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Abstract: The error level of inertial sensor parameters determines the navigation accuracy of an
inertial navigation system. For many applications, such as drones, errors in horizontal gyroscopes and
accelerometers, can significantly affect the navigation results. Different from most methods of filter
estimation, we innovatively propose using evolutionary algorithms, such as the improved pigeon-
inspired optimization (PIO) method, to identify sensor errors through navigation data. In this method,
the navigation data are firstly collected; then, the improved carrier pigeon optimization method is
used to find the optimal error parameter values of the horizontal gyroscope and accelerometer, so as to
minimize the navigation result error calculated by the navigation data. At the same time, we propose
a new improved method for pigeon-inspired optimization with dimension vectors adaptive mutation
(DVPIO for short) that can avoid local optima in the later stages of the iteration. In the DVPIO method,
2n particles with poor fitness are selected for the following variation, with 2n dimension vectors
when it is judged that the position is premature, where n represents the number of parameters to be
identified; a dimension vector only represents the positive or negative change of a parameter, whose
change amount is d can be adjusted adaptively. DVPIO method has better stability, faster convergence
speed, and higher accuracy. This work has potential to reduce the need for the disassembly and
assembly of the INS and return it to the manufacturer for calibration.

Keywords: inertial navigation; sensor errors; pigeon-inspired optimization (PIO)

1. Introduction

For the convenience of description, referring to relevant standards and terms, the
acronyms and their full forms adopted in this article are shown in Table 1.

The inertial navigation system (INS for short) has the advantages of being completely
autonomous, operating undisturbed, and providing the real-time output of various forms
of navigation information, such as the attitude, position, and velocity, of the carrier. INS
is widely used in various carriers, such as drones. The core components of INS are the
gyroscope and accelerometer. A gyroscope is used to measure the angular velocity, and
an accelerometer is used to measure acceleration. Generally, INS is composed of three
gyroscopes and three accelerometers with an orthogonal distribution [1–5].

The autonomous navigation of a drone depends on INS and other various systems [6,7].
The combination of INS and the global navigation satellite system (GNSS for short) is the
main navigation mode used by a drone at present [8]. When GNSS is degraded or stopped,
high-precision INS autonomous navigation performance is very important. The INS of the
drone can be combined with various sensors to improve the navigation performance. For
example, Bassolillo et al. [9] studied the data fusion method of the INS.

The error sources of INS include component error, installation error, initial alignment
error, navigation principle and method error, interference error, and external information
error. The accuracy index of the INS gyroscope and accelerometer includes one-time power-
on stability accuracy (noise) and multiple power-on stability accuracy (offset error). The
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noise and offset error of the gyroscope and accelerometer are important parts of the INS
error, which affect the navigation accuracy of the system, and this influence will accumulate
with the extension of the system operation time [10–12]. Sensor errors need to be calibrated
before using the INS. Typical calibration methods used for sensor errors are the 12-position
turnover method and the rotation method [13].

Table 1. Acronyms with their full forms.

Acronyms Full Forms

INS inertial navigation system
IMU inertial navigation unit

MEMS microelectromechanical system
GNSS global navigation satellite system

EA evolutionary algorithms
BSA backtracking search optimization algorithm
GA genetic algorithm
PSO particle swarm optimization
PIO pigeon-inspired optimization

DVPIO pigeon-inspired optimization with dimension vectors adaptive mutation
LSTM long-short-term memory neural network
UAV unmanned aerial vehicle

Sensor errors also fluctuate over time. After a particular period time (such as a year),
the INS needs to be disassembled from the drone, and then returned to the manufacturer
for recalibration. The disassembly and calibration of the INS will greatly increase its
use and maintenance costs. It would be of great significance if we could use the flight
data of the drone to calibrate the errors of the INS. Scholars have studied some online
calibration methods for drones. For example, Han et al. [14] executed the online calibration
of MEMS inertial sensors, improving the estimation accuracy and robustness of the system
navigation. Wang et al. [15] used other auxiliary sensors to calibrate the sensor errors
during the use of the INS, while Xiao et al. [16] presented an online IMU self-calibration
method for low-cost inertial sensors of the visual-inertial system. The traditional methods
are generally based on the inertial navigation error state equation, and the observer design
method can also be used for parameter estimation [17,18], but the algorithm is complex,
and the motion trajectory and motion time of the inertial navigation system are strictly
required to ensure objectivity.

