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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

In the layout planning, changes in product demand and uncertainty caused by demand prediction need to be considered simultaneously to cope 
with the market changes. To this end, a dynamic facility layout problem (DFLP) is studied to optimize cost and area utilization considering the 
uncertain product demands. An improved multi-objective pigeon-inspired optimization algorithm (IMOPIO) is proposed. A global collaboration 
mechanism is structured to balance the global and local search. The validity of the proposed approach is demonstrated by an industrial case. The 
results suggest that the search ability of IMOPIO is better than compared algorithms in solving the proposed problem. 
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1. Introduction 

Facility layout problems (FLPs) are determining the 
allocation of a set of facilities within some objectives or criteria 
while satisfying placement restrictions. It is estimated that 
about 20% ~ 50% production costs can be attributed to facility 
planning and material handling, and an effective layout design 
can reduce such costs by 10%–30% [1]. Since the FLP belongs 
to the NP-hard problem, many researchers have developed a lot 
of approaches to find solutions to the FLP. 

As the material flows between facilities are assumed to be 
constant during all planning periods, this problem is known as 
the static facility layout problem (SFLP). However, material 
flows may vary by reasons such as changes in product design, 
removal or addition of a product from/to the production line, 
changes in the production amount because of the changes of 
demand [2]. These situations in real life make it necessary to 
consider the dynamic facility layout problem (DFLP). The 
DFLP method divides the planning horizon of the layout into 

several production periods and carries on the facilities 
rearrangement among the production periods. The DFLP has 
been widely concerned by researchers for its dynamic 
adaptation to market demands and effective reduction of 
production costs. Based on the facilities with equal-area and 
unequal-area, the DFLP can be classified into two categories: 
equal-area DFLP and unequal-area DFLP. In most applications 
and real-world scenarios, equal-area facilities are a very poor 
assumption. Therefore, more and more researchers focus on the 
unequal-area DFLP. 

Heuristic algorithms have been widely used to solve the 
FLPs because of their good performance in complex problems. 
Pourhassan MR et al. [3] combined simulation method and 
non-dominated sorting genetic algorithm (NSGA-II) to deal 
with the DFLP. Liu J [4] combined the Wang-Landau sampling 
algorithm and some heuristic strategies to solve the unequal-
area DFLP. Turanoğlu B et al. [5] proposed a hybrid simulated 
annealing algorithm based on bacterial foraging optimization 
(SABFO) to solve the DFLP. Guan C et al. [6] formulated a 
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Facility layout problems (FLPs) are determining the 
allocation of a set of facilities within some objectives or criteria 
while satisfying placement restrictions. It is estimated that 
about 20% ~ 50% production costs can be attributed to facility 
planning and material handling, and an effective layout design 
can reduce such costs by 10%–30% [1]. Since the FLP belongs 
to the NP-hard problem, many researchers have developed a lot 
of approaches to find solutions to the FLP. 

As the material flows between facilities are assumed to be 
constant during all planning periods, this problem is known as 
the static facility layout problem (SFLP). However, material 
flows may vary by reasons such as changes in product design, 
removal or addition of a product from/to the production line, 
changes in the production amount because of the changes of 
demand [2]. These situations in real life make it necessary to 
consider the dynamic facility layout problem (DFLP). The 
DFLP method divides the planning horizon of the layout into 

several production periods and carries on the facilities 
rearrangement among the production periods. The DFLP has 
been widely concerned by researchers for its dynamic 
adaptation to market demands and effective reduction of 
production costs. Based on the facilities with equal-area and 
unequal-area, the DFLP can be classified into two categories: 
equal-area DFLP and unequal-area DFLP. In most applications 
and real-world scenarios, equal-area facilities are a very poor 
assumption. Therefore, more and more researchers focus on the 
unequal-area DFLP. 

