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A B S T R A C T   

The issue of pesticide residues has always been a hot topic at home and abroad. A method for the quantitative 
detection of procymidone residues in grain and oil products using near-infrared (NIR) spectroscopy has been 
proposed. First, a NIR spectrometer was used to collect spectral data from rapeseed oil samples with different 
concentrations of procymidone residues. Based on full-spectrum data, the wavelength points selected by boot-
strapping soft shrinkage (BOSS) algorithm, competitive adaptive reweighted sampling (CARS) algorithm, and 
variable combination population analysis (VCPA) algorithm then were compared and were quantified using 
support vector regression (SVR) model. Simultaneously, the prediction results of the SVR model optimized by 
dung beetle optimizer (DBO) algorithm and pigeon-inspired optimization (PIO) algorithm were compared using 
the full-spectrum data. Finally, the wavelength selection algorithms and parameter optimization algorithms with 
the best prediction results were selected for comparison and combination. In light of the outcomes, the three 
spectral characteristic wavelength selection algorithms and the two optimization algorithms can improve the 
coefficient of determination (R2

P) and reduce the root mean square error of prediction (RMSEP). The SVR model 
that utilizing CARS and PIO algorithm demonstrates the best generalization performance among all models 
evaluated, and the R2

P is 0.9939 with a RMSEP of 2.3435 mg⋅kg− 1. The results indicate that the high-precision 
and rapid detection of procymidone in edible oil can be achieved using the SVR model optimized by input 
feature and parameter based on NIR spectral data. This has great significance in ensuring the safety of grain and 
oil food.   

1. Introduction 

Food safety is an important issue related to public health, and 
pesticide residues is an important factor affecting food quality and safety 
[1]. Long-term exposure or consumption of food containing pesticide 
residues will cause adverse effects on human health, and even lead to 
poisoning and immune system damage and chronic diseases [2]. Pro-
cymidone, a systemic fungicide, is mainly used to control the develop-
ment of disease spots in crops, such as rape, watermelon and strawberry 
[3]. Rapeseed oil is pressed from rapeseed fruit and is popular for its 
high nutritional content [4]. In recent years, with the rising demand for 
rapeseed oil and the increasing expansion of planting area [5], the use of 
procymidone in the growth process of rapeseed has also been increasing. 
At the same time, consumers are increasingly concerned about pesticide 
residues in grain and oil products [6]. Hence, the efficient detection of 
procymidone residues in rapeseed oil has great practical significance 

and application value. 
At present, the conventional methods for detecting pesticide residues 

in grain and oil products mainly include chromatography, biosensor 
technology and immunoassay [7]. Chromatographic methods, such as 
gas chromatography (GC) and high-performance liquid chromatography 
(HPLC), are commonly used for the separation and quantitative analysis 
of pesticide residues, providing high efficiency and accuracy in detec-
tion, but these methods are demanding and time-consuming [8]. 
Biosensor technology uses enzymes, microorganisms, cells, etc. to detect 
pesticide residues in vegetable oil, which has the characteristics of 
simple operation and high sensitivity, but the method has high cost and 
limitations in specific diversified detection [9]. The immunoassay is 
measured by preparing specific antibodies combined with pesticide 
residues, which has the characteristics of less time-consuming. However, 
the preparation process of antibodies in this method is cumbersome and 
expensive, which is not conducive to popularization [10]. The above 
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methods cannot meet the needs of on-site testing of large numbers of 
samples. Therefore, an efficient, rapid and economical method of 
pesticide residue detection is required in the actual detection process. 

