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摘要:无人机在搜索任务中起着关键的作用,它能够在复杂环境中寻找到目标.无人机搜索问题是一个相对复杂
的多约束条件下的多目标优化问题.大多数搜索算法不能满足搜索过程中高效率和低功耗的要求. 本文所采用的
目标搜索方法是一种基于Agent路由和光传感器的解耦滚动时域方法. 为了优化目标搜索方法的参数,本文提出一
种基于Agent路由和光传感器的自适应变异多目标鸽群优化(AMMOPIO)算法. 利用自适应飞行机制可以获得较好
的鸽群分布,种群具有多样性和收敛性. 利用变异机制简化了鸽群优化算法中的模型,提高了搜索效率.实验仿真
结果验证了所提出的AMMOPIO算法在目标搜索问题中的可行性和有效性.
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Abstract: Unmanned aerial vehicle (UAV) is an indispensable tool for search missions, which can help find targets in
critical and complex environments. The search problem of UAVs is a rather intricate multiobjective optimization problem
with multiple constraints under complicated conflict environment. Most search algorithms could not meet the requirements
of high efficiency and low consumption in combat environment. The target search approach employed in this paper is a
decoupling receding horizon approach based on the agent routing and optical sensor tasking. To optimize the parameters of
the target search approach, an adaptive mutant multiobjective pigeon-inspired optimization (AMMOPIO) algorithm is pro-
posed for agent routing and optical sensor tasking optimization of target search problem. The utilization of adaptive flight
mechanism could obtain the distribution of pigeons with applicable diversity and convergence. The mutation mechanism is
used to simplify the model of pigeon-inspired optimization (PIO) to improve the search efficiency. The experimental results
validate the feasibility and effectiveness of the proposed AMMOPIO algorithm in target search problem.
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1 Introduction
The modern search theory was initially proposed to

develop efficient search methods to find enemy marine
vessels by Koopman[1], Stone[2] and others. Unmanned
aerial vehicles (UAVs) are an indispensable tool for
search and rescue of critical, time sensitive missions
as they have the advantages of zero casualties, high-
speed overload, good stealth performance, short opera-

tion time, and low life-cycle cost[3–4]. Search theory has
been applied to many fields with great success, encom-
passing applications such as search and rescue missions,
exploration, mining, medicine, and surveillance[5].

Early search theory focused on the allocation of
search effort to areas within the search region while
finding optimal search paths on these areas is intuitive-
ly with unconstrained searcher motion. If it is not that
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case, the search problem of finding the optimal paths
would become more complicate for searchers. At pre-
sent, some studies of the search problem as an optimal
control problem are conducted in continuous time and
space[6], which are generally applied to a very restricted
set of initial target distribution. There are many differ-
ent approaches to solve this problem. Zhang et.al[7] p-
resented a probabilistic path planning method for target
search to reduce the expected-time cost in uncertain en-
vironments. Tang et.al[8] addressed an improved group-
ing strategy based on constriction factors particle swar-
m optimization for multiple targets search in unknown
environments. Chen and Chang[9] proposed an agent-
based simulation for multi-UAVs coordinative sensing.
Sun and Duan[10] presented a restricted-direction target
search approach based on coupled routing and optical
sensor tasking optimization. To simplify the optimiza-
tion problem, Qiu and Duan[3] addressed a decoupling
receding horizon search approach to agent routing and
optical sensor tasking, which was employed in this pa-
per.

In the search problem, a single UAV aims to search
for several targets in a bounded planar region. The a-
gent is equipped with a gimbaled optical sensor that can
be steered around to view a limited area of the search
region[10]. The optical sensor will collect information
about the environment in the form of automatic target
recognition (ATR) data and determine whether the tar-
get is located at the specific region or not. The problem
mentioned above can be turned into an multi-objective
optimization problem (MOP) by selecting the approxi-
mate controlling means and mathematical model.

