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Active disturbance rejection control for small
unmanned helicopters via Levy flight-based

pigeon-inspired optimization
Daifeng Zhang, Haibin Duan and Yijun Yang

Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing, China

Abstract
Purpose – The purpose of this paper is to propose a control approach for small unmanned helicopters, and a novel swarm intelligence algorithm
is used to optimize the parameters of the proposed controller.
Design/methodology/approach – Small unmanned helicopters have many advantages over other unmanned aerial vehicles. However, the manual
operation process is difficult because the model is always instable and coupling. In this paper, a novel optimized active disturbance rejection control (ADRC)
approach is presented for small unmanned helicopters. First, a linear attitude model is built in hovering condition according to small perturbation
linearization. To realize decoupling, this model is divided into two parts, and each part is equipped with an ADRC controller. Finally, a novel Levy flight-based
pigeon-inspired optimization (LFPIO) algorithm is developed to find the optimal ADRC parameters and enhance the performance of controller.
Findings – This paper applies ADRC method to the attitude control of small unmanned helicopters so that it can be implemented in practical flight
under complex environments. Besides, a novel LFPIO algorithm is proposed to optimize the parameters of ADRC and is proved to be more efficient
than other homogenous methods.
Research limitations/implications – The model of proposed controller is built in the hovering action, whereas it cannot be used in other flight modes.
Practical implications – The optimized ADRC method can be implemented in actual flight, and the proposed LFPIO algorithm can be developed
in other practical optimization problems.
Originality/value – ADRC method can enhance the response and robustness of unmanned helicopters which make it valuable in actual
environments. The proposed LFPIO algorithm is proved to be an effective swarm intelligence optimizer, and it is convenient and valuable to apply
it in other optimized systems.

Keywords Parameter optimization, Active disturbance rejection control, Levy flight-based pigeon-inspired optimization,
Small unmanned helicopters

Paper type Research paper

Introduction
As a common type of unmanned aerial vehicles (UAVs),
unmanned helicopters overcome many obstacles in UAV flight.
For example, when implementing rescue or other critical
missions, it is always necessary for UAVs to hover in the air.
However, the wing aircrafts cannot finish. On the contrary,
unmanned helicopters could complete a variety of special actions
including hover; therefore, it’s easy to execute these critical
missions. However, the operation process is hard for helicopter
pilots because of its instable and nonlinear coupling model.
Hovering flight is an important action for small unmanned
helicopters in many emergences, and it has aroused interests
among scholars to study the model in hovering flight. To realize
autonomous flight, it is important to design high-performance
attitude controller. In recent years, there are a lot of proposed
advanced control methods for unmanned helicopters, such as the
H� method (Cai et al., 2011; Ismaila et al., 2011), backstepping

(Lu et al., 2015), adaptive control (Sheng et al., 2014), fuzzy
control (Ho et al., 2008) and artificial intelligence (Nodland
et al., 2013). Nevertheless, these methods are rarely applied in
practical engineering because of their complicated structure and
high requirement to computing device. Active disturbance
rejection control (ADRC) (Tang et al., 2015) stems from
proportional–integral–derivative controller (PID controller)
algorithm; thus, it does not need high computation power and
the exact object model. Besides, ADRC modifies the traditional
PID structure and solves the inherent contradiction between
overshoot and rise time in PID, which provides precise
performance and high robustness simultaneously.

The parameters of ADRC are usually adjusted by some
empirical formula (Han, 2009) and cannot be changed during
the flight process. But sometimes we need to adjust parameters
dynamically to make them adaptable. Hence, a parameter
optimizing strategy is needed. Traditional parameter optimizing
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methods include critical proportion method (An et al., 2015),
attenuation curve method (Bassrei and Santos, 2007) and
Ziegler–Nichols formula (Kushwah and Patra, 2014). However,
these strategies are too complex to be used in practical tuning and
easy to produce high frequency vibration. Recently, swarm
intelligence techniques (Qiu et al., 2015) have been concerned in
the parameter optimization problems. Particle swarm
optimization (PSO) (Duan et al., 2013; Shi et al., 2008) is a kind
of swarm intelligence optimizer, which imitates the migration
and foraging process of bird swarms. It is equipped with simple
computation structure and prone to search global optima for
complicate and multi-dimension problems. But the
shortcomings of PSO are also obvious: It is easy to fall into the
locally optimal solution and limited to premature convergence.
Pigeon-inspired optimization (PIO) algorithm is a new
bio-inspired swarm optimizer (Deng and Duan, 2016; Duan and
Qiao, 2014; Duan and Wang, 2016; Zhang and Duan, 2016)
which imitates the process of homing pigeons finding paths.
Some new studies (Duan and Qiao, 2014) demonstrate that it
can provide wider search space and faster convergence speed
than many other advanced algorithms and is easier to obtain the
globally optimal solution.

