xt ≤ ε} to be the
first hitting time of PIO solving a maximization problem, given
the initial state X0, we have

E (Tε|X0) ≤ 1 +
1

α

∫ X0

ε

1

q∗
t P (η⃗ (t) /∈ Ω∗ (ε))

dx. (7)
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Proof: Suppose the probability distribution function of
η⃗ (t) to be Pt (y⃗), the conditional probability distribution
function of η⃗ (t + 1) given η⃗ (t) = y⃗ to be Pt (z⃗|y⃗).

E (Xt − Xt+1|Xt)

= E [F (η⃗ (t + 1)) − F (η⃗ (t)) |η⃗ (t)]

=

∫

Ω

E [F (η⃗ (t + 1)) |η⃗ (t) = y⃗] dPt (y⃗) −
∫

Ω

F (y⃗)dPt (y⃗)

=

∫

Ω

[∫

Ω

F (z⃗)dPt (z⃗|y⃗)

]
dPt (y⃗) −

∫

Ω

F (y⃗) dPt (y⃗)

=

∫

Ω

[∫

Ω

F (z⃗)dPt (z⃗|y⃗) − F (y⃗)

]
dPt (y⃗)

=

∫

Ω

[∫

Ω

(F (z⃗) − F (y⃗))dPt (z⃗|y⃗)

]
dPt (y⃗)

(Noting that
∫
Ω

F (y⃗)dPt (z⃗|y⃗) = F (y⃗)
∫
Ω

dPt (z⃗|y⃗) = F (y⃗),
the above last equation holds.)

≥
∫

Ω\Ω∗(ε)

[∫

Ω∗(ε)

(F (z⃗) − F (y⃗))dPt (z⃗|y⃗)

]
dPt (y⃗)

≥ α

∫

Ω\Ω∗(ε)

[∫

Ω∗(ε)

dPt (z⃗|y⃗)

]
dPt (y⃗)

= α

∫

Ω\Ω∗(ε)

P (η⃗ (t + 1) ∈ Ω∗ (ε) |η⃗ (t) = y⃗) dPt (y⃗)

≥ αq∗
t

∫

Ω\Ω∗(ε)

dPt (y⃗) = αq∗
t P (η⃗ (t) /∈ Ω∗ (ε)) . (8)

Using (6) and (8), we get (7).

IV. CASE STUDY

We consider the following n-dimensional linear function as
an objective function:

f (x1, x2 · · · , xn) = x1 + x2 + · · · + xn,

(x1, x2 · · · , xn) ∈ S = [0, a]×[0, a]×· · ·×[0, a] , a > 0. (9)

When (x1, x2 · · · , xn)= (a, a, · · · , a), the objective function
reaches its maximum value na.

To avoid complicated calculation, let the population size
Np = 2. Assume that the PIO starts from the initial position
(0, 0, · · · , 0), then X0 = na.

Theorem 3: In this case, the first hitting time Tε satisfies:

E (Tε|X0) ≤ 1 +
1

√
n

2
√

6π
e− 3n

2 + n
4

(na − ε) (10)

Proof: For t = 0, 1, · · · , we have

E (Xt − Xt+1|Xt) = E (ηt|Xt)=

∫ +∞

−∞
xdF (x)

=

∫ +∞

0

xd

(√
6

πn

∫ x

−∞
e−

6(t− n
2 )

2

n dt

)

=

√
6

πn

∫ +∞

0

xe−
6(x− n

2 )
2

n dx

=

√
6

πn
·

(∫ +∞

0

(
x − n

2

)
e−

6(x− n
2 )

2

n dx +

∫ +∞

0

n

2
e−

6(x− n
2 )

2

n dx

)

=

√
6

πn
·

(
− n

12

∫ +∞

0

e−
6(x− n

2 )
2

n d

(
−6
(
x − n

2

)2

n

)
+

n

2

∫ +∞

0

e−
6(x− n

2 )
2

n dx

)

=

√
6

πn

(
− n

12

(
0 − e− 3n

2

)
+

n
√

n

2
√

6

√
π

2

)

=

√
6

πn

(
n

12
e− 3n

2 +
n
√

nπ

4
√

6

)

=

√
n

2
√

6π
e− 3n

2 +
n

4

Hence for any ε > 0, according to Theorem 2, we get

E (Tε|X0) ≤ 1 +

∫ na

ε

1
√

n

2
√

6π
e− 3n

2 + n
4

dx

= 1 +
1

√
n

2
√

6π
e− 3n

2 + n
4

(na − ε)

Notice that

lim
n→∞


1 +

1
√

n

2
√

6π
e− 3n

2 + n
4

(na − ε)


 = 1 + 4a,

this means the time upper bound will keep to be a constant
when the problem’s dimension n is sufficiently large.

V. EXPERIMENT

Theorem 3 gives the upper bound of the expected first
hitting time for a simple PIO on n-dimensional linear function
problem. We conduct experiment to validate the theoretical
result, the experiment settings: ε = 0.01, a = 20, n =
1, 2, · · · , 400. For each problem’s dimension n, we conduct
300 runs of the algorithm and take the average value of the
300 first hitting time as the actual expected first hitting time.
Figure 1 illustrates the comparison of the actual value and
theoretical value of the expected first hitting time(EFHT).

For each n = 1, 2, · · · , 400, the EFHT estimated by
equation (10) is around 1 + 4a = 1 + 4 × 20 = 81, and
the actual EFHT is around 40, which is bounded above by the
former.
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Fig. 1. Comparison of the Actual Value and Theoretical Upper Bound of the
EFHT

VI. CONCLUSION

For the general case where both the PIO’s population size
and problem’s dimension are larger than one, we introduce
the average gain model to establish a universal formula of
the expected first hitting time upper bound. In the case study,
we analyze the EFHT upper bound of the PIO with 2 pigeons
on the n-dimensional linear function. The numeric experiment
shows that the theoretical method proposed in this paper meets
actual situation. This is our preliminary effort to conduct the
runtime analysis of this newly presented SI algorithm. In the
future, we will use the theoretical results obtained by this paper
to analyze the runtime of PIO on more problem instances.
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