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Abstract  

In this paper, active disturbance rejection control (ADRC) is utilized in the pitch control of a vertical take-off and 

landing fixed-wing unmanned aerial vehicle (UAV) to address the problem of height fluctuation during the transition 

from hover to level flight. Considering the difficulty of parameter tuning of ADRC as well as the requirement of 

accuracy and rapidity of the controller, a modified pigeon-inspired optimization algorithm (MSPIO) containing mul-

tiple strategies is employed. Particle swarm optimization (PSO), genetic algorithm (GA), the basic pigeon-inspired 

optimization (PIO), and an improved PIO algorithm CMPIO are compared. In addition, the optimized ADRC control 

system is compared with the pure proportional-integral-derivative (PID) control system and the non-optimized 

ADRC control system. The effectiveness of the designed control strategy for forward transition is verified and the 

faster convergence speed and better exploitation ability of the proposed MSPIO algorithm are confirmed by simula-

tion results.  

Keywords: Pigeon-inspired optimization algorithm; Active disturbance rejection control (ADRC); Vertical take-off and land-

ing; Unmanned aerial vehicle (UAV); Transition mode 
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1. Introduction1 

Recent years have witnessed the growing popularity of morphing unmanned aerial vehicles (UAVs), including bi-

onic UAVs with flapping wings and hybrid UAVs. 1,2 Hybrid UAVs, which combine the merits of fixed-wing and 

rotor-wing UAVs, have drawn more attention. On the one hand, hybrid UAVs retain advantages, especially the long 

endurance and fast speed of the fixed-wing UAV. On the other hand, the characteristic of vertical take-off and landing 

enables the broad application of hybrid UAVs.  

By the nature of hybrid UAVs, the flight envelop is usually divided into three regions, the hovering mode, the level 

flight mode, and the transition mode. This paper concentrates on the control during the transition mode from hover to 

level flight. Two main strategies used during the transition mode are changing the altitude following a designed tra-

jectory, which is often employed by tail-sitters and maintaining a constant height when flying forward, which is pop-

ular among tilt-rotor UAVs as well as vertical take-off and landing fixed-wing UAVs. 3-7 The second strategy is more 
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commonly used as firstly, lifting is power-consuming and will weaken the long endurance of hybrid UAVs and sec-

ondly, it is easy to keep a constant altitude during the transition. In contrast to the tilt-rotors and tail-sitters, the verti-

cal take-off and landing fixed-wing UAV, which is composed of four fixed rotors, is easier to assemble and manipu-

late. 4,7,8 Therefore, this paper studies the vertical take-off and landing fixed-wing UAV and adopts the fixed-altitude 

strategy. 

In hybrid UAVs, various control methods have been employed. Some works adopted proportion-

al-integral-derivative (PID) control, while others combined different approaches including sliding mode control and 

adaptive control. 3,7,9-12 In the aspect of transition at a constant altitude, Gu et al. have designed a transition position 

controller and utilized a rotary-wing attitude controller for the vertical take-off and landing fixed-wing UAV from 

hover to level flight. 6 Malang has employed PID controllers for the tilt-rotor UAV during the hovering mode and the 

forward flight mode. 7 During the transition, the mode shift was based on the tilt angle. Yayla et al. have proposed a 

hierarchical approach where the adaptive control is used in the inner loop, the Lyapunov method is adopted in the 

outer loop, and proportional-derivative (PD) control is used in the navigation loop. 11 Although extensive research has 

been carried out on controlling hybrid UAVs, studies focusing on the problem of height fluctuation during mode shift 

are rare. The height fluctuation is due to that the hybrid UAV pitches down when flying forward in the quadrotor 

mode whereas in the fixed-wing mode, the aircraft pitches up. The aerodynamic characteristics lead to uncertainties. 

Moreover, the slow response of the control system also results in the deviation from the trim states. 