Composition and modeling of small unmanned
helicopter
The basic composition of a small unmanned helicopter mainly
consists of such three components as the main rotor, the
fuselage and the tail rotor. The main rotor is responsible for
the ascension and turning, which ensures to provide enough
elevating force for flight. Therefore, the main rotor is the
uppermost constituent, whereas its dynamic characteristics
are very complicated. Meanwhile, in some cases such as high
speed movement and large maneuver, the aerodynamics of
fuselage are usually less certain. But in this paper, we mainly
discuss the hovering state in actual flight which only permits
low forward speed and little flexibility. Thus, the main rotor
dynamics are simpler to determine and the fuselage dynamics
can be neglected. Tail rotor is used to balance the torque force
produced by main rotor and is responsible for the yaw actions.
Due to instability of the tail system, an angular vector control
system (AVCS) is used to stabilize the yaw channel which is a
closed-loop subsystem based on PID controller (Yang et al.,
2013). Figure 1 shows the model helicopter in this paper.

The mathematical model of small unmanned helicopters is
surely nonlinear, highly coupling and time-variant. But in many
cases as above, we are interested to study the hovering state in
which the lift force is almost equal to gravity. In condition of
hovering state, we can extract a linear model for small unmanned
helicopters through small perturbation linearization (Cao et al.,
2004; Ismaila et al., 2011). Normally, a small unmanned
helicopter is assembled with four digital servos so that the system
inputs contain four channels as lateral channel, longitudinal
channel, height channel and yaw channel. Each channel is
responsible for control to the corresponding subsystem. The
height and yaw subsystems with AVCS are regarded as
independent first-order model, and they are easy to operate
(Yang et al., 2013). On the other hands, lateral and longitudinal
attitude models are complicated and coupled. Therefore, we
mainly focus on the modeling and control for these two
subsystems. According to the characteristics of hovering state,
the magnitude of main rotor lift force is almost equal to the
gravity, and its direction is determined by a and b which define
the tilting angle of the rotor tip-path-plane (TPP) in longitudinal
and lateral directions (Tang et al., 2014). Taken together, the
moments of main rotor can be described as:

Lmr � �k� � mgH�b
Mmr � �k� � mgH�a (1)

where k� defines the spring constant of the rotor hub, and H is
the geometric parameter of fuselage. According to the small
perturbation linearization, the angular velocity p in longitudinal
channel and q in lateral channel are proportional to the relative
moments and tilting angles of TPP. According to some studies
(Tang et al., 2014), the states a and b are approximate to
first-order models and can be directly controlled by the system
inputs��lat, �lon�. Thus, we obtain the linear model of small
unmanned helicopters as following equations:

ẋ � Ax � Bu

A � �
0 0 0 Lb

0 0 Ma 0
0 �1 �1/� Ab

�1 0 Ba �1/�
� B � �

0 0
0 0

Alat Alon

Blat Blon

� (2)

where x defines the state variables as [p, q, a, b]; u is the
system inputs as��lat, �lon� ; Lb, Ma are the differential operators
to relative states; and� defines the time constant of delay for
tilting angles of TPP.

From the system matrix A, we can conclude that state
variables a and b are similar to second-order differentials to
attitude angles and are directly relative to the system inputs u.
Because a and b are difficult to observe, some advanced
control laws are not suitable for this system. Besides these two
channels obviously exist cross coupling, which is troublesome
for system running.

Active disturbance rejection control
ADRC is based on the classical PID algorithm. It succeeds
some advantages of PID, such as the concept of using error to
remove error. In addition, ADRC revises some drawbacks of
PID and enhances the performance. The contradictions

Figure 1 Small unmanned helicopter Trex600E
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between the overshoot and search speed always impede the
performances of the classical PID algorihtm. ADRC solves
this problem with the component tracking differential (TD)
and provides effectiveness and robustness through nonlinear
state feedback (NLSEF) and extended state observer (ESO)
(Han, 2009). Figure 2 shows the structure of our ADRC.