In order to solve MOPs, multi-objective evolution-
ary algorithms (MOEAs) has been becoming one of the
major research topics during recent years. Among the
evolutionary algorithms (EAs), pigeon-inspired opti-
mization (PIO) is a novel swarm intelligence algorithm
based on the behavior of homing pigeons, invented
by Duan and Qiao[11]. Due to the high convergence
speed and ease of implementation, PIO algorithm has
been applied in many fields such as neural network[12],

path planning[13], and so on. However, PIO is easy to
be trapped into local optimum and uneven distribution
while dealing with complex multi-objective problems.
Therefore, this paper presents an improved multi-
objective pigeon-inspired optimization algorithm based
on the adaptive flight mechanism and mutation mecha-

nism. These two mechanisms are designed to reinitial-
ize the pigeons to improve the search capability of the
algorithm and prevent pigeons from falling into local
optimum and premature convergence.

The remainder of this paper is organized as follows.
Section 2 describes the problem formulation, covering
the model description, the design of the multi-objective
optimization cost function, and the search approach.
Section 3 illustrates the improved MOPIO algorithm.
Simulation validation, together with comparison against
the traditional approach, is presented in Section 4. Sec-
tion 5 provides conclusions and some possible paths for
future work.
2 Search problem

A single UAV is considered to be tasked with ex-
ploring an area of interest in order to search multiple tar-
gets in a bounded planar region. The UAV is equipped
with a gimbaled optical sensor, which can be steered
around to view a limited area of the search region.

This section formulates the target search problem as
a discrete-time optimization and the approach that con-
trols the UAV and the optical sensor to find the targets
as soon as possible.

2.1 UAV dynamics and sensor model
Denote the controlled variables of a UAV at time k

by the velocity v(k) and the heading angle θ(k),where
k is a discrete time variable belonging to the nonnega-
tive integers. Without loss of generality, we assume that
the UAV keeps the fixed flight height while perform-
ing a search task. Thus, the kinematic equation of the
search agent can be expressed as the following discrete
time point-mass kinematics model:

p(k + 1, 1) = p(k, 1) + v(k) · sin(θ(k)). (1)

p(k + 1, 2) = p(k, 2) + v(k) · cos(θ(k)). (2)

where p(k + 1, 1) denotes the horizontal axis in ab-
solute coordinate system of the next current position,
p(k + 1, 2) denotes the vertical axis in absolute coor-
dinate system of the next current position. Due to the
maneuverability limitations of the UAV, the velocity has

a limited range [vmin, vmax] and the ∆θ between two
consecutive moments is subject to the minimum turn-
ing radius Rmin. Velocity v(k) together with the turn-
ing radius Rmin describes the mobility and determines
the flight trajectory of the UAV.

During the search process, the region that a sensor
can view at a certain moment is called the field of view
(FOV), and the subset of the search region viewable by
the sensor as it is swept through its entire range of mo-
tion is called the sensor’s field of regard (FOR)[10]. For
each candidate path, the position of UAV can be defined
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as p(k) = [x(k), y(k)], where p(k) is the waypoint at
time k. As shown in the Fig. 1, FOR is considered as the
rectangle that takes the current waypoint p(k) as center.
FOV is set as a square, whose center can move along the
centerline of the rectangle. The center of FOV is stat-
ed as the sensor task q(k) that specifies the stare point
where the agent will point its optical sensor at time k.
Thus, the search problem has been transferred into the
problem to obtain the next waypoint p(k + 1) and the
sensor task q(k).