Heuristic algorithms have been widely used to solve the 
FLPs because of their good performance in complex problems. 
Pourhassan MR et al. [3] combined simulation method and 
non-dominated sorting genetic algorithm (NSGA-II) to deal 
with the DFLP. Liu J [4] combined the Wang-Landau sampling 
algorithm and some heuristic strategies to solve the unequal-
area DFLP. Turanoğlu B et al. [5] proposed a hybrid simulated 
annealing algorithm based on bacterial foraging optimization 
(SABFO) to solve the DFLP. Guan C et al. [6] formulated a 



1204	 Xu Zhun  et al. / Procedia CIRP 104 (2021) 1203–1208
2 Xu Zhun, et al. / Procedia CIRP 00 (2021) 000–000 

mixed integer linear programming model and the multi-
objective particle swarm optimization (PSO) was employed to 
search for feasible solutions. Liu J et al. [7] studied multi-
objective unequal-area FLP with the flexible bay structure and 
developed the configuration space evolutionary (CSE) 
algorithm to solve the unequal-area FLP. Garcia-Hernandez L 
et al. [8] combined the simultaneous consideration of both 
quantitative and qualitative features and proposed a novel 
approach for the unequal-area FLP based on an interactive 
coral reefs optimization (ICRO) algorithm. The above 
algorithms give a good performance in solving FLPs, but they 
also have their own disadvantages. For example, the local 
search ability of GA is weak, and the quality of the solution 
depends on the coding method of the gene. The main advantage 
of PSO is its rapid convergence rate but it is susceptible to 
premature convergence. 

Pigeon-inspired optimization (PIO) algorithm, proposed by 
Duan and Qiao [9], has proven itself as a valuable competitor 
in optimization problems. Some studies modified the PIO 
algorithm to solve multi-objective optimization problems. Qiu 
H [10] proposed a distributed flocking control algorithm based 
on the modified PIO to coordinate unmanned aerial vehicles to 
fly in a stable formation. Chen G et al [11] put forward a 
modified PIO algorithm to optimize the active power loss, 
emission, and fuel cost of power system. The PIO algorithm 
has not yet been applied in FLPs, and more efficient variants of 
PIO need to be explored to solve real-world problems. 

Demand information directly affects the amount of material 
flow between facilities, which seriously impact stability layout 
performance. Zha S et al. [12] described the uncertainty of 
demand as fuzzy random variables and proposed a robust 
layout model with unequal-area departments. Izadinia N et al. 
[13] considered that material flows between departments are 
uncertain and developed a robust MILP model for multi-floor 
layout problem. Balakrishnan et al. [14] studied the prediction 
error of product demands in dynamic layout and proved that the 
uncertainty of product demand had a great impact on the 
stability of layout performance. Hence, the impact of demand 
uncertainty on DFLP is considered in this study. 

In summary, this paper proposes an improved MOPIO 
algorithm to solve the unequal-area DFLP considering demand 
uncertainty, which aims to minimize the total cost of material 
handling and rearrangement and maximize the area utilization. 
The rest of this paper is organized as follows. Section 2 
develops the unequal area facility layout model. Section 3 
introduces the improved MOPIO algorithm. An industrial case 
is provided in Section 4 and the results are discussed. Section 
5 concludes and looks forward to the next study. 

2. Problem description and formulation for DFLP 

2.1. Problem description 

In multi-variety processing workshops, the planned service 
life of workshop layout is divided into several production 
periods, and the output demand of each product in each period 
is obtained by prediction. The layout of facilities with unequal 
area is carried out at each period, and the facility rearrangement 
is allowed between periods. The problem studied in this paper 

is to obtain a practical dynamic layout scheme considering the 
uncertainty of the predicted demand. The objective is to 
minimize the total cost of material handling and facility 
rearrangement and maximize the area utilization. 

2.2. Approach for demand uncertainty 

For a product p , the demand td  in a certain production 
period t  is distributed between the minimum predicted value 

min
ptd  and the maximum predicted value max

ptd  according to a 

certain probability and the most reliable predicted value is pr
ptd

. In this paper, Triangular fuzzy number(TFN) is used to 
describe the information of predictive demand td , which 

denoted as ( )min max, ,pr
pt pt pt ptD d d d . 