Therefore, active disturbance rejection control (ADRC) is adopted in this paper. ADRC regards all uncertainties as 

one term and uses an extended state observer (ESO) to estimate disturbances. Besides, ADRC keeps a better balance 

between rapidity and overshoot compared with PID owing to the tracking differentiator (TD). 13 For the merit of 

flexibility and simplicity, ADRC has been applied to various domains. 14-18 Nevertheless, tuning the coupling param-

eters in ADRC by trial and error is time-consuming and the controller needs to work in its best condition. Thus, an 

improved optimization algorithm is proposed to solve the problem. 

Pigeon-inspired optimization (PIO) developed by Duan and Qiao is a novel swarm intelligence algorithm imitating 

the behavior of homing pigeons guided home by different tools during different stages. 19 With fast convergence 

speed and high efficiency, this algorithm and the variants have been successfully applied to different fields. 20 For 

example, image restoration, UAV or spacecraft path planning, formation control, parameter tuning, and data cluster-

ing. 21-29 However, PIO may be trapped in the local optimum especially when dealing with multi-dimensional opti-

mization problems. To improve the search ability of PIO, a modified algorithm is presented in this paper by adopting 

three designed strategies, namely, Dynamic Inheritance, Hovering and Approaching, and Random Opposite Learn-

ing. 

This paper aims to propose a control method adopting ADRC to address the problem of height fluctuation during 

forward transition for vertical take-off and landing fixed-wing UAVs and to develop an improved PIO named mul-

ti-strategy PIO (MSPIO) to solve multi-dimensional optimization problems and tune the parameters in the controller 

of the hybrid UAVs. 

The rest of the paper is organized as follows. Section 2 presents the longitudinal mathematical model of a vertical 

take-off and landing fixed-wing UAV. Section 3 shows two ADRC controllers for the quadrotor mode and the 

fixed-wing mode respectively. Section 4 offers the detail of the MSPIO algorithm. Section 5 presents the implemen-

tation of the algorithm on the proposed controller and a pure PID controller. Simulation and comparison are con-

ducted to demonstrate the effectiveness of the designed controller and the algorithm. The conclusion is in section 6. 

2. Longitudinal modeling of vertical take-off and landing fixed-wing UAV 

The vertical take-off and landing fixed-wing UAV is modeled as a six-degree-of-freedom dynamics. 30 Suppose the 

hybrid UAV is a rigid body with mass m and the products of inertia Ixy=Iyz=0. [x, y, h, φ, θ, ψ] is in the inertial frame 

Og-xgygzg fixed to the ground. [u, v, w, p, q, r] is described in the body frame Ob-xbybzb attached to the center of mass. 

The platform and the frames are shown in Fig. 1. The transition primarily takes place in the longitudinal motion, and 

the corresponding dynamics is shown in detail as follows. 

 

( )2 2

sin

cos cos

x

z

z x xz

y y y

F
u vr wq g

m

F
w uq vp g

m

I I I M
q pr p r

I I I



 

= − − +

= − + +

−
= − − +

 (1) 

where Fx and Fz are the forces along the xb and zb axes, respectively. M is the pitch moment, including torques created 

by both rotors and wings. The angular kinematic equation of the motion is 
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 cos sinq r  = −  (2) 

It is assumed that the effect of the lateral-directional motion is negligible during the transition, then Eq. (2) can be 

linearized as 

 q =  (3) 

 

Fig. 1  Model of vertical take-off and landing fixed-wing UAV 

3. ADRC design for the model 

Considering the configuration of the vertical take-off and landing fixed-wing UAV, two ADRC controllers for the 

quadrotor mode and the fixed-wing mode are designed respectively. For simplicity, only second-order ADRC is em-

ployed. 

3.1. Structure of ADRC 

ADRC consists of a tracking differentiator (TD), an extended state observer (ESO), and a structure of nonlinear 

state error feedback (NLSEF), as shown in Fig. 2. 

 

Fig. 2  Structure of ADRC 

(1) Tracking Differentiator 

The input signal is supposed as v. v1 is the tracking signal of v and v2 is the differential of v1. The equations of the 

tracking differentiator can be given as 
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where e represents the error between the observer and the state. fhan is an optimal control synthesis function de-

signed according to discrete optimization theory and is given as 



·4 ·  Chinese Journal of Aeronautics  

 

 
( )

0

2

0 0

2

2

0 0

0

2 0

2 0

0

0

8 | |

sign( ), | |
2

, | |

sign( ), | |

, | |

d r h

d r h

y e hv

a d r y

a d
v y y d

a
y

v y d
h

r a a d

fhan a
r a d

d

=

=

= +

= +

 −
+ 

= 
 + 


 




















= −




 (5) 

where r0, h are the parameters to be tuned. 

