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Abstract. In this paper, an Active Disturbance Rejection Control (ADRC) sys-
tem is proposed to address the complex disturbance during the flight of Hyper-
sonic Vehicle (HV). To deal with difficulties in the manual control parameter
design task, an Improved Comprehensive Learning Pigeon-Inspired Optimization
(ICLPIO) algorithm is utilized by converting the parameter design problem to
an optimization problem. The comprehensive learning strategy and the selective
learning mechanism are introduced to improve the convergence rate and explo-
ration performance in the parameters tuning for ADRC system of HV. To verify
the advantages of the ICLPIO algorithm, the particle swarm optimization (PSO),
the basic PIO, and the genetic algorithm (GA) are applied in the simulations as
control groups. The results show that the presented method is superior to other
optimization methods.

Keywords: Active Disturbance Rejection Control (ADRC) · Hypersonic Vehicle
(HV) · Pigeon-Inspired Optimization (PIO) · Comprehensive learning strategy

1 Introduction

The Hypersonic Vehicle (HV) has certain values in both military and civilian aspects due
to its high speed [1]. Different from traditional aircrafts, more disturbance factors should
be considered for HV, including serious nonlinear characteristic, the strong time vari-
ability brought about large airspace flight and hypersonic flow, and uncertainty caused
by variable parameters and random interference [2]. As a key technology, the design of
control system has a direct impact on flight performance of a HV system.

The Active Disturbance Rejection Control (ADRC) is a nonlinear control method,
which has been explored and used to design fault tolerance controllers in many practi-
cal applications [3]. For aircraft attitude control, an adaptive ADRC system for small
unmanned aerial vehicle (UAV) system processed excellent stability, rapidity, and accu-
racy [4]. For aircraft trajectory tracking control, an ADRC system was applied in the
power parafoil aerial vehicle system and achieved required precision and disturbance-
rejection capacity of instruction tracking [5]. In addition to aircraft control, applications
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of ADRC in other system show competitive performance.With a new observer structure,
an improved ADRCwas used for a DC-DC buck power converter system and effectively
reduced the negative impact of sensor noise [6].

An ADRC system consists of three important modules [7]. Tracking differentiator
(TD) is chose to smooth the input, the extended state observer (ESO) is designed to
observe the disturbance, and nonlinear state error feed-back law (NLSEF) is aimed
to get final outputs. Since the ADRC is composed of three parts, which will achieve
good results only when appropriate parameters are set, the parameter tuning is of great
significance. However, traditional methods depend on rich experience and it is hard to
get an optimal result by these approaches. Therefore, it is critical to find an efficient and
intelligent method to obtain correct parameters of ADRC system.

Pigeon-inspired optimization (PIO), inspired by the homing behavior of pigeons,
was firstly proposed by Duan et al. [8]. Since this novel algorithm has been proved to be
effective in improving the convergence speed [9], PIO and its variants have been widely
applied to various fields [10–14]. Sun and Pan et al. [10] proposed an effective solution
for wireless sensor networks with Quasi-Affine transformation PIO, and Tian and Chu
et al. [11] provided an effective solution to the maximum model of short-term power
generation of hydropower station with compact PIO. Besides, Wang and Ali et al. [12]
utilized a Cauchy mutant PIO to improve the performance of path planning of multiple
unmanned aerial vehicles in narrow areas. Moreover, Zhang and Lin et al. [13] applied
a novel neural network model based on PIO to predict the parallel branch current of
battery pack. In this paper, to enhance the exploration performance for the global optimal
solution, the Improved Comprehensive Learning PIO (ICLPIO) is proposed, in which
an improved comprehensive learning strategy is applied.

In Sect. 2, the model of HV is described firstly, and then the structure of the ADRC
system is introduced. In Sect. 3, as the theoretical basis, the basic PIO algorithm is
introduced first and the ICLPIO is proposed. Then, the process of an ICLPIO based
parameters tuning method is designed. In Sect. 4, the experiment results with analysis
are given. Finally, a brief summary is given in Sect. 5.

