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Model-Free Control for Quadrotor Attitude via Tent Map-Based

Pigeon-Inspired Optimization

Yang Yuan1, Haibin Duan2, Senior Member, IEEE, Chen Wei3

Abstract— The attitude control problem of the quadrotor in
the presence of disturbance and model uncertainty is studied
in this paper. Firstly, a first-order filter is applied to generate
the desired derivate of the reference signal. Then, a model-free
adaptive attitude controller is designed for the condition that
model parameters are not available. The discrete equation of the
angular velocity is obtained by using the compact form dynamic
linearization method, and the cascade controller is established
based on the continuous kinematics and discrete dynamics.
In addition, tent map-based pigeon-inspired optimization is
designed to optimize the parameters of the filter and con-
troller. Compared with original pigeon-inspired optimization,
the premature problem can be effectively contained. Finally, the
simulation results demonstrate the feasibility of the model-free
attitude controller and the advantages of the Tent map-based
pigeon-inspired optimization.

I. INTRODUCTION

Quadrotor has been utilized in mangy fields, such as aerial
photography and terrain exploration, for its advantages of low
cost, simple operation and strong capability [1-2]. Due to the
underactuated characteristics of the quadrotor, position and
attitude are generally controlled in cascades. The rapidity and
accuracy of attitude control are the basis of accurate position
control. However, high nonlinearity, external disturbance and
model uncertainty make the attitude control a challenging
task.

Sliding mode control (SMC) [3], differential-flatness tech-
nique [4], backstepping control [5], and many other tech-
nologies have been applied for quadrotor attitude tracking.
Attitude tracking performance is guaranteed by utilizing
dynamic surface control method and prescribed performance
function in [6]. Fast terminal SMC and model predictive
control are applied to the attitude control in [7,8], where
the uncertainties and disturbances are estimated with on-
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line updating rules. Considering the actuator faults, a ro-
bust finite-time controller is designed by using mixed H-
infinite controller and Lyapunov-Krasovskii functional for
the quadrotor attitude [9]. The actuator saturation is also
included in the investigation for the quadrotor attitude, and
non-fragile fault alarm technique is developed for the fault
condition [10]. However, a nominal model with some known
model information is necessary in above works, the case
where model parameters are completely unknown still cannot
be well solved.

Proportion-integration-differentiation controller has the
advantage of not using prior information of the model, while
the control performance is weakened by external distur-
bance. Model-free adaptive control (MFAC) is an effective
technique without using model parameters [11], which has
been applied in unmanned aerial vehicles (UAVs) [12],
autonomous cars [13], wastewater treatment process [14],
etc. MFAC based on forecasting method is utilized to handle
the unknown model for the spacecraft attitude control in
[15]. SMC-based MFAC is studied for autonomous surface
vehicles (ASVs) tracking, and a data-driven observer is used
for the compensation in [16]. Thus, MFAC is utilized for the
quadrotor attitude control problem in this paper.

For a better control performance, pigeon-inspired opti-
mization (PIO) is selected as the tool to obtain the optimal
controller gain [17], which has the advantages of fast con-
vergence and effective search performance. However, PIO
suffers the problem that falls into the local optimum. A lot of
variants have been developed for the problem, such as paired
coevolution (PIO) [1], Cauchy mutation PIO [18]. In this
paer, Tent map-based PIO (TMPIO) is developed to search
the optimal filter parameters and controller gain.

The main contributions of the article are summarized in
the following three aspects:

(1) The quadrotor attitude model with unknown pa-
rameters and external disturbances is transformed into a
continuous-discrete form for the data-driven controller de-
sign.

(2) Model-free controller is designed for the continuous-
discrete attitude model. A differentiation term is included in
the MFAC cost index design for the rapidity and stability.

(3) TMPIO is proposed is proposed to alleviate the pre-
mature convergence of PIO in the paper, where two stages of
PIO are fused into one operator in TMPIO, and Tent map is
utilized to generate the coefficient of the landmark operator
to escape the local optimum.
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The remainder of the paper is organized as follows. In
Section 2, attitude model and preliminaries are presented.
Section 3 gives the main results of the paper. Simulation
results are shown in Section 4. Section 5 concludes the paper.