(2)  Extended State Observer 

The extended state observer estimates the general disturbance and transforms the system into an integral-chain 

system. The equations are given as 
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where z1, z2, z3 are the estimated values; α01, α02 are the factors deciding the non-linearity of the function fal; δ repre-

sents the nonlinear section of fal; β01, β02, β03 are the observer gains; b0 is the compensation factor and u is the control 

input; α is in (0,1) and is often set to be 0.5. 

(3)  Nonlinear State Error Feedback 

In this part, the function fal in Eq. (7) is utilized to generate initial control input u0 as shown below. 
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where β11 and β12 are the feedback gains, α11 and α12 are set to be 0.75 and 1.5 in the quadrotor mode controller and 

set as 0.25 and 1.5 in the fixed-wing mode controller respectively after some trials. 

Finally, the control input is calculated by 

 3

0

0

z
u u
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= −  (9) 

3.2. ADRC for the quadrotor mode 

It is supposed that the motors are modeled as the first order systems. The second order ADRC is adopted to build a 

pitch rate controller and the system model can be described in Eq. (10) by setting 
1 2= , =x x  . 
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where ω(t) is the disturbance. By treating f(x1,x2,ω(t),t) as the third state in the extended state observer, the observer 

is modeled as 
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3.3. ADRC for the fixed-wing mode 

In the fixed-wing mode, the ADRC is applied to the pitch control. The extended state observer design for the 

fixed-wing mode is the same as that in the quadrotor mode except that 
1 2= , =x x  . Besides, since a flight mission is 

mainly composed of the level flight that requires a faster response, the tracking differentiator is not included in the 

ADRC of the fixed-wing mode. The whole longitudinal control structure is shown in Fig. 3. 

 

Fig. 3  Longitudinal control structure 

When determining forward airspeed, firstly, the constraints of the overall actuators should be considered. Since the 

transition and the level flight primarily take place in the longitudinal motion, the airspeed of level flight must be 

faster than 10m/s to make sure the elevon is within ±45°. Secondly, according to the model adopted, the stalling an-

gle of attack is 25° where the stalling speed is 14m/s and the designed airspeed needs to be greater than that. 30 

Thirdly, lift generated by the wings after the transition must balance the UAV’s gravity. The equation is given in Eq. 

(12). 

 
21

2
LV SC mg =  (12) 

In Eq. (12), ρ is the air density; S is the planform area of the UAV wing; CL is the nondimensional lift coefficient; 

m and g are the mass of the UAV and the acceleration of gravity respectively.  

The transition consists of two stages. The quadrotor mode controller firstly holds the altitude while the hybrid 

UAV speeding up forward. Then two controllers start transferring after the first stage according to the controlling 

weight in following Eqs. (13) and (14).  
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where v0, v1 are the minimum and the maximum speed respectively; t0 is the start time of the second stage; t is the 

actual flight time. 

4. MSPIO algorithm 

4.1. PIO algorithm 
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PIO algorithm consisting of the map and compass operator and the landmark operator imitates the homing behav-

ior of a flock of pigeons. It is assumed that there are N pigeons in the D-dimensional space with each being given the 

position Xi=[xi1, xi2, …, xiD] and the velocity Vi=[vi1, vi2, …, viD]. In the map and compass operator, the update equa-

tion is described as 

 ( ) ( ) ( 1) rand ( 1)Rt

i i gbest it t e t−= −  +  − −V V X X  (15) 

 ( ) ( 1) ( )i i it t t= − +X X V  (16) 

where R is the map and compass factor; Xgbest represents the global best location. 