2 The ADRC System for HV

2.1 Model of HV

When modeling a HV, longitudinal motion is often the most critical while the lateral
movement is relatively with little influence. As a result, the longitudinal model is devel-
oped [14], the differential equation of which can be written as Eq. (1). The explanations
for parameters are listed in Table 1.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

V̇ = T cosα−D−mg sin(θ−α)
m

Ḣ = V sin(θ − α)

α̇ = −L+T sin α
mV + Q + ( g

V − V
r

)
cos(θ − α)

θ̇ = Q
Q̇ = M

Iyy

(1)
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Table 1. Explanation of parameters.

Parameter Explanation Parameter Explanation Parameter Explanation

m Mass Iyy Moment of inertia
along the
longitudinal
direction

L Lift

V Velocity g Acceleration due
to gravity

D Drag

H Altitude δ Elevator deflection
angle

M Pitching moment

θ Pitch angle φ Throttle setting T Thrust

Q Pitch angle rate α Attack angle r Earth radius

where V , H , θ , Q and α are the state variables. T , L, D and M denote the external
forces and moment. The values of vehicle and aerodynamic parameters are consistent
with previous studies [14].

2.2 Structure of the ADRC System

The ADRC system is constructed with the structure shown in Fig. 1, including two
main part, pitch angle controller and velocity controller. Each controller is consisted of
TD, ESO and NLSEF [3]. The reference pitch angle is recorded as θref . The reference
velocity is Vref . Softened by TD, the reference states are θdes, Qdes and Vdes, which are
the desired value of θ , Q and V respectively.
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Fig. 1. The structure of the ADRC system.
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The softening algorithm can be described as
{

θ̇des = Qdes

Q̇des = −1.76rθ · Qdes − r2θ
(
θdes − θref

) (2)

V̈des = −1.76rV · V̇des − r2V
(
Vdes − Vref

)
(3)

where rθ and rV are convergence factors reflecting the softening degree.
The outputs of HSV model θ and V are estimated by ESO. The results are recorded

as θ̂ , and V̂ . As the control input δ is the independent variable of pitch angle rate Q,
the estimate Q̂ is also provided. Besides, all interferences and uncertainties including
coupling between inputs and states are estimated as N̂Q, and N̂V . The ESO of pitch
angle controller is of second order and the ESO of velocity controller is of first order.
The algorithm of ESO is as follow

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ̃ = θ̂ − θ
˙̂
θ = Q̂ − β11 · θ̃˙̂Q = N̂Q − β12 · fal

(
θ̃ , a11,�11

)
+ b1δ

˙̂NQ = −β13 · fal
(
θ̃ , a12,�12

)

(4)

⎧
⎪⎨

⎪⎩

Ṽ = V̂ − V
˙̂V = N̂V − β21 · Ṽ + b2φ˙̂NV = −β22 · fal

(
Ṽ , a2,�2

) (5)

where β11–β22, a11–a2 and �11–�2 are adjustable parameters with different values.
Parameters b1 and b2 represent the coefficients of control quantities on corresponding
states. By the function fal(·), the input will be enlarged when the absolute value is less
than �, and otherwise, it will be reduced.

By NLSEF, it is desired that states θ and V reach the softened reference states. The
algorithm is shown as

⎧
⎨

⎩

δ0 = Kθ
P · fal

(
θ̂ − θ, aθ ,�θ

)
+ Kθ

D · fal
(
Q̂ − Q, aQ,�Q

)

δ = δ0 − N̂Q
/

b1

(6)

⎧
⎨

⎩

φ0 = KV
P · fal

(
V̂ − V , aVP , �V

P

)
+ KV

D · fal
(
Q̂ − V̇ , aVD ,�V

D

)
+ KV

I · fal
(∫ (

V̂ − V
)
, aVI , �V

I

)

φ = φ0 − N̂V
/

b2

(7)

where K with different corner marks represent the feedback control laws of pitch angle
controller and velocity controller respectively.