Fig. 1 Diagram of the sensor model

2.2 Search map
The graph-based model method is employed to de-

pict the environment information in allusion to search-
ing process. The search region is divided into M × N
cells. The coordinate of each two-dimension discrete
cell is denoted as (x, y), x ∈ {1, 2, · · · ,M}, y ∈
{1, 2, · · · , N}. For the convenience of the following
exposition, the cells are numbered by the following
equation in a sequence as m ∈ {1, 2, · · · ,M ×N}:

m = x+ (y − 1)×M. (3)

Denote the information structure of each cell as
Im(k), including the target occupancy probability
ρm(k) that describes the probability that the search tar-
gets exist in the mth cell at time k and the environment
certainty χm(k) that describes the certainty of the mth

cell for the UAV. Im(k) can be stated as follow:

Im(k) = [ρm(k) χm(k)], (4)

where ρm(k) ∈ [0, 1] and χm(k) ∈ [0, 1]. If the tar-
get exists in the mth cell, ρm(k) = 1; On the contrary,
ρm(k) = 0 while there is no target in themth cell. Sim-
ilarly, if the UAV fully understands the environment in-
formation, χm(k) = 1; On the contrary, χm(k) = 0

while the UAV knows nothing about the information in

the cell.
Consider there exist n targets in the search region

whose initial positions are unknown. It is reasonable to
assume that the position of the target is uniformly dis-
tributed. Thus, we can obtain the following equations: ρim(0) =

1

M ×N
,

χim(0) = 0,
(5)

where m∈{1, 2, · · · ,M ×N} and i∈{1, 2, · · · , n}.
During the dynamic search, the search map at time

k + 1 is updated dynamically based on the state of the
agent and the detection results of the sensor at time con-
stantly. The updating principle of the ρim(k+1) is stated
as follows:

Case 1 The ith target is detected:{
ρim(k + 1) = ρim(k), m ∈ FOV,

ρim(k + 1) = 0, m /∈ FOV.
(6)

Case 2 The ith target is not detected:{
ρim(k + 1) = 0, m ∈ FOV

ρim(k + 1) = ρim(k), m /∈ FOV.
(7)

The updating principle of the χim(k + 1) is stated
as follows:{

χim(k + 1) = 1, m ∈ FOV

χim(k + 1) = χim(k), m /∈ FOV.
(8)

2.3 Cost function
The search problem of the UAV is a rather intricate

multi-objective optimization problem. It is crucial to
select the multi-objective cost functions associated with
each candidate path. The introduction of the set of cost
functions are shown below:

F1 describes the probability of finding target on the
candidate path under the action of the control v(k) and
θ(k).

F2 describes the entire environment certainty for
agent which could be increased by probing the region
unknown away from the cells with χm(k) = 1.

F3 describes the time cost or fuel cost between two
continuous waypoints.

F4 reflects the behavior of avoiding the threating re-
gions composed of natural threats, missiles threats, and
no-fly zone. The value of this function represents the
cost to be paid by the drone crossing the threat zone.

F5 is designed to estimate whether the trajectory of
UAV is within the limited search region.

The better results of search task require larger val-
ue of cost functions F1, F2, F3 and lower value of cost
functions F4, F5. Therefore, to unify the optimization,
we adopt the inverse value of cost functions F1, F2 and
F3.
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2.4 Receding horizon control search approach
The receding horizon control (RHC) search ap-

proach with the advantage of online processing con-
straints on control input and output could describe the
control problem as a constrained optimization problem
of finite time[14]. The primary steps of the RHC search
controller are as follows:

Step 1 Initialize the agent waypoint p0 at time k,
optimize five cost functions based on the search map
information and obtain a set of the optimal control vari-
ables v(k) and θ(k) in N steps;

Step 2 Choose the first item of control variables
as the agent RHC inputs and abandon the others;

Step 3 Reach the next waypoint p1 at next time
(k + 1) by the control inputs;

Step 4 Obtain the search result by sensor at way-
point p1 and update the search map information struc-
ture Im(k) ;

Step 5 Update the current time and the agent way-
point as initial value, return to Step 1.

The whole process of RHC search approach is illus-
trated in Fig. 2.