II. ATTITUDE MODEL AND PRELIMINARIES

A. Attitude Model

The attitude model of the quadrotor is described as [1]{
η̇ = RrΩ

JΩ̇ = −Ω× (JΩ) + τ + d
(1)

where η and Ω are respectively the Euler angle vector and the
angular velocity vector, τ is the torque of the UAV, J implies
the inertial moment matrix, d represents the the external
disturbanceof the model, Rr is the attitude transformation
matrix.

B. Preliminaries

Notation 1: sgn() means the sign function. For φ ∈ R
and ω ∈ R, sigω(φ) = sgn(φ)|φ|ω , where |φ| repre-
sents the absolute value of φ. For y ∈ Rn, sigω(y) =
[sigω (y1) , · · · , sigω (yn)]

T . ∥y∥ implies the Euclidean norm
of y.

Lemma 1 [19]: Considering the system ϑ̇ = Υ(ϑ), Υ(0) =
0, ϑ ∈ Rn, where Υ(ϑ) is continuous in the neighborhood
U of the origin. If the Lyapunov function Ψ(ϑ) can be
established on U , and Ψ̇(ϑ) + ιΨξ(ϑ) + κΨζ(ϑ) + ϱ ≤ 0 is
satisfied, where ι, κ, and ϱ are positive constant, 0 < ξ < 1,
ζ > 1, the signal is bound in a fixed time.

III. MAIN RESULTS

A. First-Order Filter

The reference attitude signal is notes as ηr. Due to the first-
order differential of ηr is utilized in the designed controller,
a first-order filter is used to generate the reference signal,
described as [19]

η̇d = −γ1 sigχ1 (ηd − ηr)− γ2 sig
χ2 (ηd − ηr) (2)

where ηd represents the desired attitude signal, γ1, γ2, χ1 ∈
(0, 1), and χ2 ∈ (1, 2) are positive scalars to be designed.

Assumption 1: The derivative of ηr is bounded by ∥η̇r∥ ≤
L, where L is an unknown constant.

Denote the filter error as ηe = ηd − ηr, and select the
Lyapunov function as Ψη = 1

2η
T
e ηe. The differential of Ψη

is calculated as

Ψ̇η = ηTe η̇e

= ηTe (−γ1 sigχ1 (ηd − ηr)− γ2 sig
χ2 (ηd − ηr)− η̇r)

= −γ1ηTe sigχ1 (ηe)− γ2η
T
e sigχ2 (ηe)− ηTe η̇r

(3)

Considering the following inequality,

−ηTe η̇r ≤ 1

2
ηTe ηe +

1

2
L2 (4)

Substituting (4) into (3), it is obtained that

Ψ̇η ≤ −γ1ηTe sigχ1 (ηe)− γ2η
T
e sigχ2 (ηe)

+
1

2
ηTe ηe +

1

2
L2

≤ −2(χ1+1)/2γ1Ψ
(χ1+1)/2
η − 2(χ2+1)/2γ2Ψ

(χ2+1)/2
η

+Ψη +
1

2
L2

(5)

Let 2(χ1+1)/2γ1 > 1 and 2(χ2+1)/2γ2 > 1. If Ψη < 1, it
can be deduced that

Ψ̇η ≤ −
(
2(χ1+1)/2γ1 − 1

)
Ψ(χ1+1)/2

η

− 2(χ2+1)/2γ2Ψ
(χ2+1)/2
η +

1

2
L2

(6)

If Ψη ≥ 1, it can be obtained that

Ψ̇η ≤ −2(χ1+1)/2γ1Ψ
(χ1+1)/2
η

−
(
2(χ2+1)/2γ2 − 1

)
Ψ(χ2+1)/2

η +
1

2
L2

(7)

Thus, combining the results of (6) and (7), the filter error
ηe will approach the neighbor of the origin in a fixed time
by Lemma 1.