TD is used to trace the command input vc and configure the
transition process by introducing transition reference v1 and
its differential v2. TD obviously slows down the fierce change
of error and provides a smooth and steady transition. The
structure of TD is described as:

	fh � fhan�v1 � vc, v2, r0, h�
v1 � v1 � h·v2

v2 � v2 � h·fh
(3)

where the function fhan is the optimal control synthesis
function, which derives from the discrete optimization theory
(Han, 2009). h and r0 denotes the step length and the speed
constant of convergence. The iteration process of optimal
control synthesis function are given as follows:

u � fhan�x1, x2, r, h�:	d � rh
d0 � rh2

y � x1 � hx2

a0 � 
d2 � 8r	y	

a � 	x2 �
�a0 � d�

2
sign�y� , 	y	 
 d0

x2 �
y
h

, 	y	 � d0

u � �	r·sign�y� , 	a	 
 d

ra
d

, 	a	 � d

(4)

where sign(x) denotes the sign function.
Unlike traditional PID, ADRC introduces NLSEF to promote

the efficiency of control inputs via some nonlinear combinations
of system errors. ESO is essential for stability and robustness,
which not only gives the precise observation of system variables
through z1 and z2 but also provides the real-time unknown
dynamics prediction through z3. So we can use ESO to
compensate the unwanted changes by following equation:

u � u0 � z3 (5)

This process denotes feedback linearization. u0 is the NLSEF
output that represents the ideal control without considering

unknown dynamics. When we compensate the practical
control u by subtracting unknown dynamics z3 from u0, the
original system is equivalent to a second-order integrator
system with ideal control. Thus, the original model is
decoupled. The flow of ESO computation is given as follows:

	e � z1 � y
fe � fal�e, 0.5, h�, fe1 � fal�e, 0.25, h�

ż1 � z2 � �01e
ż2 � z3 � �02 fe � u
ż3 � ��03 fe1

(6)

where y denotes the system output. The nonlinear function fal
features fast tracking, and the structure is given as:

fal�e, �, �� � 	 e
�1��

, 	e	 � �

	e	�sign�e�, 	e	 
 �
(7)

To apply ADRC to the attitude control of small unmanned
helicopter, we separate the whole model into two parts. One
refers to the lateral variables (p and b), and the other refers to the
longitudinal ones (q and a). To decouple these two parts, we
design a second-order ADRC like Figure 2 for each part, where
the structure of TD and ESO adopts equations (2) and (4).
NLSEF is selected as the following nonlinear error combination:

u0 � �1fal�e1, 0.5, h� � �2 fal�e2, 0.25, h� (8)

Because the original system inputs are coupled, the control
value u needs to be transformed as:

u1 � �Alat Alon

Blat Blon
��1

u (9)

Levy flight-based pigeon-inspired optimization
for active disturbance rejection control
Although ADRC is able to decouple original system and
provides strong robustness, it is still not desirable under
changeable circumstances because static parameters cannot be
adjusted and coped with various situations. Hence, we need to
adopt a group of adjustable parameters to optimize the ADRC
performance. PIO is one of the newest swarm intelligence
optimizations that is aimed to solve the problems of optimal
searching. PIO imitates the process that homing pigeons find
paths. It is similar to some bio-inspired algorithms such as
PSO in the bionic mechanism. Compared with PSO, PIO
could provide a wider search space and is more efficient on
controller optimization.

Basic pigeon-inspired optimization algorithm
Just as the process of homing pigeons searching path, basic
PIO algorithm can be divided into two stages and each step
contains a relative operator (Duan and Qiao, 2014). At the
first stage, map and compass operators are adopted which is
inspired by the natural phenomenon that pigeons use the sun
and magnetic particles to sense home direction in the
beginning of flight. This operator is given as:

Vi�t� � Vi�t � 1�·e�Rt � rand·�Xg � Xi�t � 1��
Xi�t� � Xi�t � 1� � Vi�t�

(10)

Figure 2 Structure of ADRC
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where Xi and Vi are the position and velocity of pigeon i, R
denotes map and compass factor, rand is a random number
between 0 and 1 and Xg denotes the current global best position.