In the process of solving DFLP, it mainly involves 
arithmetic addition and multiplication. According to [15], for 
two TFNs, ( )1 1 1 1, ,A a b c=  and ( )2 2 2 2, ,A a b c=  ,their addition 
and multiplication is defined as: 

( )1 2 1 2 1 2 1 2, ,A A A a a b b c c= + = + + +                                         (1) 

( )1 1 1, ,A kA ka kb kc= =                                                             (2) 

According to the above definition of TFN operation, the 
object value obtained by each scheme is a triangular fuzzy 
number, which should be converted to determined values for 
comparison and ordering. According to Palacios et al. [16], the 
objective value is defined as the expected value of the triangle 
fuzzy number, which is implemented by Eq. (3). 

( )1 1 1 1( ) 2 /4E A a b c= + +                                                           (3) 

In our research, the predicted demand of production is 
defined as the most reliable predicted value pr

ptd . The min
ptd  and 

max
ptd  of TFN expression ( )min max, ,pr

pt pt pt ptD d d d  is randomly 

generated from interval ( )1 ,pr pr
pt ptd dα −   and interval 

( ), 1pr pr
pt ptd d α +   respectively. 

2.3. Mathematization of DFLP problems 

The model is based on the following premise: 
• All facilities and the workshop are rectangular in shape.  
• The orientation of each facility is determined.  
• Each facility is placed parallel to x  and y  axis. 
• The product varieties of production and the unit material 

flow of each product have been known. 
• The origin coordinate is in the bottom left of the workshop, 

and the coordinates of each facility are located at its center. 
Nomenclature 

( ),t t
i ix y   centroid coordinate of facility i  at period t  

T          number of periods in planning horizon  
M        number of facilities 
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U         number of varieties of part  
t
jkf       fuzzy number of total material handling between 

facility j  and facility k at period t  
p
jkα       unit material flow of part p  between facility j and 

facility k  

ptD       fuzzy number of demands of part p at period t  
t
jkc        unit cost of material handling between facility j and 

facility k at period t  
t
jkd       the Manhattan Distance between facility j and facility

k at period t  
kτ         unit cost of relocation of facility k  
t
ku        relocation distance of facility k  between period 1t −  

to period t  
lS         rectangular area enveloped by the boundary of 

facilities 
A         area utilization 

,x yδ δ   the minimum gap between facilities in the x -axis and 
y -axis. 

,x y∆ ∆   minimum distance of facilities from the boundary in 
the x -axis and y -axis. 

,L W     length and width of workshop 
, , ,k k k kl w h S    length, width, weight and area of facility k  

The mathematical model for DFLP is described as follows: 

1

U
t p
jk jk pt

p
f Dα

=

= ∑                                                                              (4) 

( )
1 1 1 2 1

min
T M M T M

t t t t
jk jk jk k k k

t k j k t k
F f c d h uτ

= = = + = =

= +∑∑ ∑ ∑∑                          (5) 

dt t t t t
jk j k j kx x y y= − + − , 1 1t t t t t

k k k k ku x x y y− −= − + −              (6) 

1
max /

M

k l
k

A S S
=

= ∑                                                                       (7) 

According to Eq. (7), maximization of area utilization can 
be converted to minimization of envelope area lS as Eq. (8). 

max min max min2 2 2 2
j jk k

l j k j k

l wl w
S x x y y

         = + − + + − +         
            

     (8) 

Facilities are not allowed to overlap and shall be kept at a 
minimum distance from one another. 

0, ,jk jkP Q j k⋅ = ∀                                                                    (9) 

max ,0
2

j k
jk xjk j k

l l
P x xδ

 +   = + − −  
   

                               (10) 

max ,0
2

j k
jk yjk j k

w w
Q y yδ

 +   = + − −  
   

                           (11) 

The facilities arranged in X and Y directions shall not be 
exceeding the overall length and width of the workshop, and a 
certain distance shall be kept between the facilities and the edge 
of the workshop for the convenience of material handling. 