Research on the application of intelligent methods of INS is relatively scarce. However,
interest in this area has gradually increased in recent years: Chen et al. [19] combined
deep learning technology with inertial navigation, improving the application effect of
wearable navigation devices based on human walking; Wang et al. [20] designed an IMU
calibration and noise suppression method based on wavelet transform, which applies an
LSTM (long-short-term memory neural network); Weber et al. [21] studied how to use
neural network filtering to improve the accuracy of IMU real-time attitude estimation.

The evolutionary algorithm simulates the cooperative behavior of animals and realizes
collective wisdom beyond individual behavior. We often face the problem of how to
break out of local optimization to obtain a higher accuracy during the use of evolutionary
algorithms for optimization. Li et al. [22] proposed a novel inverse tangent chaotic inertia
weight and sine learning factors and achieved a better convergence accuracy and speed.
Zhang et al. [23] proposed a novel prey–predator PSO (PP-PSO) that employed the three
strategies of catch, escape, and breeding and could achieve a better performance. Zaman
et al. [24] proposed an improved PSO with BSA called PSOBSA to resolve the original PSO
algorithm’s problems; in this, the BSA’s mutation and crossover operators were modified
through the neighborhood to increase the convergence rate. In addition to that, a new
mutation operator was introduced to improve the convergence accuracy and avoid falling
into a local optimum in that paper.
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Existing research mainly uses methods, such as Kalman filtering, to identify sensor
errors through inertial navigation data and satellite navigation data. Evolutionary algo-
rithm methods, such as PSO, can be used to identify optimal parameters but there are
problems, such as easily falling into local optimum. PIO method has the advantages of
fast convergence speed, but there are similar problems with PSO in the later iteration of
the algorithm. Table 2 describes some of the limitations of the existing methods involved,
which are also areas for improvement.

Table 2. Methods and limitations involved in this study.

Methods Involved Limitations References

Kalman filter estimation method
to identify sensor errors through

inertial navigation data and
velocity errors during motion

The algorithm is complex, and the
motion trajectory and the motion time

of the inertial navigation system are
strictly required;

[25,26]

PSO
It is easy to fall into local optimum, or it

is difficult to further improve the
accuracy in the later stage of iteration.

[27,28]

PIO

Although it has better convergence
performance, it is easy to fall into local

optimum, or it is difficult to further
improve the accuracy in the later stage

of iteration.

[29,30]

In order to reduce the need for the disassembly, assembly, and re-calibration of INS
by the manufacturer, in this research, we studied how to use intelligent methods, such as
pigeon-inspired optimization (PIO), to identify sensor errors through flight data according
to the INS application requirements of the drone.

2. Method for Identifying Sensor Errors from Navigation Data Based on DVPIO

This section presents the methodology of this study. Firstly, the navigation principle
of INS is expounded; then, the influence of the sensor error on the navigation results is
analyzed; an improved PIO method (DVPIO method) is proposed; finally, combining the
influence mechanism of sensor errors on navigation results and the DVPIO method, a
method for identifying sensor errors from navigation data based on DVPIO is constructed.

For the convenience of description, referring to relevant standards and terms, the
mathematical symbols and their descriptions are shown in Nomenclature.

2.1. Principles and Error Effects of Inertial Navigation

In this part, the function and composition of INS are firstly described. Then, the
mechanism that INS performs inertial navigation calculation based on sensor data to
provide speed, position, and attitude is expounded. Finally, the influence of the sensor
error of the INS on the navigation results is analyzed, including the influence of the
accelerometer error on the speed, the influence of the gyroscope error on the attitude and
so on.