When the pigeons fly close to their destination, they will rely
on landmarks neighboring them. Landmark operator
manifests this process with the following model:

Np�t� �
Np�t � 1�

2

Xc�t� �
Xi�t � 1�·fcos t�Xi�t � 1��

Np�t� fcos t�Xi�t � 1��
Xi�t� � Xi�t � 1� � rand·�Xc�t� � Xi�t � 1��

(11)

where Np is the number of available pigeons toward the
destination with half decreasing in every iteration. This means
half pigeons will follow the other available pigeons in the next
search process. Xc is the center of available pigeons’ position
as the reference of the swarms which represents the landmark,
and the function fcost is the fitness function evaluating the
quality of each pigeon. After these two steps, we can gain the
convergent optimal solution.

Levy flight-based pigeon-inspired optimization
The basic PIO is more efficient than many homogeneous
methods such as PSO and genetic algorithm. However, it also
has some shortcomings to be improved such as the stochastic
search space to be extended and the convergence speed to be
accelerated. To improve the PIO algorithm, we introduce a novel
Levy flight-based pigeon-inspired optimization (LFPIO) in
which the two original operators are anew designed.

Levy flight search operator
Levy flight has been demonstrated that it is one of the best
random walk models in which the step lengths have a
probability distribution that is heavy-tailed (Barthelemy et al.,
2008). In the process of walking, the step lengths are subject
to Levy distribution. The simplified Levy flight can be
described as follows:

L�s� � 	s	��, 1  � � 3 (12)

where s denotes random step length. When searching an
unknown and large-scale space, Levy flight is more effective
than Brown motion (Chakravarti, 2004) because the variance
�2 of Levy flight increases more rapidly. The two kinds of
variances are shown as follows:

�B
2�s� � s Brown motion

�L
2�s� � s3��, 1  � � 2 Levy flight

(13)

In Levy flight, some solutions execute local search, and others
execute global search. This mechanism can balance the
diversity and the convergence speed. At the same time, Levy
flight can imitate the search behaviors of some animals such as
the fish school and the pigeon flock. Hence, we use this
mechanism to design the new search operator. Here, Levy
flight can be implemented by Mantegna’s algorithm
(Mantegna and Stanley, 1994), and the operator can be
described as following equations:

s �
�

	v	1/�

Xp � Xi�t � 1� � s·randn·�Xi�t � 1� � Xg�
� � N�0, ��

2�, v � N�0, �v
2�, � � 1.5

�� � � ��1 � ��sin ���/2�

���1 � ��/2��·2���1�/2�1/�
, �v � 1

(14)

where N�0, �2� denotes the normal distribution, s is the step
length of Levy flight and randn is a random number subject to
normal distribution. In addition, the elite selection strategy is
utilized to improve the ability of local search and described by
the following equation:

Xi�t� � 	Xp, Iffcost�Xp�  f�Xi�t � 1��
Xi�t � 1�, Iff�Xp� � f�Xi�t � 1�� (15)

Revised landmark operator
In basic PIO algorithm, the landmark operator can accelerate
the convergence of algorithm. However, it easily leads to the
premature convergence, and all solution will be trapped into
local optima. To avoid the problem, we adopt the adaptive
Logsig function to adjust the step length of search. Detailed
equations are given as follows:

Step � Logsig�Nmax ·� � t
k

�
Xi�t� � Xi�t � 1� � Step·randn·�Xg � Xi�t � 1��

(16)

where � and k are the adaptive parameters of Logsig function
which decides when the search converges, and Nmax is
maximum iterations.

Optimized active disturbance rejection control based
on Levy flight-based pigeon-inspired optimization
The parameters of ADRC include r0 from TD, �01��03 from
ESO and �1, �2 from NLSEF. We usually set r0 � 0.0001/h2

according to experiences, so the parameters to be optimized
for each ADRC are the rest five. Before we execute LFPIO,
the fitness function need to be confirmed. Here, we select the
characteristics of step response including steady state error,
input limitations and rise time to assess the whole system
performance. The fitness function is listed as follows, we
expect it as small as enough:

fcost � �
0

�

w1�	e1	 � 	e2	�dt

� �
0

�

w2�u1
2 � u2

2�dt � w3�tr1 � tr2� (17)

where w1, w2 and w3 are the weight values, e and u are errors
and input controls for each subsystem and tr denotes the rise
time. Because ADRC method could realize decoupling of the
two attitude subsystems, the controller in each subsystem can
execute parallelly. Due to each ADRC has five parameters, the
dimension of total LFPIO is ten. When we test each solution,
substitute the parameters into ADRC process and set the step
instruction. Then we can obtain the characteristics of step
response in fixed period and, hence, gain the relative fitness
value. Figure 3 shows the structure of whole system.