, ,
2 2
j j

x j y j

l w
x y j+ ∆ ≤ + ∆ ≤ ∀                                              (12) 

,  ,
2 2
j j

x j y j

l w
L x W y j− − ∆ ≥ − − ∆ ≥ ∀                                   (13) 

3. Pigeon inspired optimization algorithm 

3.1. Basic PIO algorithm 

PIO simulates two behaviors of pigeons. Map and compass 
operator is the first operator. The total number of pigeons is N
. Their positions and velocities respectively are denoted as

[ ]1 2, , ,i i i iDX x x x=   and [ ]1 2, , ,i i i iDV v v v=  , where 
1,2, ,i N=  . Both the positions and velocities of the pigeons 

are updated in each iteration. The new position nc
iX and 

velocity nc
iV  of the pigeon i  at the -thnc  iteration can be 

calculated as follows: 

1 1( )nc nc R nc nc
i i gbest iV V e rand X X− − × −= + ⋅ −                                  (14) 

1nc nc nc
i i iX X V−= +                                                                    (15) 

where R  is the map and compass factor. nc is the current 
iteration. rand  is a random number within [0, 1]. gbestX  is the 
global best position, which can be obtained by comparing all 
the pigeons’ positions after 1nc −  iteration cycles. 

Landmark operator is the second operator. The pigeons in 
the lower half of the line sorted by fitness values are 
abandoned. Then the center of pigeons’ positions centerX  is 

regard as the destination. The position nc
iX  is updated as 

follows: 

( )

( )

1

1

1 1

1 1

1 1

1

nc

nc

N
nc nc
i i

nc i
center N

nc nc
i

i

X F X
X

N F X

−

−

− −

− =

− −

=

⋅
=

⋅

∑

∑
                                              (16) 

Where ( ) ( )( )1 11/ fitnessnc nc
i iF X X ε− −= +  for the 

minimization problem, and ( ) ( )1 1fitnessnc nc
i iF X X− −=  for the 

maximization problem. 

1

2

nc
nc NN

−
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( )1 1 1nc nc nc nc
i i center iX X rand X X− − −= + ⋅ −                                     (18) 

3.2. Improved multi-objective PIO algorithm 

(1) Non-dominated sorting scheme. 
The non-dominated sorting scheme is introduced to deal 

with this multi-objective optimization problem. Pigeons will be 
divided into different sets( 1S , 2S , etc.) by the non-dominated 
sorting scheme. The surface formed by solutions in the best 
non-dominated set 1S  is known as the Pareto frontier. In multi-

objective optimization, gbestX  and 1nc
centerX −  need to be 

redefined. An elite archive A  is used to store the non-
dominated solutions. The elite archive selects the pareto 
optimal solution from 1S  by non-dominant sorting scheme and 
is updated in each iteration. gbestX  is randomly selected in elite 

archive A . 1nc
centerX −  can be obtained by the following equation: 
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Where 1nc
AN −  is the number of pigeons in A  at ( )nc 1 -th−  

iteration. ( ) ( )1 11/
n

nc nc
i k i

k
F X f X ε− ∗ − = + 

 
∑ , where ( )1nc

k if X∗ −  

is the normalized value of -thk objective function of 1nc
iX − . 

(2) Modified map and compass factor.  
The function of map and compass factor R  is to search the 

whole space and increase the diversity of pigeons, which 
represents the global searching ability of PIO algorithm. To 
increase the global search ability and avoid falling into local 
optimal, the modified map and compass factor adopted linear-
decreasing mutation strategy [14] is put forward in, which is 
implemented by Eq. (20). 

( ) ( )( )min max min 1 1m
ncR R R R P rand
Nc

 = + − × + ⋅ − 
 

              (20) 

where minR  and maxR  are the minimum and the maximum of 
R  respectively, mP  is the mutation probability and Nc  is the 
maximum iteration number. 