3 Improved Comprehensive Learning Pigeon-Inspired
Optimization

3.1 Basic PIO Algorithm

Inspired by the different stages of characteristics of pigeons when searching the direction
of the nest, PIO algorithm is proved to be effective in improving the convergence speed
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[8]. Basic PIO consists two independent operators. Thefirst operator ismap and compass,
and the second is landmark. In the PIO model [9], N solutions is set to the same number
of pigeons, and D-dimensional solution space is considered for each pigeon with the
position Xi = [xi1, xi2, · · · , xiD] and the velocity Vi = [vi1, vi2, · · · , viD].

In the PIO model, the update process can be described as
{
Vi(t) = Vi(t − 1)e−Rt + rand · (Xgbest − Xi(t − 1)

)

Xi(t) = Xi(t − 1) + Vi(t)
(8)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Xcenter(t) =
NN (t)∑

i=1
Xi(t)·fitness(Xi)

NN (t)·
NN (t)∑

i=1
fitness(Xi)

NN (t) = NN (t−1)
2

Xi(t) = Xi(t − 1) + rand · (Xgbest − Xi(t − 1)
)

(9)

For the first operator, pigeons update the position and velocity of the individual with
other pigeons especially those with better finesses. For the second operator, the pigeons
with worse performance will be eliminated, because when close to the nest, the pigeons
who are unfamiliar with the landmarks will not contribute to the team while others will
approach the destination in a straight line.

3.2 Improved Comprehensive Learning PIO Algorithm

In the application of basic PIO algorithm, the convergence rate is always competitive,
while the deficiency of global search capability is also non-ignorable.

To enhance the exploration performance for the global optimal solution, an improved
comprehensive learning strategy is incorporated into basic PIO to improve the search
ability [15].

Comprehensive Learning Strategy. In the first operator of the PIOmodel, each pigeon
updates its velocity by the Xgbest , which can be far away from the global optimal in a
complex application scenario. Besides, one pigeon may get excellent performance in
xij but gets poor fitness because of xik . Learning from the dimension j of this pigeon
could have an active effect on getting the optimal result while it is always neglected in
traditional optimization algorithm. To solve these problems, the comprehensive learning
strategy for dimension j of pigeon i is described as

vij(t) = vij(t − 1)e−Rt + rand · (xtar,j − xij(t − 1)
)

(10)

where xtar is a randomly selected pigeon, which improves the utilization of all pigeon
information.

Selective Learning Mechanism. Equation (10) proposed the learning method from a
randomly selected pigeon, rather than the pigeon with best fitness. This strategy obvi-
ously improves the global information but will limit the convergence speed greatly.
Therefore, based on the comprehensive learning strategy, a selective learningmechanism
is proposed. The mechanism is mainly divided into three aspects [16].
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1) To avoid the disordered learning, a learning interval Tin is considered, which means
that there is a refreshing gap for pigeons to choose their learning target.

2) For each pigeon, a probability Pi
c is set by P

i
c = 0.05+ 0.45 · exp

(
10(i−1)
Ps−1 −1

)

exp(10)−1 , where

Ps is the whole number of pigeons. A random number pi,jc is considered before the
velocity update. Only if the pi,jc is greater than the Pi

c, the comprehensive learning
strategy will be used.

3) Due to the randomness of the learning target, the better result cannot be guaranteed.
Therefore, two pigeons will be selected randomly and then the one with better fitness
is to choose as the target individual.

3.3 Optimized ADRC System for HV

As shown in Fig. 2, the whole process of the ICLPIO optimized ADRC system for HV
can be described as follows.

Start

End

t is an integral multiple of  ?inT

> ?

Y
N

Y
N

Initialize the parameters of 
ADRC system

Update velocity and 
position with map and 

compass operator (Eq. 8)

Update velocity with improved map 
and compass operator (Eq. 10)

Update position with map and 
compass operator (Eq. 8)

t > T1max ?