In the landmark operator, homing pigeons decrease by half at each iteration because of unfamiliarity with land-

marks and the remaining update locations according to the center of the flock, which can be written as below. 
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 ( )( ) ( 1) rand ( 1) ( 1)centeri i it t t t= − +  − − −X X X X  (19) 

where Np is the number of pigeons; Xcenter is the center of the flock; F (Xi (t)) is the quality of each pigeon calculated 

from fitness value. 

4.2. MSPIO 

Four aspects can be explored to improve the PIO algorithm. a. Limiting the search space. It is better to set the 

search space around the optimal value because of the certain search bias in the iterative process of the pigeon flock. b. 

Modifying the inheritance manner. The pigeons’ evolution is based on the last position or velocity and thus by alter-

ing the reliance of the known information, the search ability of the swarm can be enhanced or weakened at different 

stages of the iteration. c. Adjusting the search methodology. The PIO algorithm reduces the number of pigeons by 

half in the landmark operator to further increase the speed of gathering to the center. There are other search ap-

proaches, for example, setting the proportion of different operators and the acceptance of the local optimum. d. Re-

configuring the topology. The information flow in PIO is mainly transferred from the heading pigeon at the best po-

sition to others. In effect, the search ability can also be strengthened by defining the neighborhood of each pigeon 

and changing the number of interactions between neighbors. Aiming at enhancing the capability of solving the mul-

ti-dimensional search problem of the PIO algorithm, this paper proposes three kinds of strategies by changing the 

inheritance manner and the search methodology. 

(1) Dynamic Inheritance 

A nonlinear weight factor is proposed in Eq. (20) to dynamically change the ability of pigeons’ position inher-

itance. Fig. 4 is the map of β0 indicating that the position can be updated bidirectionally. The modified position up-

date equation is written as Eq. (21). 
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(2) Hovering and Approaching 

Inspired by Mirjalili, the hovering and the approaching will enhance the pigeons’ exploration ability. 31 

In the Hovering Behavior, a factor is introduced as follows. 

 2 blle =  (22) 

where l=2rand-1, and b is a constant. 
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Fig. 4  Map of β0 

  In the map and compass operator, another weight coefficient c is added before the social term and the velocity up-

date equation is written as 

 ( ) ( ) ( 1) rand ( 1)2i i gbest i

blt t cle t= −  +   − −V V X X  (23) 

The Approaching Behavior is used in the landmark operator as follows. 

 ( )( ) ( 1) ( 1) ( 1)center cente iri t t P Q t t= − −   − − −X X X X  (24) 

where P=a(2rand-1), Q=2rand, a=2(1-n/N), n is the current iteration and N is the total iteration. 

(3) Random Opposite Learning 

As the pigeons may be in stagnation in local optimum, this paper proposes a random opposite learning method in 

Eq. (25). 

 ( ) ( )1i it t= + −  −X Max Min X  (25) 

where ( )( )2 rand 1 1 rand / rand =  − + ; Max and Min are the upper bound and lower bound of the position, re-

spectively. 

  The flow chart of MSPIO is shown in Fig. 5. The detailed implement procedure of MSPIO in the controller pa-

rameters optimization is described as follows. 

Step 1: Initialize parameters of MSPIO, such as the pigeon population Np, the number of dimensions D, iteration 

time N, etc. Set the position and the velocity of each pigeon randomly. 

Step 2: Substitute parameters in the controller with the positions of pigeons and simulate the transition from hover 

to level flight to obtain the values of the pitch angle and the altitude within a fixed period. 

Step 3: Evaluate the current best position by computing the designed fitness function and comparing the fitness 

value with the last optimal one.  

Step 4: If the iteration time is less than the maximum number of the map and compass operator, evaluate whether 

the fitness value is in stagnation and selectively perform Random Opposite Learning. 

Step 5: If the iteration time is less than the maximum number of the map and compass operator, conduct Hovering 

Behavior or Dynamic Inheritance to update the position and velocity of each pigeon. Otherwise, go to the landmark 

operator and perform Approaching or Hovering Behavior. 

Step 6: Repeat steps 2-5. Terminate the optimization once the iteration time reaching the maximum value. 