(3) Global collaboration mechanism.  
In order to increase the population collaboration among 

pigeons, two operators are combined. Namely, landmark 
operator navigation is conducted after each map compass 
operator. To balance in global search and local search, a 
cognitive factor u  and a compression factor v  as Eq. (21) are 
adopted in map and compass operator and landmark operator 
respectively. The global collaboration mechanisms is 
beneficial to the increase of population diversity in the 
prophase and get more precise solution carefully in the late. 
The updating equation Eq. (14) and Eq. (18) is modified as Eq. 
(22) and Eq. (23). 
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1 1( )nc nc R nc nc
i i gbest iV V e u rand X X− − × −= + ⋅ ⋅ −                                 (22) 

( )1 1 1nc nc nc nc
i i center iX X v rand X X− − −= + ⋅ ⋅ −                                     (23) 

(4) Crossover operator. 
The Crossover operator is introduced to improve the global 

search ability (as shown in Fig. 1) and the steps are as follows: 
• Randomly select a pigeon and swap the coordinates of two 

facilities randomly for each production period. 
• Randomly select a pigeon, and randomly select two 

production periods, swap the coordinates of all its facilities. 
• Randomly select two production periods of two pigeons 

and swap the coordinates of all its facilities. 
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Fig. 1. Crossover operator. 

The pseudocode of the IMOPIO is shown as follows:  
Algorithm 1 Framework of the IMOPIO 

initialize population X, V, A 
evaluate the pigeon positions by Eq. (5) and Eq. (8) 
non-dominated sorting in X  and add 1S  to archive A  
while nc < maximum number of iterations do 

if mod ( nc , 2) = 1 

gbestX  ← Randomly select iX  in A  
for each iX ∈ X  do 

update velocities and positions by Eq. (22) and Eq. (23) 
end for 

else 

centerX  ← obtained by Eq. (19) 
for each iX ∈ X  do 

update positions by Eq. (18) 
end for 

end if 
crossover operator in X  
non-dominated sorting in S  and add 1S  to archive A  
non-dominated sorting in A  and A  ← 1A  
nc  ← 1nc +  

end while 

Fig. 2. Pseudocode of the IMOPIO. 
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4. Case study 

4.1. Case description 

An engine cylinder head processing workshop is used to 
verify the effectiveness and practicability of the proposed 
model and algorithm. The engine plant is planned to build a 
new processing workshop, which needs to determine the layout 
location of 12 facility groups. The size and weight parameters 
of the facility group are shown in Table 1. The workshop is 
planned to produce three types of cylinder heads ( 1 2 3, ,p p p ) 
and the unit material flow matrix of three products is known. 
The entire period of production is made up of three different 
periods and the predicted demand of product p  at each 
predictable period t  is shown in Table 2, which is defined as 
the most reliable predicted value pr

ptd . The new assembly 
workshop had a large planning area with its length 60L m=  
and its width 50W m= . The minimum gap of facilities with 
each other 1.5x mδ = , 2y mδ = . The minimum distance of 

facilities from the boundary 2x y m∆ = ∆ = . 

Table 1. Facility size. 

 
Facility number 

1 2 3 4 5 6 

Length 5.8 5.8 5.0 5.6 5.0 5.3 

Width 4.0 4.0 4.0 4.5 4.0 4.8 

Weight 1300 1234 1189 1213 1159 900 

 

 
Facility number 

7 8 9 10 11 12 

Length 5.5 6.0 6.0 8.0 6.0 4.0 

Width 4.5 3.5 3.2 3.0 4.0 3.5 

Weight 1125 1369 1245 1329 1420 1190 

Table 2. Predicted demand of products 

Product 
Period 

t = 1 t = 2 t = 3 

p1 1000 100 2100 

p2 2100 1200 100 

p3 100 2000 1200 

4.2. Parameter setting and Analysis 

In the improved MOPIO algorithm, map, and compass 
factor minR  and maxR , mutation probability mP  of R  
determine the global search capability, which has a great 
influence on the performance of the algorithm. In addition, the 
cognitive factor u  and compression factor v  both affect the 
local search ability of the algorithm. Experiment results show 
that the smaller R  is valid to improve the global search ability, 
while the search velocity will get decreased with R declining. 
Set the parameters as follows: min =0.05R , max =0.2R , 