Fig. 2 Process of RHC search approach

3 Search problem
Pigeon-inspired optimization is a population-based

bio-inspired swarm intelligence optimization algorithm
based on the special navigation behavior of the hom-
ing pigeons. In this algorithm, two operators (map and
compass operator, landmark operator) are employed to
guide the pigeons to find the destination. When pigeons
start their journey, they may rely more on compass-like
tools. While in the middle of their journey, they could
switch to using landmarks when they need to reassess
their route and make corrections[11]. Due to the imper-
fection of the basic multi-objective pigeon-inspired op-
timization algorithm[16], two mechanisms are employed
to strengthen the capability of global exploration and
local exploitation.

3.1 Main algorithm
The basic PIO algorithm adopts two independent

useful cycles to mimic the characteristics of the homing
pigeons. To improve the efficiency of the optimization
process, the two cycles are integrated to one main cycle
using two adaptive flight parameters k1 and k2. The ve-

locity Vi and position Xi of each pigeon at time t + 1
are updated according to the following equations:

Vi(t+ 1) =

e−Rt · Vi(t) + k1 · (Xgbest,i(t)−Xi(t)) +

k2 · (Xcenter(t)−Xi(t)), (9)

Xi(t+ 1) = Xi(t) + Vi(t+ 1), (10)

where R is map and compass factor, t is the time of
iteration, i is the number of pigeons in the swarm and
i ∈ {1, 2, · · · , N}, Xgbest,i represents the best posi-
tion in the flight path of the pigeon. Xcenter is the center
of the pigeon’s position used as the reference direction
during the last period of flight. The adaptive flight pa-
rameters and center position Xcenter are obtained by the
following mechanisms.
3.2 Adaptive flight mechanism

In the flight process of pigeons, the balance of the
V (t), Xgbest, and Xcenter is crucial to the tradeoff
between the exploration and exploitation for the evolu-
tionary properties, such as convergence, diversity, and
optimal solution. There exist some challenges on the
optimization of the flight parameters. Thus, the adap-
tive flight mechanism is proposed in this paper to bal-
ance the global exploration with local exploitation by
utilizing the diversity information and population SP in-
formation[17]. The calculation of the population SP in-
formation of the ith pigeon at (t+1) iteration is shown
below:

SP(t+ 1) =

√√√√√ N∑
i=1

(d̄(t+ 1)− di(t+ 1))2

N − 1
,

(11)

where di(t+1) is the minimum Manhattan distance be-
tween the position of the ith pigeon and other pigeons,
d(t + 1) represents the average value of the di(t + 1)

for all pigeons. During the optimization process, the pi-
geons are with nonlinear characteristics intricately [15].
Thus, a special nonlinear function is proposed to de-
scribe this process:

Γ (t+ 1) = e1/(SP(t+1)+1)−1, (12)

where Γ (t+1) is the adaptive nonlinear function of the
flight process. The initial values of adaptive flight pa-
rameters are random numbers created according to the
uniform distribution. Considering the value of Γ (t+1),
the adaptive flight parameters are updated as follows:

Case 1 SP(t+ 1) = SP(t):{
k1(t+ 1) = k1(t)

k2(t+ 1) = k2(t).
(13)

Case 2 SP(t+ 1) > SP(t):
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k1(t+ 1) = k1(t) · (Γ (t+ 1) + 1),

k2(t+ 1) = k2(t) · Γ (t+ 1).
(14)

Case 3 SP(t+ 1) < SP(t):{
k1(t+ 1) = k1(t) · Γ (t+ 1),

k2(t+ 1) = k2(t) · (Γ (t+ 1) + 1).
(15)

The variation of the population SP information re-
flects the distribution of the pigeon flock. That is to say,
the increasing value of SP means the inhomogeneity of
the pigeon flock, and the decreasing value of SP means
the suitable distribution of the pigeon flock.

At the beginning of the optimization, the solutions
obtained are far from the true Pareto fronts (PF) with
uneven distribution. Based on the above equations, we
can see that the parameter k1 becomes larger to increase
the diversity of the pigeon flock and enhances the ex-
ploration ability. During the second half of the opti-
mization, large number of the non-dominated solutions
close to the PF are obtained and distributed more even-
ly. Thus, the parameter k2 gets larger to improve the
exploitation ability.