4.3. Parameters and fitness function in MSPIO 

(1)  Parameters 

The performance of the MSPIO algorithm depends on parameter settings. There are three adjustable parameters: 

the probability terms P1 and P2 in Fig. 5, and the weight coefficient term c. Table 1 shows six items of parameters 

tested in the simulation correlating with Fig. 6. Because P2 has little effect on the results according to the experi-

ments, this term is not taken into consideration. Each flock of pigeons is initialized to the same position. It can be 

observed from Fig. 6 that the 3rd item performs the best with the lowest fitness value, indicating that the equal proba-

bility of the Dynamic Inheritance and the Hovering and Approaching Behavior achieves the best search capability. 
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Fig. 5  The flow chart of MSPIO 

Table 1 Six items tested in the simulation 

 P1 c J 

num1 0.1 1.3 1762.4 

num2 0.1 2 1760.3 

num3 0.5 1.3 1756.9 

num4 0.5 2 1764.2 

num5 0.9 1.3 1764.4 

num6 0.9 2 1764.1 

 

Fig. 6  Iteration of different items 
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(2) Fitness function 

To achieve fast response, suppress the effect of chattering in the pitch angle θ and reduce the altitude fluctuation, 

the fitness function is set as 

 1 2 HJ w I w I=  +   (26) 

where w1=1, w2=3; Iθ and IH are the integrated error of the states, pitch angle θ and altitude H respectively. The 

method to calculate Iθ and IH is illustrated as follows. 

Considering the errors between the outputs and the desired values, integrated time and absolute error (ITAE), inte-

grated time and square error (ITSE), and integrated absolute error (IAE) are compared. The mathematical expres-

sions are presented as follows respectively. 

 
0

ITAE= ( )dt e t t


  (27) 

 2

0
ITSE= ( )dte t t



  (28) 

 
0

IAE= ( )de t t


  (29) 

Figs. 7 and 8 show the pitch angle θ and the altitude H of three fitness functions during the hover to level flight 

transition mode. ITAE performs the best with a narrow margin. 

 

Fig. 7  Pitch angle comparison of 3 fitness functions 

 

Fig. 8  Height comparison of 3 fitness functions 
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5. Simulation results and analysis 

5.1. Simulation of benchmark functions 

MSPIO are applied to eight benchmark functions including unimodal and multimodal functions to testify the fast 

convergence speed and better exploitation ability of the optimization algorithm. The benchmark functions are listed 

in Table 2. The particle swarm optimization (PSO), genetic algorithm (GA), PIO and an improved PIO named 

CMPIO, which is also proposed for parameter tuning, are compared. 28 

The results are listed in Table 3 and the convergence curves are provided in Fig. 9. The standard deviations (STDs) 

of MSPIO in the eight experiments are the smallest, demonstrating the stability of MSPIO. Moreover, the exploita-

tion ability of MSPIO can be confirmed comparing the maximum (Max) and the minimum (Min) values. From Fig. 9, 

it can be concluded that MSPIO converges the fastest among the five optimization algorithms which also testifies the 

superiority of MSPIO. 

Table 2 Benchmark functions 

Function Expression Dimension Range 
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2
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2
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4 00
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1

2 22

1

1

8 100F 1
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i i i
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x x x
−

+

=
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    16 [-30,30] 