Near-infrared (NIR) spectroscopy is a non-destructive analysis 
method for the structure and composition analysis of substances [11]. It 
measures the absorption and scattering of molecules in the NIR spectral 
range to determine relevant parameters such as the composition and 
mass of analyte, with a spectral range of 700–2526 nm [12]. This non- 
contact detection technology has several advantages, such as not 
requiring sample pretreatment, fast detection speed, no pollution, and 
no destruction. It also enables simultaneous analysis of multiple com-
ponents, making it an efficient and cost-effective analytical method 
[13]. Recently, as progresses made in the field of modern electronics, 
spectral analysis and computers, the increasing perfection of NIR anal-
ysis technology has facilitated its application in detection of agricultural 
products [14–19]. In particular, in the detection of pesticide residues in 
edible oils, Xue et al. quickly detected chlorpyrifos residues in corn oil 
using a one-dimensional convolutional neural network structure based 
on a deep learning model of NIR spectroscopy [20]. This report confirms 
the enormous potential of NIR spectroscopy technology in the quality 
and safety testing of edible oils, but the detection model used in this 
study is relatively complex, and the detection accuracy still has room to 
improve. 

Usually, there are two main types of multivariate correction models 
commonly used in NIR spectral data processing: linear modeling and 
nonlinear modeling. Currently, the partial least squares (PLS) method is 
widely used for qualitative and quantitative analysis of food products 
[21]. And PLS regression is extremely widely used in the field of spectral 
analysis because it can cope with the problem of multiple covariance of 
spectroscopy [22,23]. However, when dealing with some more complex 
sample sets, nonlinear regression methods have more unique advan-
tages. For example, support vector regression (SVR) is a good choice for 
nonlinear regression problems with small sample sets. On the other 
hand, since most wavelength points may not be relevant to the target 
under study, feature selection of the full-spectrum data is needed to filter 
out the wavelength points that are relevant to the target. Doing so can 
improve model accuracy, reduce computational complexity and avoid 
overfitting. In addition, for SVR models, we can also optimize the model 
parameters using an intelligent optimization algorithm, which can 
further improve the model accuracy. 

Accordingly, the following research objectives were proposed. (1) 
Acquisition and preprocessing of NIR spectral data. Rapeseed oil sam-
ples containing different concentrations of procymidone were config-
ured and the original NIR spectra were acquired by spectrometer. (2) 
Feature extraction. Three characteristic variable selection algorithms 
were introduced, namely bootstrapping soft shrinkage (BOSS) algo-
rithm, competitive adaptive reweighted sampling (CARS) algorithm and 
variable combination population analysis (VCPA), to screen and gain 
suitable characteristic wavelength points. (3) Parameter optimization of 
the model. Based on the full-spectrum data, the dung beetle optimizer 
(DBO) algorithm and the pigeon-inspired optimization (PIO) algorithm 
were employed to perfect the parameters in the SVR model. (4) 
Compared and analyzed the wavelength variable selection algorithms 
and parameter optimization algorithms with the best prediction effect. 

2. Materials and methods 

2.1. Preparation and acquisition of experimental samples 

The procymidone standard (concentration greater than 99%) and n- 
hexane (chromatographic grade) were procured from Shanghai Aladdin 
Company, and nine brands of rapeseed oil were purchased from JD Mall 
for the experiment. 

When preparing the sample, first weighed 200 mg of the procymi-
done standard with an electronic balance and dissolved it in a 
chromatography-grade n-hexane solvent to make standard solution of 

different concentrations, which were 1, 2, 3.5, 5, 6, 7, 8, 10, 20, 35, 50, 
60, 70, 80, 100, 200, 350, 500, 600, 700, 800 and 1000 mg⋅kg− 1. A 
brand of rapeseed oil was then added to obtain samples of rapeseed oil 
with different concentrations of procymidone (i.e., mixing 18 g of oil 
with 2 g of standard solution). Finally, there were 22 concentration 
gradients of procymidone in the samples configured, which were 0.1, 
0.2, 0.35, 0.5, 0.6, 0.7, 0.8, 1, 2, 3.5, 5, 6, 7, 8, 10, 20, 35, 50, 60, 70, 80 
and 100 mg⋅kg− 1. For nine different brands of rapeseed oil, a total of 198 
samples were obtained. 