2.1.1. Principles of Inertial Navigation

We take the INS used by a drone as an example to illustrate the method, display
the results, and explain the significance of this research for the engineering application
of the drone platform. The INS shown in Figure 1, as the main navigation measurement
equipment used in the drone platform, can independently provide the drone with attitude,
velocity, position, acceleration, and angular rate information along the X, Y, and Z directions
of the inertial measurement coordinate system (front, right, lower coordinate system). It
can execute navigation solutions, provide navigation information, receive the satellite
navigation data sent by the drone flight controlling system, and calculate the INS/GNSS
integrated navigation results. The INS shown in Figure 1 is mainly composed of the
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following functional components: three optical gyroscopes, three accelerometers, a power
supply system, a data acquisition system, a computer system, and a structural system.
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The output pulse data of the gyroscopes and accelerometers of the INS are first
converted and calculated using the calibration factor, zero bias, installation error, and
other parameters. Then, the navigation solution is executed, before finally the position,
velocity, and attitude information of the carrier is output. The navigation calculation of the
geographic coordinate system (l-frame for short) of drones includes the attitude solution,
coordinate transformation of the l-frame, navigation differential equation solution, and
other processes.

The navigation differential equations of the l-frame are:
.
rl

.
V

l

.
R

l

 =


D−1Vl

Rl
bfb + gl −

(
2Ωl

ie + Ωl
el

)
Vl

Rl
b

(
Ωb

ib −Ωb
il

)
 (1)

D−1 =

 0 1
RM+h 0

1
(RN+h)cosϕ 0 0

0 0 1

 (2)

where l represents the l-frame, b represents the vehicle coordinate system (b-frame for short);
i represents the inertial reference frame (i-frame for short); e represents the Earth coordinate
system (e-frame for short); rl is the latitude, longitude, and altitude of the l-frame; Rl

b is the
conversion matrix from the b-frame to the l-frame; fb is the specific force of the b-frame;
gl is the gravitational acceleration of the l-frame; Ωl

el is an antisymmetric matrix of the
angular rate vector expressed in the l-frame, where the angular rate vector is a vector of
the l-frame relative to the e-frame; Ωl

ie, Ωb
ib, and Ωb

il have similar meanings to Ωl
el; h is the

height; ϕ is the latitude; RM is the radius of the meridional section; and RN is the radius of
the curvature in the prime vertica.

The differential equations of the quaternion of rotation are:
.
q0.
q1.
q2.
q3
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 (3)

whereω representsωb
lb and is an angular rate vector that is expressed in the b-frame, where

the angular rate vector is a vector for the l-frame relative to the b-frame;ωx,ωy, andωz are
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the coordinate components ofω; q =
[
q0 q1 q2 q3

]′ is the quaternion of rotation; and the
attitude can be obtained by solving the quaternion differential equation.

2.1.2. Error Effects of Inertial Navigation

The pure inertial navigation of the INS in the event of satellite failure is critical for
drones. The altitude of the drone can be obtained by an altimeter, so pure inertial navigation
mainly considers the velocity and position errors in the horizontal direction. The system
error is mainly caused by the zero bias errors of the gyroscopes and accelerometers in the
horizontal position, and the zero bias errors tend to fluctuate over time.

The effect of the accelerometer zero bias errors on the specific force is as follows:δfx
δfy
δfz

 =

 1 −Eaxz −Eaxy
−Eayz 1 −Eayx
−Eazy −Eazx 1

1/Kax 0 0
0 1/Kay 0
0 0 1/Kaz

δA0x
δA0y
δA0z

 (4)

where δfx, δfy, and δfz are the carrier specific force errors; Eaxz, Eaxy, Eayz, Eayx, Eazy, and
Eazx are the installation errors of the accelerometers; Kax, Kay, and Kaz are the scale factors of
the accelerometers; and δA0x, δA0y, and δA0z are the zero bias errors of the accelerometers.