B. Controller Design

Redefine the attitude model in (1) as follows:{
ṡ1(t) = s2(t)

ṡ2(t) = ṘrΩ+RrJ
−1(−Ω× (JΩ) + τ + d)

(8)

where s1(t) = η, s2(t) = RrΩ.
Considering the model parameters are not available, the

data-driven MFAC method is applied to the angular velocity
loop. Utilizing the dynamic linearization method, an equiva-
lent discrete model of the kinetics in (8) can be reformulated
as

s2(σ + 1) = s2(σ) + Υ (s2(kσ), τ(σ), d(σ)) (9)

Thus, the continuous-discrete model can be obtained as{
ṡ1(t, σ) = s2(σ)
s2(σ + 1) = s2(σ) + Υ (s2(σ), τ(σ), d(σ))

(10)

where s1(t, σ) means the s1 value in the time region t ∈
[σT, (σ + 1)T), T represents the fixed sampling interval.

Step 1: Design the continuous controller for the first
equation in (10). s1 and s2 are utilized to represent s1(t, σ)
and s1(t, σ) for simplicity.

Define the attitude tracking error as ε1 = s1−ηd, of which
the differential is governed by

ε̇1 = ṡ1 − η̇d

= s2 − η̇d

= (s2 − α1) + α1 − η̇d

(11)

where α1 is the virtual controller.
Design the controller α1 as

α1 = −c1ε1 + η̇d (12)

where c1 is a positive scalar.
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Select the Lyapunov function as Ψ1 = 1
2ε

T
1 ε1, and the

derivate of Ψ1 yields that

Ψ̇1 = εT1 ε̇1

= εT1 ((s2 − α1) + s2 − η̇d)

= εT1 ((s2 − α1)− c1ε1)

= −c1εT1 ε1 + εT1 (s2 − α1)

(13)

Once the s2 − α1 is bounded, one obtains

Ψ̇1 = −c1εT1 ε1 + εT1 (s2 − α1)

≤ −c1εT1 ε1 +
1

2
εT1 ε1 +

1

2
ω2

≤ −
(
c1 −

1

2

)
εT1 ε1 +

1

2
ω2

(14)

where ∥s2 − α1∥ ≤ ω. Thus, the tracking error of the attitude
will be upper bounded if s2 − α1 is bounded.

Step 2: Design the discrete controller for the second
equation in (10).

The following assumptions need to be defined [20-21].
Assumption 2: The partial derivative of

Υ(s2(σ), τ(σ), d(σ)) with respect to τ(σ) is continuous.
Assumption 3: Lipschitz condition is satisfied with (10),

which means that

∥∆s2(σ + 1)∥ ≤ b∥∆τ(σ)∥ (15)

for any time σ and ∆τ(σ) ̸= 0, where ∆s2(σ+1) = s2(σ+
1) − s2(σ), ∆τ(σ) = τ(σ) − τ(σ − 1), b is an positive
constant.

If the Assumptions 2-3 are all satisfied, when ∆τ(σ) ̸= 0,
the model in (10) can be represented by the compact form
dynamic linearization (CFDL) data model as follows [20-21]:

s2(σ + 1) = s2(σ) + Θ(σ)∆τ(σ) (16)

where Θ(σ) =

 θ11 θ12 θ13
θ21 θ22 θ23
θ31 θ32 θ33

 implies the Pseudo

Jacobian Matrix.
To evaluate the matrix Θ(σ), the cost index function is

established as

J(Θ̂(σ)) =
∥∥∥s2(σ)− s2(σ − 1)− Θ̂(σ)∆τ(σ − 1)

∥∥∥2
+µ∥Θ̂(σ)− Θ̂(σ − 1)∥2

(17)
where µ implies the weight factor utilized to restrict the
drastic change of Θ̂(σ). By solving ∂J(Θ̂(σ))/∂Θ̂(σ) = 0,
it can be obtained that

Θ̂(σ) = ρ1

(
∆s2(σ)− Θ̂(σ − 1)∆τ(σ − 1)

)
∆τT (σ − 1)

×
(
∆τ(σ − 1)∆τT (σ − 1) + µI3×3

)−1
+ Θ̂(σ − 1)

(18)
where ρ1 implies a scale factor.