2.2. Experimental apparatus and spectral sampling 

Weighed using an electronic balance (Mettler Toledo Instruments 
Co., Ltd, Shanghai, China) with an actual index value of 0.01 mg. A 
pipette with a size of 1000 μL was used to aspirate 2 mL of the sample in 
a 5 mm width cuvette and a Flame-NIR spectrometer (Ocean Insights, 
USA) was employed to get the spectra of samples, and the acquired 
spectral data was recorded and stored with OceanView software (Ocean 
Insights, USA). 

Prior to data acquisition, the following parameters were configured 
for the spectrometer: the integration time was 20 ms, the spectral 
scanning range was 950–1700 nm, the number of wavelength points 
measured was 128, and the empty cuvette was used as the spectral 
reference. During the spectral data acquisition process, samples were 

Fig. 1. Original NIR spectra and pretreated spectra by SG and MSC of all 
rapeseed oil samples. 
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measured three times and the average of those measurements was taken 
as original date. 

2.3. Spectral data preprocessing 

The NIR spectrum can rapidly and precisely indicate the composition 
and structure of the substance, but it is also affected by the measured 
sample, the response of the spectroscopic instrument, the environment 
and other factors. Moreover, the interference information cannot be 
completely eliminated by relying on the equipment itself or improving 
the external environment. Therefore, prior to spectral data analysis, a 
series of preprocessing steps to clean and correct the data is necessary 
[24], so as to eliminate interference signals in the spectral data, improve 
the data quality and establish a reliable model. 

In this study, Savitzky-Golay (SG) filtering method with a polynomial 
order of 2 and window size of 13 was utilized to reduce noise and 
enhance the peak signal-to-noise ratio of the signal. Multiplicative 
scatter correction (MSC) was used to eliminate the scattering influence 
on the surface of the material after filtering. This helped to enhance the 
peak information related to composition or component content in the 
spectra. As depicted in Fig. 1, it displays the original NIR spectra and 
pretreated spectra by SG and MSC of all rapeseed oil samples. 

2.4. Data analyses methods 

2.4.1. Bootstrapping soft shrinkage 
The bootstrapping soft shrinkage (BOSS) algorithm, developed by 

Deng in 2016, is designed to screen out information variables with 
collinearity [25]. The algorithm combines bootstrap sampling (BSS) and 
weighted bootstrap sampling (WBS) to randomly combine variables and 
build sub-models. The model population analysis (MPA) method is 
applied to retrieve the information in the sub-models. Finally, the best 
set of variables is selected as a subset with the lowest root mean square 
error of cross-validation (RMSECV) values during the iteration. The al-
gorithm streamlines the process of shrinking the feature variable space, 
while simultaneously minimizing the risk of discarding pertinent vari-
ables during optimization. 

2.4.2. Competitive adaptive reweighted sampling 
The competitive adaptive reweighted sampling (CARS) algorithm is 

a wavelength variable screening method that simulates the concept of 
“survival of the fittest” to select the optimal combination of wavelengths 
from the entire spectra [26]. The algorithm consists of 4 steps: Monte 
Carlo sampling (MCS), exponentially decreasing function (EDF) forced 
wavelength reduction, adaptive reweighted sampling (ARS) competing 
wavelength reduction, and calculation of subset RMSECV values. The 
final subset that achieves the smallest RMSECV value is considered as 
the optimal subset. The algorithm effectively eliminates unwanted in-
formation from spectral information while compressing collinear 
variables. 

2.4.3. Variable combination population analysis 
The variable combination population analysis (VCPA) algorithm is a 

wavelength selection method that considers the interaction between 
variables [27]. The algorithm is based on the exponentially decreasing 
function (EDF) and binary matrix sampling (BMS) to identify the 
optimal subset, and consists of the following 4 steps: BMS sampling, EDF 
forced variable reduction, wavelength variable selection according to 
the lowest 10% RMSECV based on modeling, and investigation of all 
possible combinations of final variables. The algorithm uses EDF to 
continuously narrow the variable space, with many parameters, few 
selected variables, low calculation amount and fast speed. 