Without considering the high-order small error, the equation for the INS velocity errors
caused by the carrier specific force errors is as follows:δ .

vE
δ

.
vN
δ

.
vU

 =

 0 fU −fN
−fU 0 fE
fN −fE 0

δpδr
δA

+

R11 R12 R13
R21 R22 R23
R31 R32 R33

δfx
δfy
δfz

 (5)

where fE, fN, and fU are the specific forces in the east, north, and up directions, respectively;
δvE, δvN, and δvU are the velocity errors in the east, north, and up directions, respec-
tively; δp, δr, and δA are the pitch angle error, roll angle error, and azimuth angle error,
respectively; and Rij(i = 1, 2, 3, j = 1, 2, 3) is the constituent element of matrix Rl

b.
The angular rate errors of navigation solution caused by gyros zero bias errors are:δωx

δωy
δωz

 =

 1 −Egxz −Egxy
−Egyz 1 −Egyx
−Egzy −Egzx 1

1/Kgx 0 0
0 1/Kgy 0
0 0 1/Kgz

δD0x
δD0y
δD0z

 (6)

where δωx, δωy, and δωz are the angular rate errors; Egxz, Egxy, Egyz, Egyx, Egzy, and Egzx
are the installation errors of the gyroscopes; Kgx, Kgy, and Kgz are the scale factors of the
gyroscopes; and δD0x, δD0y, and δD0z are the zero bias errors of the gyroscopes.

Without considering the high-order small error, the equation for the INS attitude errors
caused by the angular rate errors is as follows:δ .

p
δ

.
r
δ

.
A

 =

 0 − 1
RM+h 0

1
RN+h 0 0
tanϕ
RN+h 0 0


δvE
δvN
δvU

−
R11 R12 R13

R21 R22 R23
R31 R32 R33

δωx
δωy
δωz

 (7)

2.2. DVPIO Method

Pigeon-inspired optimization (PIO) is a novel bio-inspired swarm intelligence optimiza-
tion algorithm that was developed by Duan [31] in 2014. The PIO algorithm and its improved
algorithms have been applied to different optimization issues, such as unmanned aerial
vehicle (UAV) formation [32–34]. In this algorithm, by imitating the mechanism by which
pigeons choose to use different navigational tools at different stages of finding a target, two
different operators are proposed: a map and compass operator and a landmark operator.
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Algorithm model of PIO:

Xi = [xi1, xi2, . . . xiD]

Vi = [vi1, vi2, . . . viD]

VNc
i = VNc−1

i e−R·Nc + rand
(

Xgbest − XNc−1
i

) (8)

XNc
i = XNc−1

i + VNc
i (9)

where Xi = [xi1, xi2, . . . xiD] is the position and Vi = [vi1, vi2, . . . viD] is the velocity. The
PIO algorithm updates Vi and Xi according to Equations (11) and (12). R is the map and
compass factor, and the range of values is set from 0 to 1; rand is a random number with a
range of values from 0 to 1; Nc is the current number of iterations; and Xgbest is the global
optimal position obtained by comparing the positions of all pigeons after Nc−1 iteration
cycles.

The comparison of several studies shows that PIO has better global optimization
performance and faster convergence speed than comparable algorithms [31,35].

It is not easy to avoid the local optimum in the later stage, since the cluster optimization
algorithm undergoes random mutation in multiple dimensions simultaneously. Take a
four-dimensional evolution algorithm as an example: Assuming that the optimal position
of theory is [0, 0, 0, 0], a group of better positions [0.5, 0, 0, 0] can be found in the late
iteration, and its fitness value is 0.2. After that, the position randomly generated by a
particle swarm is in a form similar to [0.2, 0.2, −0.1, −0.2], with a fitness value of 0.5.
Position [0.2, 0.2, −0.1, −0.2] is compared with [0.5, 0, 0, 0]; although the precision of the
first dimension value is improved, the precision of the last three dimensions becomes worse,
and the particle swarm is likely to eventually converge to [0.5, 0, 0, 0], so it is difficult to
obtain further optimization.

A method for premature judgment and the self-adaptive mutation of dimension vectors
based on their position is proposed to solve the above problems, which is as follows:

1. Premature judgment based on position:

The judgment value of whether the position is converged is:

DistNc =
∑m

i=1

√
∑D

j=1

(
Xgbestj − XNc

ij

)2

m
(10)

where Xgbestj is the jth dimension of the global optimal position; XNc
ij is the jth dimension

position of the ith particle; m is the number of particles; and D is the number of dimensions.
It can be considered that the particle swarm may appear precocious when DistNc is less
than the threshold Distthreshold.