If one of the conditions θ̂ij(σ) < θ, θ̂ij(σ) > θ̄, and
sign

(
θ̂ij(σ)

)
̸= sign

(
θ̂ij(1)

)
is satisfied, where θ and θ̄

represent the boundaries of θ̂ij(σ), let θ̂ij(σ) = θ̂ij(1),

The performance index function for the control input is
designed as

J(τ(σ)) = ∥s2(σ + 1)− α(σ + 1)∥2 + λ∥τ(σ)− τ(σ − 1)∥2

+ ∥s2(σ + 1)− α(σ + 1)− (s2(σ)− α(σ))∥2
(19)

where λ > 0 means the weight factor for the penalty of input
variation. By solving ∂J(τ(σ))/∂τ(σ) = 0, the control input
is designed as

τ(σ) = ρ2
(
λI3×3 + 2ΘT (σ)Θ(σ)

)−1
ΘT (σ)

(α(σ + 1)− s2(σ)) + ρ3
(
λI3×3 + 2ΘT (σ)Θ(σ)

)−1

ΘT (σ) (α(σ + 1)− s2(σ)− (α(σ)− s2(σ − 1)))+

ρ4
(
λI3×3 + 2ΘT (σ)Θ(k)

)−1
ΘT (σ)Θ(σ − 1)

(τ(σ − 1)− τ(σ − 2)) + τ(σ − 1)

(20)

where ρ2, ρ3, and ρ4 are scale factors.

C. Tent Map-Based Pigeon-Inspired Optimization

Original PIO is proposed by Duan and Qiao in [17], and
the specific mathematical model is described in the following
part.

Firstly, initialize the pigeon swarm parameters. The swarm
size is set as Np, and the maximum iterations of different
stages are Nc1max and Nc2max, respectively. Select the
appropriate ranges [Xmax, Xmin] for the parameters to be
optimized in the filter and the controller, where Xmax ∈ Rn

and Xmin ∈ Rn are upper and lower boundaries, n is the
number of the parameters. ith pigeon is initialized with the
position Xi

0 and the velocity V i
0 .

Secondly, the map and compass operator is designed as{
V i
l = V i

l−1 · e−Rl + r1 ·
(
Xg −Xi

l

)
Xi

l = Xi
l−1 + V i

l

(21)

where l implies the iteration number, R means the map and
compass factor, 0 < r1 < 1 represents a random number,
V i
l and Xi

l are velocity and position of ith pigeon in lth
iteration.

Thirdly, the landmark operator is described as
Xi

l = Xi
l−1 + r2 ·

(
Xc

l −Xi
l−1

)
Xc

l =
∑Np(l)

i=1 Xi
l ·f(X

i
l )

N(l)·
∑Np(l)

i=1 f(Xi
l )

N(l) = ceil
(

N(l−1)
2

) (22)

where 0 < r2 < 1 represents a random number, Xc
l is the

center of the pigeons in lth iteration, N(l) is the number of
pigeons, f(Xi

l ) means the fitness of the Xi
l , ceil() is rounded

up function.
However, the pigeon swarm suffers the problem that falls

into the local optimum for its fast convergence rate. TMPIO
is developed to alleviate the premature convergence of PIO.
The TMPIO fuses the two stages into one operator as
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follows:

V i
l′ = V i

l−1 · e−Rl + r1 ·
(
Xg −Xi

l

)
V i
l′′ = V i

l−1 · e−Rl + r1 ·
(
Xg −Xi

l

)
+ hl ·

(
Xc

l −Xi
l−1

)
Y i
1 = Xi

l−1 + V i
l′

Y i
2 = Xi

l−1 + V i
l′′

Xi
l =

{
Y i
1 , if f

(
Y i
1

)
≥ f

(
Y i
2

)
Y i
2 , if f

(
Y i
1

)
< f

(
Y i
2

)
V i
l =

{
V i
l′ , if f

(
Y i
1

)
≥ f

(
Y i
2

)
V i
l′ , if f

(
Y i
1

)
< f

(
Y i
2

)
Xc

l =
∑Np

i=1 Xi
l ·f(X

i
l )

Np·
∑Np

i=1 f(Xi
l )

(23)
where hl is generated by Tent map. The update rule of hl is

hl+1 =

{
2hl 0 ≤ hl ≤ 0.5

2hl − 1 0.5 < hl ≤ 1
(24)

h0 is initialized with a random number within (0,1).
Halving the number of pigeons in the landmark stage is

cancelled to slow down the convergence rate in TMPIO.
Meanwhile, the landmark operator is used as a mutated
function with Temp map as the coefficient, which makes
the pigeons have a greater ability to escape from the local
optimum.