2.4.4. Pigeon-inspired optimization 
The pigeon-inspired optimization (PIO) algorithm is a swarm intel-

ligence optimization algorithm that takes inspiration by the homing 

behavior of pigeon [28]. The algorithm simulates the easy homing 
behavior of domestic pigeons through three guidance tools: geomag-
netic field information, sun altitude information and landmark infor-
mation, and obtains the optimal position through iterative update of 
map compass operator and landmark operator. PIO is known for its 
simplicity, ease of implementation, and strong robustness, making it 
suitable for a variety of optimization problems. It also has strong global 
search ability, enabling it to quickly find the global optimal solution. 

In this study, the SVR model parameters were optimized using the 
PIO algorithm. The optimization algorithm parameters were set as fol-
lows: the maximum number of iterations was 50, the population number 
was 20, the lower limit was [0, 0], and the upper limit was [32, 32]. 

2.4.5. Dung beetle optimizer 
The dung beetle optimizer (DBO) algorithm, proposed in 2022, is a 

novel swarm intelligence optimization technique that excels in both 
rapid convergence speed and high solution accuracy when used for 
global search and local utilization [29]. The inspiration for this algo-
rithm comes from the behavior of dung beetles in daily life, such as 
rolling, dancing, foraging, stealing, and breeding. And 5 different update 
rules are designed accordingly. The DBO algorithm mainly includes four 
processes: rolling balls, reproduction, foraging and stealing, and the 
main idea is to treat each individual dung beetle as a possible feasible 
solution in a given search space. According to the different change rules 
of the design, it is continuously iterated towards the trend of smaller 
adaptation function values and updated positions in real time, and 
finally the best position is output. 

In this study, the SVR model parameters were optimized by using the 
DBO algorithm. The optimization algorithm parameters were set as 
follows: the maximum number of iterations was 50, the population size 
was 20, the lower limit was [0.0001, 0.0001], and the upper limit was 
[200, 200]. 

2.4.6. Diagnosis of nonlinearity 
In this study, it was verified whether there was a nonlinear rela-

tionship between NIR spectrum and the concentration of the pesticide 
procymidone. Assuming that the relationship between the two was 
linear, the PLS model was used to predict the content of procymidone in 
the sample. The partial residual plot (APaRP) method recommended by 
Mallows was then used to diagnose nonlinearity. A quantitative nu-
merical tool was used in this study to determine the nonlinearity based 
on the APaRPs method [30]. When the expected randomness measure 
value is greater than 1.96, it can be determined that the relationship 
between the two is nonlinear. 

2.4.7. Support vector regression 
The support vector regression (SVR) is a common regression method 

based on support vector machine (SVM) [30]. The goal is to minimize 
the prediction error of the model and add penalty coefficients to the 
model to control model complexity. When predicting under nonlinear 
conditions, it is necessary to construct a mapping function to expand the 
spatial dimension, and its core idea is to find an optimal hyperplane in 
high-dimensional space to describe the relationship between charac-
teristic variables, which has the advantages of excellent generalization 
performance and strong robustness. The kernel function in this study 
was radial basis function (RBF) selected from the libSVR toolkit. The 
optimization of the parameters was carried out using grid search (GS). 
Its search interval was [2–10, 2− 10], and the search step size was 0.5. 

2.5. Model evaluation 

In this study, various indicators were employed to evaluate the 
performance of the feature variable selection method, algorithm opti-
mization, and model generalization ability, including root mean square 
error of prediction (RMSEP) and coefficient of predictive determination 

M. Zhao et al.                                                                                                                                                                                                                                   



Infrared Physics and Technology 133 (2023) 104827

4

(R2
P). Their calculations are published as follows: 

RMSEP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑np

i=1(yi − y′
i)

2

np

√

(1)  

R2
P = 1 −

∑np
i=1(yi − y′

i)
2

∑np
i=1(yi − y″

p)
2 (2)  

where, yi, y′
i, y″

p are the measured value, predicted value, and average 
value of the correction set, respectively. np is the sample size of the 
correction set. 

2.6. Software 

All algorithms were implemented on a computer with an Intel i5- 
11400H CPU, 16 GB RAM, running MATLAB R2021a (MathWorks, 
Natick, USA) under the Windows 10 operating system. 