The detailed implementation procedure of LFPIO for
ADRC optimization is described as follows:
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● Step 1: According to the control requirement, confirm the
step size h and implementation period T of ADRC.
Initialize the step command and state variables of small
unmanned helicopter.

● Step 2: Initialize parameters of LFPIO, such as search
space dimension D, maximum iterations Nmax, the pigeon
population size L, weight values of fitness function and
other relative parameters � and k.

● Step 3: Set each pigeon with a random position and
substitute the solutions into ADRC, then compute the
corresponding fitness function. Compare the fitness values
and find the current best solution.

● Step 4: Update the position of each pigeon with Levy flight
operator, then compare all the new fitness values to find
the best solution.

● Step 5: Using the revised landmark operator to proceed the
convergence of global optima and update each pigeon’s
position by equation (14).

● Step 6: If the ordinal of iteration Nc is greater than
maximum iteration Nmax, stop and output the results. If
not, go to Step 4.

The above steps can be summarized as a flowchart (Figure 4).

Comparative experiments
To investigate the feasibility and effectiveness of our proposed
optimized ADRC with LFPIO, a series of comparative experiments
with PSO and basic PIO are conducted. To verify the robustness of
the whole system, some certain disturbances are considered.

The step instruction is set as one with step time zero. Select
step length h as the sampling period 0.01 s and control period
T as 1 s. Parameters of the helicopter model are given
according to Ioannis et al. (2012). LFPIO maximum iteration
Nmax is 100, and according to the above, dimension D of total
LFPIO is 10. The population of pigeons is 100 as the same
number of candidate solutions. According to experiences, the
five ADRC parameters can be adjusted in following ranges as
�01 :[100,500], �02 :[100,1000], �03 :[1000,5000], �1 :[1,20]
and �2 :[1,20]. After debugging, we select the parameters �
and k in revised landmark operator as 0.5 and 15, respectively.
To emphasize the control precision and rapidity, we set the
weight values w1 � 0.999, w2 � 0.001 and w3 � 0.2. To verify
the effectiveness of LFPIO, the same parameters are adjusted
in basic PIO and PSO, so the comparative results are obtained
in Figures 5 to 7. In addition, an unexpected impulse wind
disturbance with 6N·m and a stochastic wind disturbance with
magnitude of 2N·m are added to the simulation experiments.

Figure 5 shows the average fitness value curves of LFPIO,
basic PIO and PSO in 50 experiments. We select a group of

parameters with best fitness values listed in Table I and test
the step responses with these parameters shown in Figure 6
and 7. To demonstrate the precision of ESO, tracking curves
of unknown dynamics containing wind disturbances in the
lateral channel are shown in Figure 8.

From Figure 5, it is obvious that the proposed LFPIO
converges more quickly and is more stable than basic PIO and
PSO. Meanwhile, LFPIO is more reliable in global optima
searching because of its extended search space. Moreover, we

Figure 3 System with optimized ADRC
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can conclude from Figures 6 to 8 that ESO can estimate the
unknown dynamics and support the optimized ADRC to
execute real-time disturbance compensation for ideal control,
so this system could provide proper responses under hard
conditions. Among the optimized parameters, LFPIO-based
ones respond more effectively.

Conclusions
This paper presents an ADRC method applied to small
unmanned helicopters. A linear attitude model based on

hovering state and small perturbation linearization is given in this
work. To realize decoupling and strong robustness of the whole
system, a couple of ADRCs are arranged into two subsystems.
Moreover, to promote the efficiency of each basic ADRC, a
novel LFPIO algorithm is developed to optimize the five adaptive
ADRC parameters. To extend the search space and proceed the
convergence speed, the two original operators of basic PIO are
replaced. The comparative simulation experiments with basic
PIO and PSO show that the proposed LFPIO can give the good
precision and stability of convergent globally optimal solution.
Besides, ADRC system with LFPIO-based optimal parameters
could provide the best tracking precision and lowest overshoots
under certain disturbances.

In the future, we expect that our optimized ADRC could be
used in practical flight and our proposed LFPIO could be applied
and developed in other important optimization aspects.
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Figure 7 Comparative longitudinal step responses of
optimized ADRC
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Figure 8 Unknown dynamics observation by LFPIO-based ESO
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