 Table 3 Results of benchmark functions 

Function Algorithm Min Max STD 

Sphere 

PSO 1.44E-01 1.24E+01 3.76E+00 

GA 7.03E+03 1.70E+04 2.69E+03 

PIO 1.17E+01 2.07E+02 5.20E+01 

CMPIO 1.01E+02 1.01E+03 2.38E+02 

MSPIO 1.43E-18 6.02E-03 1.12E-03 

Schwefel_2.21 

PSO 2.26E+00 1.33E+01 2.24E+00 

GA 2.92E+01 5.64E+01 6.53E+00 

PIO 4.04E+00 1.99E+01 3.51E+00 

CMPIO 1.04E+01 3.77E+01 6.28E+00 

MSPIO 2.68E-07 3.46E-02 7.19E-03 

Schwefel_2.22 

PSO 4.99E-01 4.00E+00 6.73E-01 

GA 2.00E+01 3.92E+01 4.20E+00 

PIO 1.73E+00 6.43E+00 1.29E+00 

CMPIO 4.17E+00 1.53E+01 2.63E+00 

MSPIO 8.25E-07 9.44E-03 2.45E-03 

Step 

PSO 2.91E-01 9.81E+00 2.28E+00 

GA 4.88E+03 1.62E+04 2.90E+03 

PIO 9.58E+00 2.95E+02 6.29E+01 

CMPIO 1.72E+02 1.06E+03 2.13E+02 

MSPIO 2.33E+00 3.85E+00 3.71E-01 

Rastrigin 

PSO 7.26E+00 2.48E+01 4.42E+00 

GA 6.23E+01 1.38E+02 1.88E+01 

PIO 1.27E+01 8.16E+01 1.42E+01 

CMPIO 5.34E+01 1.18E+02 1.59E+01 

MSPIO 0.00E+00 2.65E-03 4.85E-04 

Ackley 
PSO 1.39E+00 6.39E+00 1.13E+00 

GA 1.10E+01 1.80E+01 1.58E+00 
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PIO 3.25E+00 8.35E+00 1.08E+00 

CMPIO 3.54E-01 1.60E+01 3.51E+00 

MSPIO 7.49E-11 2.85E-02 6.68E-03 

Griewangk 

PSO 2.01E-01 9.36E-01 1.91E-01 

GA 5.34E+01 1.59E+02 2.38E+01 

PIO 1.34E+00 3.69E+00 5.93E-01 

CMPIO 2.47E+00 1.07E+01 2.23E+00 

MSPIO 1.37E-11 5.69E-03 1.36E-03 

Rosenbrock 

PSO 2.31E+01 4.61E+02 1.18E+02 

GA 1.16E+05 3.17E+05 6.59E+04 

PIO 8.89E+02 1.52E+04 2.96E+03 

CMPIO 2.33E+03 1.42E+04 2.65E+03 

MSPIO 1.50E+01 1.50E+01 1.23E-02 

 
(1) Sphere 

 
(2) Schwefel_2.21 

 
(3) Schwefel_2.22 

 
(4) Step 

 
(5) Rastrigin 

 
(6) Ackley 
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(7) Griewangk 

 
(8) Rosenbrock 

Fig. 9  Convergence curves of the optimization algorithms 

5.2. Parameter optimization 

The parameters in the controllers to be optimized are the r0, h in TD of the ADRC controller in the quadrotor mode; 

β1, β2, b0 in the NLSEF; β11, β12, β13 in the ESO of both ADRC controllers and P, I in the altitude control of the 

fixed-wing mode controller.  

Fig. 10 reveals the search ability of the five algorithms. When dealing with a multi-dimensional optimization 

problem, MSPIO converges the fastest in the first 2 iterations and owns the lowest fitness value. During the iteration, 

immaturity results in two platforms. Then the fitness value decreases since the stagnations invoke the random oppo-

site learning strategy. Table 4 shows the optimized parameters of the controllers according to MSPIO. 

 

Fig. 10  Convergence curves of the optimization algorithms 

Fig. 11 indicates the velocity change during the transition. The comparisons of the states θ and H are shown in 

Figs. 12 and 13. The curve of the pitch angle reveals two significant changes during the weight conversion process. 

The first change results from the rise of θ as it goes up rapidly to a high point then drops back, indicating the weight 

transform between the quadrotor mode controller and the fixed-wing mode controller. According to Eq. (13), the 

controlling weight is calculated by the velocity and therefore when executing the weight transform, the controller of 

the fixed-wing mode soon takes over. The control ability of the quadrotor mode decreases, leading to a sudden in-

crease in θ. The second change happens when the states are controlled by the fixed-wing mode controller, θ keeps 

rising with a chattering phenomenon before being steady. 