Update global optimum and local optimum

Update velocity and position with 
landmark operator (Eq. 9)
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Y
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cp i
cP

Pitch angle 
control

Enter the parameters into 
the ADRC system
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Calculate the fitness of 
pitch angle control 

(Eq. 11)

Simulate for 
pitch angle control 
or velocity control 

Calculate the fitness 
of velocity control 

(Eq. 12)

Return the fitness of this 
pigeon

Velocity 
control

Fig. 2. Flowchart of the ICLPIO.

Step 1: Choose the trim condition of HV, including choosing the stable state variables
and the appropriate external forces and moment.
Step 2: Initialize the parameters of ADRC system.
Step 3: Implement the simulation and calculate the fitness for pitch angle control by
Eq. (11) and that for velocity control by Eq. (12).
Step 4: Select two pigeons randomly and choose the better one as the comprehensive
learning target.
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Step 5: Update the velocity and position of each pigeon. If current iteration times t is
an integral multiple of the learning interval Tin, and the pi,jc is greater than the Pi

c, the
learning target for pigeon i is the one chosen by Step 4. Otherwise, the global optimum
will be chosen as the target.
Step 6: If t reaches the T1max, update the velocity and position with landmark operator
by Eq. (9). Otherwise, go to Step 3.
Step 7: If t reaches the T2max, terminal the optimization and output the result.

fitnessp =
∫

t ·
∣
∣θref − θ

∣
∣

θref
dt (11)

fitnessv =
∫

t ·
∣
∣Vref − V

∣
∣

Vref
dt (12)

4 Simulation Results and Analysis

For tuning the parameters of controller, the number of iterations is set to 35 times,
where it is selected 30 times for the first operator and 5 times for the second oper-
ator both in PIO and ICLPIO. The number of solutions is 20, and the dimension
of each solution is 14. For pitch angle controller, {rθ , β11, β12, β13, aθ ,�θ , aQ,�Q,
Kθ
P,Kθ

D, a11,�11, a12,�12} are optimized, and for velocity controller, {rV , β21, β22,
aVP ,�V

P , aVI ,�V
I , aVD,�V

D, K
V
P ,KV

I ,KV
D , a2,�2} are optimized.

To verify the ability to find the global optimum of the proposed algorithm ICLPIO,
comparative simulations are carried out. As control groups, the particle swarm optimiza-
tion (PSO), the basic PIO, and the genetic algorithm (GA) are applied in the simulations.
During the experiments, the reference of pitch angle is chosen as 5 degrees, and the refer-
ence of velocity is chosen as 200mper second. The individual optimal iteration diagrams
are shown in Fig. 3.

Fig. 3. Optimal individual fitness of pitch angle controller (left) and velocity controller (right).

By the results, the fitness found by the ICLPIO is always the lowest, which shows
the best global search capability.
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Fig. 4. Response of pitch angle control (left) and velocity control (right).

As the optimal solution, the response curves to the reference inputs of the ADRC
system with parameters optimized by ICLPIO and other three algorithms are shown in
Fig. 4.

For pitch angle control, the adjustment time of ICLPIO is 1.19 s, which of the PSO,
PIO, and GA are 1.12 s, 1.26 s, and 3.29 s, respectively. The overshoots of ICLPIO and
PSO are both zero, while that of PIO and GA are 0.46 percent and 15 percent. Only the
result optimized by ICLPIO has no oscillation.

For velocity control, the adjustment time in pitch angle control of ICLPIO is 24.26
s. The results of PSO, PIO, and GA are 25.64 s, 25.68 s, and 24.30 s, respectively. The
result of ICLPIO has the smallest steady-state error.

5 Conclusion

In this paper, an ADRC system is designed to address the disturbance for HV. To track
the reference input accurately, with the comprehensive learning strategy and the selective
learning mechanism, the ICLPIO algorithm is proposed. To verify the ability to find the
global optimum, comparative simulations are carried out and the results show that, the
ICLPIO achieves competitive dynamic and steady-state performances in the pitch angle
control and velocity control of HV.
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