=0.25mP , maximum iterations =100Nc . According to Eq.(21) 

and Eq.(22), set R ncw e− ×= , the curve graph of w nc− , u nc−
, v nc−  is shown as follows: 

 

Fig. 3. Graph of parameter. 

As shown in Fig.3, The global search capability of the 
proposed algorithm is guaranteed by a higher value w  in the 
early stage. With the increase of iteration times, the value of 
cognitive factor u  increases. The increased u  ensures that the 
population performs a local search near the current optimal 
location. In the later stage of iteration, the cognitive factor u  
gradually decreased and the compression factor v  gradually 
increased, making the population search more carefully around 
all optimal locations. 

4.3. Problem solving and Experiments 

According to the constraints of the workshop, the DFLP 
model was constructed in accordance with Section 2.3. The 
object fuzzy number is converted into a definite value by using 
the method in Section 2.2. To verify the performance of the 
proposed IMOPIO algorithm in this paper, it is compared with 
the multi-objective particle swarm optimization (MOPSO) [17] 
and MOPIO which introducing the non-dominating sorting 
scheme to the basic PIO algorithm. The parameters set for three 
algorithms were chosen by using the Taguchi method [18]. The 
values in Table 3 present the best parameters set. The 
population size of the above three algorithms is uniformly set 
as =80N . Two metrics include numbers of non-dominated 
solutions (NS) and the hypervolume (HV) are introduced to 
evaluate the algorithm performance [20]. To eliminate the 
impact of random factors, all the algorithms run for thirty times 
and Table 4 shows the average value. 

Table 3. Parameters for algorithms 

Algorithm Parameters Value 

IMOPIO 

minimum map and compass factor minR   0.05 

maximum map and compass factor maxR   0.2 

mutation probability mP  0.25 

MOPIO 

map and compass operator times 1T   70 

landmark operator times 2T   30 

map and compass factor R  0.1 

MOPSO 

inertia weight w   0.4 

acceleration coefficients 1c , 2c  1.0 

number of hypercubes in each dimension hN  10 



	 Xu Zhun  et al. / Procedia CIRP 104 (2021) 1203–1208� 1207
4 Xu Zhun, et al. / Procedia CIRP 00 (2021) 000–000 

( )1 1 1nc nc nc nc
i i center iX X rand X X− − −= + ⋅ −                                     (18) 

3.2. Improved multi-objective PIO algorithm 

(1) Non-dominated sorting scheme. 
The non-dominated sorting scheme is introduced to deal 

with this multi-objective optimization problem. Pigeons will be 
divided into different sets( 1S , 2S , etc.) by the non-dominated 
sorting scheme. The surface formed by solutions in the best 
non-dominated set 1S  is known as the Pareto frontier. In multi-

objective optimization, gbestX  and 1nc
centerX −  need to be 

redefined. An elite archive A  is used to store the non-
dominated solutions. The elite archive selects the pareto 
optimal solution from 1S  by non-dominant sorting scheme and 
is updated in each iteration. gbestX  is randomly selected in elite 
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Where 1nc
AN −  is the number of pigeons in A  at ( )nc 1 -th−  

iteration. ( ) ( )1 11/
n

nc nc
i k i

k
F X f X ε− ∗ − 

= + 
 
∑ , where ( )1nc
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is the normalized value of -thk objective function of 1nc
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(2) Modified map and compass factor.  
The function of map and compass factor R  is to search the 

whole space and increase the diversity of pigeons, which 
represents the global searching ability of PIO algorithm. To 
increase the global search ability and avoid falling into local 
optimal, the modified map and compass factor adopted linear-
decreasing mutation strategy [14] is put forward in, which is 
implemented by Eq. (20). 
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where minR  and maxR  are the minimum and the maximum of 
R  respectively, mP  is the mutation probability and Nc  is the 
maximum iteration number. 