Table 4 Optimized parameters of the controllers 

Parameter Description Value 

β11_quad Parameter in the ESO of the quadrotor mode 500 

β12_quad Parameter in the ESO of the quadrotor mode 8000 

β13_quad Parameter in the ESO of the quadrotor mode 8000 

b0_quad Parameter in the NLSEF of the quadrotor mode 39.6465 
β1_quad Parameter in the NLSEF of the quadrotor mode 10 

β2_quad Parameter in the NLSEF of the quadrotor mode 0.02 

r0 Parameter in the TD of the quadrotor mode 10 
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h Parameter in the TD of the quadrotor mode 0.05 

β11_fix Parameter in the ESO of the fixed-wing mode 50 

β12_fix Parameter in the ESO of the fixed-wing mode 2000 

β13_fix Parameter in the ESO of the fixed-wing mode 4000 
b0_fix Parameter in the NLSEF of the fixed-wing mode 12 

β1_fix Parameter in the NLSEF of the fixed-wing mode 8 

β2_fix Parameter in the NLSEF of the fixed-wing mode 0.1992 

Kp Parameter in the altitude controller of the fixed-wing mode 1.8 

Ki Parameter in the altitude controller of the fixed-wing mode 0.2 

 

Fig. 11  Velocity change in the transition mode           Fig. 12  Pitch angle of the selected method   

 

Fig. 13  Height change of the selected method 

5.3. Comparison with PID control method and initial ADRC method 

The presented transition approach is compared with a pure PID control method and the initial non-optimized 

ADRC method to verify the efficacy. The longitudinal motion is still the focus. In the figures below, 0-5s is the peri-

od of forward transition. The only difference between the two control methods lies in the pitch loop and therefore in 

Fig. 14, the velocity changes containing the transition process are identical.  

Fig. 15 is the pitch angle of the hybrid UAV. During the first stage, the blue line representing the PID control 

method goes down as the UAV is mainly controlled by the quadrotor mode controller and the fixed-wing mode con-

troller only controls the forward airspeed. Then the elevon command is zero. The coefficient mC


< 0 indicates the 

aircraft is longitudinal static stable and the UAV intends to pitch down to maintain zero pitching moment, resulting in 

a sudden rise of 5°. However, the change of the pitch angle controlled by the optimized ADRC controller is smaller 

than that in the pure PID method and that controlled by the initial ADRC controller. Compared with the initial ADRC 

controller, the optimized one has a shorter convergence time and smaller overshooting after 5s. The pure PID method 
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has the longest convergence time. 

In Fig. 16, the overshooting of the height in the pure PID method is 0.14m while that in the ADRC controller is 

0.04m. The proposed controller aims to minish the altitude change during the transition. It can be concluded that both 

two ADRC controllers have achieved the goal of minishing the altitude fluctuation and the performance is better than 

the pure PID. The highest altitude of the two ADRC controllers is similar but the lowest altitude of the initial ADRC 

is 14.89m, while that of the optimized ADRC controller is 14.96 m, demonstrating the effectiveness of the improved 

algorithm. 

 

Fig. 14  Velocity change comparison of PID and ADRC  Fig. 15  Pitch angle comparison of PID and ADRC 

 

Fig. 16  Altitude comparison of PID and ADRC 

6. Conclusion 

(1) In this paper, a novel transition approach is proposed employing ADRC to address the problem of the height 

fluctuation. The approach consists of two parts. First, two ADRC controllers are developed respectively for the 

quadrotor mode and the fixed-wing mode. Second, a strategy is designed for the transition from the quadrotor mode 

to the fixed-wing mode. Furthermore, to enhance the efficiency of the controllers, parameter optimization is realized 

by MSPIO. The simulation result is compared with that of the PID method and that of the initial non-optimized 

ADRC controller. The ADRC method with optimal parameters owns the least convergence time and the smallest 

chattering of the pitch angle after the transition from hover to level flight. In addition, the altitude fluctuation is the 

smallest, demonstrating the effectiveness of the designed control method. 

(2) The basic PIO is improved for better efficiency and search ability by utilizing multiple strategies, including 

Dynamic Inheritance, Hovering and Approaching, and Random Opposite Learning. The most significant advantage 

of the proposed algorithm is the ability to address multi-dimensional search problems with fast convergence speed 
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and the efficacy of the proposed algorithm is manifested by being compared with PSO, GA, PIO, and CMPIO. The 

stability analysis of the transition mode and theoretical research on the proposed optimization algorithm are expected 

to be conducted in the future. 
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