3. Results and discussion 

3.1. Spectral dataset partitioning strategies 

The experiment was conducted in 22 batches, each with nine sam-
ples. Among them, seven samples from each batch were selected 
randomly for model training, and the remaining samples were used for 
model prediction. In this way, there are 154 samples in the training set 
and 44 samples in the prediction set. Table 1 shows the statistics of 
procymidone values in the training set and prediction sets for rapeseed 
oil. Table 1 indicates that the mean and standard deviation (SD) of both 
the training set and the prediction set exhibit negligible disparities. 
Therefore, this division scheme is reasonable and reliable. 

3.2. Results of diagnosis of nonlinearity 

Table 2 presents the test results, the |z| value is 10.1249, indicating a 
nonlinear relationship between NIR spectral signals and procymidone 
residue values. In order to accurately predict the residual amount of 
procymidone in rapeseed oil, this study employed nonlinear algorithms 
SVR to establish a regression model for predicting procymidone in 
rapeseed oil. 

3.3. Analysis and comparison of BOSS, CARS and VCPA 

When selecting the wavelength variables of the original spectra, 
there is a certain randomness at initialization due to the different se-
lection strategies of BOSS, CARS and VCPA. To reduce the influence of 
initialization randomness, each of the three feature wavelength extrac-
tion algorithms was run 50 times, and the results of 50 runs were 
recorded. Fig. 2 displays the results of running BOSS, CARS, and VCPA 
separately 50 times, along with the distribution of wavelength points 

that correspond to the optimal outcome of three optimization algo-
rithms. Among them, Fig. 2A displays the results of running the SVR 
model 50 times with three wavelength selection methods. In Fig. 2A, it 
can be obtained that BOSS achieves a mean RMSEP of 5.0392 mg⋅kg− 1 

with a SD of 0.6561 mg⋅kg− 1, CARS achieves a mean RMSEP of 4.8986 
mg⋅kg− 1 with a SD of 0.7160 mg⋅kg− 1, and VCPA achieves a mean 
RMSEP of 5.1867 mg⋅kg− 1 with a SD of 1.5676 mg⋅kg− 1. Referring to the 
results in Fig. 2A, it is evident that the three algorithms exhibit some 
level of randomness, but the influence of this randomness on the per-
formance of the SVR model is limited to minor fluctuations. 

Fig. 2B displays the distribution of wavelength variables over the 
entire spectra for the optimal SVR model obtained from the three 
methods. As shown in Fig. 2B, the number of wavelength points selected 
by these three wavelength extraction algorithms varies greatly. Among 
them, VCPA selects the least number of wavelength points, 13, ac-
counting for 10.2% of the entire spectrum; CARS picked the most, with 
48, accounting for 37.5% of the entire spectra. The reason for this may 
be closely related to the difference in the selection strategy of each 
method. In addition, Fig. 2B reveals that the three different variable 
selection methods select many identical wavelength points as input 
feature variables to build the training model, which shows that the 
selected wavelength points are reasonable and targeted. Table 3 shows 
the best prediction results of SVR model combined with different vari-
able selection algorithms. In Table 3, it is not difficult to see that three 
different wavelength screening methods can improve the prediction 
performance of the model and reduce the redundancy of the data. In 
particular, CARS performed best, screening 48 characteristic wave-
lengths. Compared to the model using the entire spectra, its RMSEP 
decreases from 4.2408 mg⋅kg− 1 to 3.2223 mg⋅kg− 1 and R2

P increases 
from 0.9799 to 0.9884. Based on comprehensive consideration, 48 
feature variables selected by the CARS algorithm were finally selected as 
the final input feature variables of the model. According to the litera-
ture, the fourth overtone located near the 1160 nm wavelength belongs 
to the C––O stretching [31]. The band around 1400 nm is related to 
O–H absorption and absorption band related to C–H absorption are 
observed at about 1120, 1300 and 1360 nm [32]. They are related to the 
organic substances in procymidone. 