As the parameter k1 increases, the searching pro-
cess of the optimization mainly depends on the Xgbest.
While the parameter k2 rises, the center position
Xcenter plays a major role in the searching process.
This demonstrates that the optimization process of the
improved MOPIO algorithm corresponds to the naviga-
tion mechanism of the pigeon flocks, which illustrates
the rationality of the adaptive flight mechanism.

3.3 Mutation mechanism
The center position Xcenter of the PIO algorithm is

calculated by following:

Xcenter(t) =

N∑
i=1

Xi(t) · fitness(Xi(t))

N ·
N∑
i=1

fitness(Xi(t))

. (16)

The fitness is the function to be optimized:

N(t) = ceil(
N(t− 1)

2
), (17)

fitness(Xi(t)) = fmax(Xi(t)), Case 1,

fitness(Xi(t)) =
1

fmin(Xi(t)) + ϵ
, Case 2,

(18)

where Case 1 represents the maximization problem,
Case 2 represents the minimization problem.

Due to the single cost function, there exists the
single maximum or minimum value of the function.
However, in the multi-objective optimization problems,
there exist multiple cost functions. And a single solu-
tion which can find the maximum or minimum value for
all the objectives at the same time does not exist. Thus,

a mutation mechanism is developed to generate the cen-
ter position Xcenter in the multi-objective optimization
problems.

Firstly, restore the nondominated solutions in the
repository. Then, choose one solution Xrep in the repo-
sitory randomly and employ the mutation mechanism to
improve the chosen solution based on the step mutation
operator in Eqs. (19)–(21):

Xcenter(t, j) = Xrep(j) + ∆d · (ub− lb), (19)

∆d = sum(
a(k)

2k
), (20){

a(k) = 0, rand < 1/m,

a(k) = 1, rand > 1/m,
(21)

where m is the mutation operator and k=0, 1, · · · ,m.
The chosen solution is expanded in D dimensions

respectively. While the solution with certain dimension
j mutated could obtain the better function value, then
the jth dimension of Xcenter is updated. The pseudo-
code of mutation mechanism is introduced in following
steps:

Step 1 Initialize the flight parameters, population
size, repository size, map and compass operator, muta-
tion operator, and maximal iterations.

Step 2 Initialize the position X(0) and velocity
V (0) of the pigeon flock.

Loop.
Step 3 Calculate the value of cost functions.
Step 4 Obtain the non-dominated solutions and s-

tore the non-dominated solutions in repository.
Step 5 Select one solution Xrep randomly in

repository, use the mutation mechanism Eq. (19).
Step 6 Calculate the population SP information of

the pigeons Eq.(11).
Step 7 Calculate two flight parameters Eqs. (13)–

(15).
Step 8 Update the position and velocity Eqs. (9)–

(10).
End loop.

4 Simulation results
The receding horizon control search approach is

utilized to solve the search problem and the AMMO-
PIO algorithm is designed to optimize the parameters
of RHC search approach. The holistic search process is
depicted in Fig. 3.

In the simulation, suppose there is a single UAV
agent searching for three stationary targets whose po-
sitions are unknow in the bounded planar region. The
UAV is expected to search the targets as many as pos-
sible in the shortest time with multiple goals, consist-
ing of improving the certainty of environment, reducing
fuel cost, avoiding the threats, and staying in the task
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search region.
The sampling time is set to be 20 s, and 30 RHC

circles are conducted in one simulation. In one single
circle, the AMMOPIO algorithm runs 100 times. The
parameters and constraints of the simulation are shown
in Table 1. The initial states are shown in Table 2. The
control parameters of AMMOPIO are given in Table 3.