(3) Global collaboration mechanism.  
In order to increase the population collaboration among 

pigeons, two operators are combined. Namely, landmark 
operator navigation is conducted after each map compass 
operator. To balance in global search and local search, a 
cognitive factor u  and a compression factor v  as Eq. (21) are 
adopted in map and compass operator and landmark operator 
respectively. The global collaboration mechanisms is 
beneficial to the increase of population diversity in the 
prophase and get more precise solution carefully in the late. 
The updating equation Eq. (14) and Eq. (18) is modified as Eq. 
(22) and Eq. (23). 
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(4) Crossover operator. 
The Crossover operator is introduced to improve the global 

search ability (as shown in Fig. 1) and the steps are as follows: 
• Randomly select a pigeon and swap the coordinates of two 

facilities randomly for each production period. 
• Randomly select a pigeon, and randomly select two 

production periods, swap the coordinates of all its facilities. 
• Randomly select two production periods of two pigeons 

and swap the coordinates of all its facilities. 
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The pseudocode of the IMOPIO is shown as follows:  
Algorithm 1 Framework of the IMOPIO 

initialize population X, V, A 
evaluate the pigeon positions by Eq. (5) and Eq. (8) 
non-dominated sorting in X  and add 1S  to archive A  
while nc < maximum number of iterations do 

if mod ( nc , 2) = 1 

gbestX  ← Randomly select iX  in A  
for each iX ∈ X  do 

update velocities and positions by Eq. (22) and Eq. (23) 
end for 

else 

centerX  ← obtained by Eq. (19) 
for each iX ∈ X  do 

update positions by Eq. (18) 
end for 

end if 
crossover operator in X  
non-dominated sorting in S  and add 1S  to archive A  
non-dominated sorting in A  and A  ← 1A  
nc  ← 1nc +  

end while 

Fig. 2. Pseudocode of the IMOPIO. 
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4. Case study 

4.1. Case description 

An engine cylinder head processing workshop is used to 
verify the effectiveness and practicability of the proposed 
model and algorithm. The engine plant is planned to build a 
new processing workshop, which needs to determine the layout 
location of 12 facility groups. The size and weight parameters 
of the facility group are shown in Table 1. The workshop is 
planned to produce three types of cylinder heads ( 1 2 3, ,p p p ) 
and the unit material flow matrix of three products is known. 
The entire period of production is made up of three different 
periods and the predicted demand of product p  at each 
predictable period t  is shown in Table 2, which is defined as 
the most reliable predicted value pr

ptd . The new assembly 
workshop had a large planning area with its length 60L m=  
and its width 50W m= . The minimum gap of facilities with 
each other 1.5x mδ = , 2y mδ = . The minimum distance of 

facilities from the boundary 2x y m∆ = ∆ = . 

Table 1. Facility size. 
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Table 2. Predicted demand of products 

Product 
Period 

t = 1 t = 2 t = 3 

p1 1000 100 2100 

p2 2100 1200 100 

p3 100 2000 1200 

4.2. Parameter setting and Analysis 

In the improved MOPIO algorithm, map, and compass 
factor minR  and maxR , mutation probability mP  of R  
determine the global search capability, which has a great 
influence on the performance of the algorithm. In addition, the 
cognitive factor u  and compression factor v  both affect the 
local search ability of the algorithm. Experiment results show 
that the smaller R  is valid to improve the global search ability, 
while the search velocity will get decreased with R declining. 
Set the parameters as follows: min =0.05R , max =0.2R , 

=0.25mP , maximum iterations =100Nc . According to Eq.(21) 

and Eq.(22), set R ncw e− ×= , the curve graph of w nc− , u nc−
, v nc−  is shown as follows: 
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As shown in Fig.3, The global search capability of the 
proposed algorithm is guaranteed by a higher value w  in the 
early stage. With the increase of iteration times, the value of 
cognitive factor u  increases. The increased u  ensures that the 
population performs a local search near the current optimal 
location. In the later stage of iteration, the cognitive factor u  
gradually decreased and the compression factor v  gradually 
increased, making the population search more carefully around 
all optimal locations. 