3.4. Analysis and comparison of DBO-SVR, PIO-SVR and CARS-PIO- 
SVR 

In this study, the parameters of the SVR model were optimized using 
the GS method. However, this method can only search a limited discrete 
parameter space, which has high discretization requirements and large 
computational requirements. The swarm intelligent optimization algo-
rithm can not only search continuous space, but also has fast calculation 
speed, which can optimize high-dimensional, nonlinear and complex 
problems. Therefore, based on the full-spectrum data, the DBO and PIO 
algorithm with different parameter ranges due to performance effects 
were introduced to perfect the parameters of the model, and the pre-
diction effect after parameter optimization was analyzed and compared. 
Fig. 3 shows the results of running different optimization strategies 50 
times separately combined with SVR model. Fig. 3A shows the perfor-
mances of the SVR model in the prediction set after running the SVR 
model 50 times separately under the premise of DBO and PIO optimi-
zation. Fig. 3A reveals that the RMSEP value of these two swarm intel-
ligent optimization algorithms is lower than that of 4.2408 mg⋅kg− 1 of 
the GS method, indicating that the swarm intelligent optimization al-
gorithm has better results in optimizing SVR model parameters. In 

Table 1 
Statistics of procymidone values in the training set and the prediction set for rapeseed oil.  

Subsets Number of samples Units Maximum Minimum Mean Standard deviation 

Training set 154 mg kg-1 100  0.1  20.9432  29.9978 
Prediction set 44 mg kg-1 100  0.1  20.9432  30.2460  

Table 2 
The results of the runs test used to detect the non-linearity of NIR spectral signals 
and procymidone residue values by the APaRPs method.  

n+ n− u μ σ |z| Conclusion  

23.8955  79.5993 1  37.7568  12.8231  10.1249 Nonlinearity  
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Fig. 2. The results of running BOSS, CARS, and VCPA separately 50 times, and the distribution of wavelength points that correspond to the best outcome of three 
optimization algorithms. 

Table 3 
The best prediction results of SVR model combined with different variable selection algorithms.  

Methods Number of input features Parameters Training set Prediction set 

C g R2
C RMSEC/ mg kg-1 R2

P RMSEP/ mg kg-1 

Raw 128 1024  0.0055  0.9922  2.6246  0.9799  4.2408 
BOSS 33 1024  0.0313  0.9947  2.1436  0.9864  3.4899 
CARS 48 1024  0.0221  0.9958  1.9201  0.9884  3.2223 
VCPA 13 1024  0.1250  0.9912  2.7379  0.9862  3.5032  
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addition, the mean RMSEP of the DBO-SVR model is 2.8375 mg⋅kg− 1 

with a SD of 0.2151 mg⋅kg− 1, and the R2
P is 0.9909 with a SD of 0.0015. 

The mean RMSEP of the PIO-SVR model is 2.7148 mg⋅kg− 1 with a SD of 
0.0741 mg⋅kg− 1, and the R2

P is 0.9918 with a SD of 0.0005. Therefore, 
compared with the DBO-SVR model, the PIO algorithm combined with 
the SVR model has better prediction effect, higher prediction accuracy 
and stronger stability. For this reason, the PIO algorithm was finally 
selected as the model parameter optimization method for subsequent 
analysis. 

Through the above analysis, the best feature selection algorithm and 

model parameter optimization algorithm, namely CARS and PIO, were 
selected respectively, and the two methods were coupled in order to 
establish the best detection model, that was, the wavelength points 
selected by CARS were used as the input feature, and PIO was the 
parameter optimization algorithm of SVR. To verify the feasibility of this 
method, the PIO-SVR model established by 48 characteristic wavelength 
points optimized by CARS was compared with the prediction results of 
the PIO-SVR model established by the entire spectra. Fig. 3B shows the 
results of the prediction set after running 50 times independently of the 
PIO-SVR model with the entire spectra as the input feature, and the PIO- 
SVR model with 48 wavelength points optimized by CARS as the input 