The structure of using TMPIO to optimize the controller is
illustrated in Fig. 1. γ1, γ2, χ1, χ2 in the filter and c1, ρ1, ρ2,
ρ3, ρ4, µ, λ in MFAC influencing the tracking performance
need to be optimized. The integral of time-weighted absolute
value of the error (ITAE) [22] is selected as cost function,
given by

J =

∫ ∞

0

t ∥ε1∥ dt (25)

and the fitness function is defined as the reciprocal of the
cost function.

Fig. 1: Structure of using TMPIO to optimize the controller.

IV. SIMULATION RESULTS

The attitude model parameters of the quadrotor are
set as follows: J = diag{0.16, 0.3, 0.31}kg · m2, d =
[0.1 cos(0.2t), 0.1 cos(0.4t), 0.1 cos(0.2t)]T . The initial an-
gle and angular velocity are all zero vector. The reference
signal is set as ηr = [0.2, 0.2, 0.2]T rad.

To verify the advantages of the TMPIO, original PIO, ge-
netic algorithm (GA), and particle swarm optimization (PSO)

TABLE I: Parameters of The Methods

Algorithm Variable Description Value
PIO/TMPIO R Map and compass factor 0.02

GA
Pc Crossover probability 0.9
Pm Mutation probability 0.1

PSO
w Inertial weight 0.8
l1 Learning factor-cognitive constant 1.3
l2 Learning factor-social constant 1.5

are selected for the comparison simulation. The parameters
of the methods are given in Table I.

The maximum iteration of GA, PSO and TMPIO is 100,
and the maximum iteration in different stages for PIO is 90
and 10, respectively.

The evolution curves of cost value are described in Fig. 2.
Since the cost value is small, the vertical axis uses the log()
function for the better display effect. GA, PIO, PSO and
TMPIO have the final cost value of 0.0684, 0.0458, 0.0456
and 0.0443. GA has the worst optimization performance for
the established model. PIO, PSO and TMPIO have faster
convergence rate than GA. TMPIO reached the minimal cost
value at 15th iteration, while the iteration of GA, PIO and
PSO are 63, 28, and 74. Thus, TMPIO has the advantages
in both convergence rate and optimization ability than other
three optimization algorithms.

Fig. 2: Cost value evolutionary curves.

The simulation results of MFAC controller with opti-
mized parameters by TMPIO are shown in Fig. 3. Three
channels of the Euler angle track the reference signal with
small overshoots within 1 second, which means that the
control performance can be achieved in the case of unknown
model parameters and external disturbance with the proposed
MFAC method.

To further illustrate the effectiveness of the proposed
controller, gust wind is added to the disturbance, given
as d = [0.5 + 0.1 cos(0.2t), 0.5 + 0.1 cos(0.4t), 0.3 +
0.1 cos(0.2t)]T . The time varying reference signal is set
as ηr = [0.2 cos(0.5t), 0.3 cos(0.5t), 0.15 cos(0.5t)]T . The
simulation results are presented in Fig. 4. The attitude of the
quadrotor controlled by MFAC can precisely track the time
varying reference signal with gust wind.
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(a)

(b)

(c)

Fig. 3: Attitude curves with optimized parameters in case 1.
(a) ϕ. (b) θ. (c) ψ.

V. CONCLUSION

A novel PIO variant is proposed to optimize the model-free
controller for the quadrotor attitude control problem in this
paper. For the outer-loop of the attitude model, the idea of the
backstepping control is utilized to maintain the stability. For
the inner-loop with unknown model parameters and external
disturbance, the dynamic linearization method is applied to
obtain discrete model, and a differential term is added in
the performance index function of the control input. The
feasibility of the controller and the advantages of TMPIO
are verified by the simulation results.
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