2. Dimension vectors mutations:

Taking the four-dimensional evolution algorithm as an example, eight dimension
vectors can be defined as follows:

V1 =
[
1 0 0 0

]
× d1p

V2 =
[
−1 0 0 0

]
× d1n

V3 =
[

0 1 0 0
]
× d2p

V4 =
[

0 −1 0 0
]
× d2n

V5 =
[

0 0 1 0
]
× d3p

V6 =
[

0 0 −1 0
]
× d3n

V7 =
[

0 0 0 1
]
× d4p

V8 =
[

0 0 0 −1
]
× d4n

(11)
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where d =

[
d1p d2p
d1n d2n

d3p d4p
d3n d4n

]
is the parameter of variation size; djp, djn(i = 1, 2, 3, 4) > 0

and can be adjusted adaptively. Eight particles with poor fitness are selected for the
following dimension vector variation when it is judged that the position is premature:

XNc
i = Xgbest + Vi( i = 1 ∼ 8) (12)

Other particle positions are updated according to Formula (9).

3. Adaptive adjustment of mutations parameter d:

The fitness flag T = [Tdim1, Tdim2, Tdim3, Tdim4] of the dimension vector is introduced.
This part takes the first dimension as an example for description, and other dimensions are
similar to the first dimension. We assume that the dimension vector mutated according to
Formula (12) is XNc

1 , XNc
2 , and the fitness flag of the minimum optimization problem is Tdim1:

Tdim1(i) =
{
−1, i f fitnessdim1n ≤ fitnessdim1p
1 , i f fitnessdim1n > fitnessdim1p

(13)

where i is the evolutionary algebra; fitnessdim1p is the fitness value of XNc
1 ; and fitnessdim1n

is the fitness value of XNc
2 . The adaptive adjustment strategy of the variation d is:

{
d1p(i) = 0.5d1n(i− 1)
d1n(i) = 2d1n(i− 1)

, i f :Tdim 1(i− 2) = −1, Tdim 1(i− 1) = −1{
d1p(i) = 0.5d1p(i− 1)
d1n(i) = 0.5d1p(i− 1)

, i f : Tdim 1(i− 2) = −1, Tdim 1(i− 1) = 1{
d1p(i) = 2d1p(i− 1)

d1n(i) = 0.5d1p(i− 1)
, i f : Tdim 1(i− 2) = 1, Tdim 1(i− 1) = 1{

d1p(i) = 0.5d1n(i− 1)
d1n(i) = 0.5d1n(i− 1)

, i f :Tdim 1(i− 2) = 1, Tdim 1(i− 1) = −1

(14)

2.3. Identification of INS Sensor Errors Based on DVPIO

Based on the above analysis, the sensor errors of INS can be identified by the DVPIO
method according to the navigation data of drone flights. Navigation data include sensor
pulse data and satellite data, which can be collected and stored by the data acquisition in-
strument. The parameters of particle swarm optimization are the zero bias of the gyroscope
and accelerometer in the horizontal position. The fitness function is the comprehensive
statistical value of the velocity error of pure inertial navigation, in which the velocity error
of pure inertial navigation is the difference between the pure inertial navigation velocity
and the satellite velocity:

f itness = ∑n
t=1 dvt

dvt =
√

δV2
Et + δV2

Nt

(15)

where t is the time point; dvt is the inertial navigation velocity error of INS at time t; δvEt is
the velocity error in the east at time t; δvNt is the velocity error in the north at time t; and
f itness reflects the statistical value of the position error. The objective is to minimise the
fitness function.

The steps of the flow chart are:

1. The initial value of particle swarm is generated randomly, and the fitness function is
calculated to find the global optimum.

2. Calculation process of the fitness function:

• The sensor data collected during the flight compensate for errors according to
the position data of the particle swarm;
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• Obtain the initial parameters of inertial navigation: the initial velocity and po-
sition are obtained from the collected satellite navigation data, and the initial
attitude is obtained from the initial alignment calculation;

• Execute inertial navigation solution and obtain the difference between the veloc-
ity calculated, vi, and the satellite navigation velocity at the time, i, which is the
velocity error, dvI;

• Calculate the fitness function according to Formula (15).