Fig. 3 Process of target search

Table 1 Optimization parameters and constraints

Variables Description Value

v/(km · s−1) The UAV velocity [
Lmin

ts
, 0.2]

ϕ/rad The heading angular velocity ∆ϕmax

T Simulation time 600 s
t/s Sampling time 20 s

rhc p Length of the prediction horizon 3
rhc m Length of the control horizon 3

R Bounded planar region [0, 60]2

M The row number 60
N The column number 60

Rmin/km The minimum turning radius 3
Lmin/km The shortest direct flight distance 3

Table 2 Initial states

Variables Description Value

p/km The position of UAV [5, 0]

ϕ/rad The heading angle 0

Pt/km The position of targets {[40, 25], [30, 45], [20, 10]}

Table 3 Control parameters of AMMOPIO algorithm

Variables Description Value

Tmax Maximum number of the iteration 100

N Number of the pigeon flock 100

R The map and compass operator 0.2

m The mutation operator 20

The performances of the AMMOPIO algorithm are
compared with the basic MOPIO algorithm and oth-
er two state-of-the-art methods, including multiobjec-
tive particle swarm optimization (MOPSO) and multi-
objective brain storm optimization (MOBSO). The ba-
sic MOPIO algorithms is composed of two cycles and
the center position Xcenter is randomly selected in the
non-dominated solutions without mutation mechanism.
The best results of four algorithms in 20 simulation cy-
cles are illustrated in Figs. 4–7.

Fig. 4 Search results of AMMOPIO algorithm

Fig. 5 Search results of MOPIO algorithm
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Fig. 6 Search results of MOPSO algorithm

Fig. 7 Search results of MOBSO algorithm

Table 4 Statistic data of four algorithms

Algorithm nave tave

AMMOPIO 1.95 33.75
MOPIO 0.65 6.073
MOPSO 1.05 117.2
MOBSO 1.06 587.9

In Fig. 4, three signal represents the threat region,
respectively, no-fly zones, bad weather region, and mis-
siles threat. T1–T3 denotes three stationary targets to
be found. The red short lines between the adjacent dots
are the paths of the UAV. The blue squares are FOV. The
average number of the targets nave found in 20 simula-
tion cycles is recorded in Table 5 and the tave represents
the average running time of the simulations.

Observed that the agent in Fig. 4 found three sta-
tionary targets, while successfully avoiding the threats
and remaining in the search task region. On the con-
trary, the results in the Figs. 5–7 show that the agent
could only find two of the three targets with winding
flight path in the simulation. Compared with other three
algorithms, the AMMOPIO method gives a good per-
formance in less valid paths.

The statistic data in Table 5 illustrates that the
search target optimization with AMMOPIO algorithm
could find more than double targets compared with the
basic MOPIO algorithm although more time is needed.

The MOPSO and MOBSO approaches could only find
one target approximately in much more simulation time
in contrast to the AMMOPIO algorithm. The average
number of the targets could reflect the stability of the
algorithms. The statistic data shows the feasibility of
our proposed algorithm in the practical environment.

As we can see in the results above, our proposed
AMMOPIO algorithm could find most targets in the fi-
nite time. It could be estimated that it could find more
targets as there are more than three targets. Therefore, it
is clearly that the performance of AMMOPIO algorithm
is superior to other three methods. Contrast to the al-
gorithm in [3], this paper employed the multi-objective
optimization algorithm to solve the target finding prob-
lem. That is to consider all requirements simultaneous-
ly rather than scaling down the value of requirements.
Even though there is a gap between the number of tar-
gets found and the number of targets existing, a prelim-
inary evaluation can be still given that the optimization
purposes of searching targets has a basic implementa-
tion.

5 Conclusion
This paper presented an AMMOPIO algorithm for

the optimization of target search problem. The adaptive
flight mechanism could improve the distribution of pi-
geons with applicable diversity and convergence. The
mutation mechanism is used to simplify the model of
PIO to improve the search efficiency. From the compar-
ative results in simulation, it can be concluded that our
proposed AMMOPIO algorithm does perform superior-
ity in the number of targets found and the time taken to
find targets compared with other three approaches. We
will also develop more theoretical research on multi-
objective optimizations to enhance the ability of un-
manned system in the process of performing missions.
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