Fig. 3. The results of running different optimization strategies 50 times separately combined with SVR model.  
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feature after running independently for 50 times. From Fig. 3B, it can be 
seen that the mean RMSEP of the CARS-PIO-SVR model is 2.4129 mg 
kg− 1 with a SD of 0.0354 mg kg− 1, and the mean R2

P is 0.9935 with a SD 
of 0.0002. Compared with the PIO-SVR model, the mean R2

P of CARS- 
PIO-SVR is improved, and the mean RMSEP decreases by about 0.3 
mg kg− 1. The results show that the PIO-SVR model established by 
screening the full-spectrum data by CARS is effective, which can 
improve the R2

P and reduce the RMSEP. Fig. 4 shows a scatterplot be-
tween the model prediction value and the reference value based on the 
optimal CARS-PIO-SVR model for the content of procymidone in rape-
seed oil samples. From Fig. 4, the 1:1 line and the fitted line of the model 
are almost fitted, and the predicted scatterplots of both training set and 
prediction set are close to and distributed along the fitted line, which 
indicates that the model is successfully established. 

3.5. Comparison of SVR model with different optimization strategies 

In this study, three optimization strategies were proposed based on 
NIR spectral data, namely input feature variable optimization, model 
parameter optimization and model parameter optimization based on 
feature variable optimization under full-spectrum data. Table 4 illus-
trates the best prediction results of SVR models under three different 
optimization strategies. As Table 4 shown that both the feature wave-
length selection of the entire spectra and the optimization of model 
parameters can improve the accuracy of model prediction. Compared 

with the SVR model, the CARS-PIO-SVR model based on C = 26.8422 
and g = 0.1670 had the best prediction results, and its R2

P increased from 
0.9799 to 0.9939, and the RMSEP decreased from 4.2408 mg kg− 1 to 
2.3435 mg kg− 1. As can be seen from Table 4, when only the optimi-
zation algorithm was utilized to perfect the model parameters, the 
model may have the risk of overfitting, indicating that the model is too 
adapted to the training data. However, if feature screening is performed 
on full-spectrum data first, and then model parameters are optimized, 
this situation can be effectively avoided. The reason for this is that the 
model is too complex in fitting the training data, and mistakenly learns 
all the features in the training set instead of the common features of the 
data, resulting in the model not generalizing well to the new data. 
Therefore, the optimization strategy combining the selection of char-
acteristic wavelength points and the optimization of model parameters 
is the best solution, which not only ensures the accuracy of model pre-
diction, but also avoids the situation of overfitting the training set. 

4. Conclusions 

In this study, NIR spectroscopy was used to quantify the procymi-
done residues in rapeseed oil. Three feature extraction algorithms 
(namely BOSS, CARS, VCPA) were used to screen the full-spectrum data, 
and combined with the SVR model, the feature extraction algorithm and 
feature variables with the best prediction results were selected. Using 
the full-spectrum data as the input of the SVR model, the stability and 

Fig. 4. Scatterplot between the model prediction value and the reference value based on the optimal CARS-PIO-SVR model for the content of procymidone in 
rapeseed oil samples. 

Table 4 
The best prediction results of SVR model under three different optimization strategies.  

Models Number of input features Parameters  Prediction set 

C g R2
C RMSEC/ mg kg-1 R2

P RMSEP/ mg kg-1 

SVR 128 1024  0.0055  0.9922  2.6246  0.9799  4.2408 
CARS-SVR 48 1024  0.0221  0.9958  1.9201  0.9884  3.2223 
PIO-SVR 128 31.6688  0.1373  0.9987  0.4651  0.9923  2.6173 
CARS-PIO-SVR 48 26.8422  0.1670  0.9988  1.0470  0.9939  2.3435  
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accuracy of the two optimization algorithms of DBO and PIO were 
compared. The results show that the SVR model optimized by PIO with 
48 wavelength points selected by CARS as feature inputs exhibits the 
best generalization performance. The results show that NIR spectros-
copy can be applied to the rapid and accurate detection of procymidone 
in grain and oil products, and also provides a powerful tool for the rapid 
detection of other pesticide residues and food safety monitoring. 
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