3. Update the particle swarm velocity and position according to Formulas (8) and (9),
and recalculate the fitness function to update the global optimization.

4. Judge whether the particle swarm has started prematurely according to Formula (10);
if not, continue to execute (3). If it has started prematurely, execute (5).

5. The particle swarm is sorted according to its fitness, and natural selection is carried
out. The eight particles with the largest fitness are randomly mutated according to
Formula (12), and the number of mutations is self-adaptively adjusted according to
Formulas (13) and (14).

6. Judge whether the convergence condition is reached. If so, the optimization calculation
ends. If not, go to step 5 to continue the optimization calculation.

3. Results
3.1. Error Effects Results of Inertial Navigation

The INS sensor data are calculated according to Formulas (1)–(3), and the flow shown
in Figure 2. The main parameters of inertial navigation calculation are shown in Table 3.
When the zero bias value of the accelerometer and the zero bias value of the gyro are
accurate, the result of the navigation solution is good, the inertial navigation velocity error
is as shown in Figure 3, and the fitness value is calculated according to Formula (15) is
1.0× 103 When the accelerometer X zero bias, the accelerometer Y zero bias, the gyro X zero
bias, and the gyro Y zero bias have errors δA0x = −2σA, δA0y = 1.5σA, δD0x = 2σD, and
δD0y = −1.5σD (σA = 0.01◦/h, σD = 0.0005 m/s2), respectively. Additionally, the inertial
navigation velocity errors are larger, and their fitness values calculated by Formula (15) are
3.032 × 105, 1.959 × 105, 4.135 × 105, and 3.116 × 105, respectively. The results for these
are shown in Figure 4, Figure 5, Figure 6, and Figure 7, respectively.
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Table 3. Parameters for inertial navigation calculation.

Parameters Value and Unit

Navigation interruption time 10 ms
Initial gravitational acceleration 9.801 m/s2

Initial latitude 40.068◦

Initial longitude 116.246
Initial height 50 m

Angular rate of the earth’s rotation 7.292115147 × 105 rad/s
Long radius of the earth 6378245 m

Align time 10 min
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3.2. Identification Results of INS Sensor Errors Based on DVPIO

In most cases, the INS sensors’ zero bias will change simultaneously over time. When
the accelerometer X, accelerometer Y, gyro X, and gyro Y have zero bias errors of δD0x = 2σD,
δD0y = −1.5σD, δA0x = −2σA, and δA0y = 1.5σA, respectively, the inertial navigation
velocity error will be large, the fitness value will be 8.552 × 105, and the result will be as
shown in Figure 8.
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According to the process shown in Figure 2, GA, PSO, PIO, and DVPIO are used to
identify the sensors zero bias errors δD0x, δD0y, δA0x, and δA0y. The parameters of the EA
algorithm are shown in Table 4, and the results are shown in Figure 9.

Table 4. EA methods and parameters.

EA Methods EA Parameters

GA Number of particles: 20. Iteration steps: 40.
Mating probability: 0.5. Mutation probability: 0.2.

PSO Number of particles: 10. Iteration steps: 40.
W = 0.8, C1 = 2, C2 = 2.

PIO Number of particles: 10. Iteration steps: 40.
R = 0.05, C = 1.

DVPIO Number of particles: 10. Iteration steps: 40.
R = 0.05, C = 1, d = 0.05 (initial value)
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It can be seen from the comparison shown in Figure 9 that:

• The GA, PSO, PIO, and DVPIO methods can all be used to identify sensor errors from
navigation data;

• Compared with the GA, PSO, and PIO methods, the PIO method has a faster conver-
gence speed and a higher accuracy;

• The PIO method can easily fall into the local optimum in the later stage, while the
DVPIO solves the problem of avoiding the local optimum and obtains more precise
results.

3.3. Improve Analytics of DVPIO

During the PIO optimization shown in Figure 2, the position of each dimension of
each particle is as shown in Figure 10, and the position of the global optimal ZBest is as
shown in Figure 11. The particles of PIO begin to converge to [−1.92, 1.80, 2.03, −1.37] in
the 20th generation, but the deviation of the 2nd dimension is still large at this time, and its
deviation value is 0.3. It is difficult to avoid the vicinity of [−1.92, 1.80, 2.03, −1.37] in the
later stage of PIO to obtain a better value.
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Figure 10. PIO particle swarm location distribution in each dimension(Different colors of lines
represent different dimensions).