4.3. Problem solving and Experiments 

According to the constraints of the workshop, the DFLP 
model was constructed in accordance with Section 2.3. The 
object fuzzy number is converted into a definite value by using 
the method in Section 2.2. To verify the performance of the 
proposed IMOPIO algorithm in this paper, it is compared with 
the multi-objective particle swarm optimization (MOPSO) [17] 
and MOPIO which introducing the non-dominating sorting 
scheme to the basic PIO algorithm. The parameters set for three 
algorithms were chosen by using the Taguchi method [18]. The 
values in Table 3 present the best parameters set. The 
population size of the above three algorithms is uniformly set 
as =80N . Two metrics include numbers of non-dominated 
solutions (NS) and the hypervolume (HV) are introduced to 
evaluate the algorithm performance [20]. To eliminate the 
impact of random factors, all the algorithms run for thirty times 
and Table 4 shows the average value. 

Table 3. Parameters for algorithms 
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IMOPIO 

minimum map and compass factor minR   0.05 

maximum map and compass factor maxR   0.2 

mutation probability mP  0.25 

MOPIO 

map and compass operator times 1T   70 

landmark operator times 2T   30 

map and compass factor R  0.1 
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acceleration coefficients 1c , 2c  1.0 
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repository size S  100 

Table 4. Averaged value of different algorithms 

Metrics 
Algorithms 

MOPIO MOPSO IMOPIO 

NS 5.644 5.591 5.720 

HV 0.617 0.629 0.683 

 
Fig. 4. The iterative process comparison 

 
Fig. 5. Dynamic layout of optimal solution 

It can be seen from Table 4 that the NS and HV values of 
IMOPIO are both higher than those of MOPIO and MOPSO. A 
larger NS and HV value have a better performance of the 
algorithm. The results demonstrate that the closeness and 
diversity of solutions obtained by IMOPIO are better than those 
of the other two algorithms. Hence, the superiority of IMOPIO 
exists regarding NS and HV, which proves the effectiveness of 
our improved approaches in this paper. The iterative process is 
presented in Fig.4. The dynamic layout of the optimal solution 
is shown in Fig.5. It can be observed from Fig.4 that MOPIO 
and MOPSO are easy to fall into local optimum prematurely. 
In addition, the convergence speed of IMOPIO is slightly lower 
than that of MOPSO, but far better than that of MOPIO. It can 
be concluded that the search ability of IMOPIO is better than 
that of the other two algorithms. Fig.5 shows that the algorithm 
proposed in this paper can effectively solve the DFLP 
considering the uncertainty of product demand. 

5. Conclusions 

In this research, a mathematical model for unequal-area 
dynamic facility layout problem is built. The triangular fuzzy 
number theory is introduced to describe the demand 
uncertainty on facility layout. An improved PIO algorithm is 
proposed to solve this model. The non-dominated sorting 
scheme is introduced, and a global collaboration mechanism is 
structured to balance the global and local search by introducing 
a cognitive factor and a compression factor. In addition, 
modified map and compass factor and crossover operator are 
adopted to enhance the algorithm performance. The superiority 
of the algorithm is proved by an industrial case finally. 

However, this paper simplifies the problem of facility 

rearrangement. In order to make the model more practical, 
detailed facility rearrangement process need to be considered, 
such as setting up a facility buffer and considering path 
planning for facility rearrangement. In addition, the 
performance of the IMOPIO can be evaluated by applying it to 
other types of facility layout problems. For example, applying 
the algorithm to the multi-floor layout problem can be tried. 
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