During the PIO optimization shown in Figure 2, the position of each dimension of
each particle is as shown in Figure 12, and the position of the global optimal ZBest is as
shown in Figure 13. The particle fitness of DVPIO continues to be optimized in the later
stage. The calculation results show that the DVPIO method is more stable and has a higher
accuracy. In the process of DVPIO optimization, a certain dimension vector, such as d2p,
is adaptively adjusted according to the change in fitness based on Formula (14). When
the better dimension vectors of the previous two generations are in the same direction,
the amount of variation is doubled; when the better dimension vectors of the previous
two generations are in the opposite direction, this is considered to be close to the optimal
position, and the amount of variation is reduced accordingly.
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4. Discussion

This paper used the evolutionary algorithms method to identify the sensor errors
according to the flight data of the navigation system (including satellite navigation data and
INS data) to realize the automatic calibration of the INS sensors on the drone. This method
has potential to reduce the need for the disassembly and assembly of the INS and for it to be
returned to the manufacturer for calibration. The results of several evolutionary algorithms
show that the sensor errors can be accurately identified from the navigation data, and the
pigeon-inspired optimization (PIO) has a higher accuracy and convergence speed. Aiming
at the problem of evolutionary algorithms being likely to fall into local optimization in the
later stage, this study analyzed the reasons for this and proposed a DVPIO method based
on the self-adaptive mutation of dimension vectors on the basis of the PIO method. The
calculation results show that the DVPIO method has a faster convergence speed and can
converge to the optimal value more accurately in the later stage.
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Nomenclature

l represents l-frame, the geographic coordinate system
b represents b-frame, the vehicle coordinate system
i represents i-frame, the inertial reference frame
e represents e-frame, the earth coordinate system
rl the vector of latitude, longitude, and altitude of the l-frame

Rl
b

the conversion matrix from b-frame to l-frame;
Rij(i = 1, 2, 3, j = 1, 2, 3) is its constituent element

Ωl
el

an antisymmetric matrix of the angular rate vector that is expressed
in the l-frame, where the angular rate vector is a vector for the
l-frame relative to the e-frame

fb the specific force of b-frame
vE, vN, vU the velocity in the east, north, and up directions, respectively
fE, fN, fU the specific forces in the east, north, and up directions, respectively
gl the gravitational acceleration of the l-frame
h, ϕ the height and the latitude

RM, RN
the radius of meridional section and the radius of curvature
in the prime vertica

ω(ωb
lb)

an angular rate vector expressed in the b-frame, where the angular
rate vector is a vector for the l-frame relative to the b-frame

ωx,ωy,ωz the coordinate component ofω
q =

[
q0 q1 q2 q3

]′ the quaternion of rotation
δfx, δfy, δfz the carrier specific force errors
δvE, δvN, δvU the velocity errors in the east, north, and up directions, respectively

δp, δr, δA
the pitch angle error, roll angle error, and azimuth angle error,
respectively

δωx, δωy, δωz the angular rate errors
δA0x, δA0y, δA0z the zero bias errors of the accelerometers
δD0x, δD0y, δD0z the zero bias errors of the gyroscopes
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Eaxz, Eaxy, Eayz, Eayx, Eazy, Eazx
the installation errors of the accelerometers, where Eaxz means
the installation error of the z accelerometer relative to the x axis

Egxz, Egxy, Egyz, Egyx, Egzy, Egzx
the installation errors of the gyroscopes, where Egxz means the
installation error of the z gyroscope relative to the x axis

Kax, Kay, Kaz the scale factors of the accelerometers
Kgx, Kgy, Kgz the scale factors of the gyroscopes
Xi = [xi1, xi2, . . . xiD] the position of the particle swarm
Vi = [vi1, vi2, . . . viD] the velocity of the particle swarm
Nc the number of iterations
Xgbest the global optimal position of the particle swarm
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