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A B S T R A C T   

The flexible operation capacity of ultra-supercritical (USC) unit under full operating conditions must be pro-
moted to adapt a larger-scale renewable energy integrated into the power grid. To this end, a flexible operation 
method fusing the error-based ADRC and fast pigeon-inspired optimizer is designed and employed to USC unit to 
achieve deep peak shaving and rapid load regulation. Firstly, the urgency of the proposed method is illustrated 
via analyzing the control difficulties of USC unit under flexibility requirements. Then, the error-based ADRC 
scheme which adopts a broader sense of disturbances in control loops is formulated for USC unit. Thanks to the 
error-based ADRC, all the unknown uncertainties in unit are precisely estimated and compensated in real-time 
which is conducive to its precise load regulation. Furthermore, the fast pigeon-inspired optimizer combined 
with the two-stage optimization and bi-quantum parallel search is used to attain the optimal parameters of error- 
based ADRC. A multi-criteria optimization function composes the load tracking error and smoothness of 
manipulated variable is established to guide the unit to flexible operation. The integrated control scheme 
effectively blends the features of rapid load tracking, exactly disturbance rejection and fast parameters tuning. 
Finally, the effectiveness of the proposed controller is successfully confirmed based on a 1000 MW USC unit. The 
simulation results reveal that the flexible operation capacity of USC unit under full operating conditions is 
promoted by the error-based ADRC approach. The average load tracking error of unit is reduced from 4.22 MW to 
2.45 MW, and the settling time is simultaneously shortened from 188.52s to 158.80s compared to the ADRC 
method. Hence, the integrated error-based ADRC method provides a practical reference for the flexibility 
improvement of 1000 MW USC unit under full operating conditions.   

1. Introduction 

The large-scale application of renewable energy sources requires the 
thermal power unit to improve its operational flexibility to enhance the 
stability of the power grid [1–3]. Recently, the ultra-supercritical (USC) 
unit with high-temperature and high-pressure steam has become the 
main force in thermal power unit due to its high thermal efficiency and 
environmental friendliness [4,5]. Therefore, to accelerate the trans-
formation of the low-carbon power system, the flexible operation ca-
pacity of USC unit under full operating conditions must be promoted. 

The operational flexibility of USC unit refers to the ability to fast 
change output power in an affordable way for external load demand. In 
other words, the flexibility grade of USC unit depends on its deep peak 

shaving capability and load ramping rate [6,7]. The deep peak shaving 
ability represents how much space the USC unit can provide for the 
renewable energy resources in power grid. However, it is not easy for the 
conventional USC unit to achieve the flexible operation under full 
operating conditions. On one hand, the peak shaving capacity of USC 
unit is limited by the minimum stable firing rate of one-through boiler 
[8]. The pressure and temperature of the working medium in boiler 
fluctuate frequently when unit operating at a lower 35% rated load. 
Then, exorbitant steam temperature resulted by the excessive load 
ramping rate will cause device damagement. Various measures such as 
the control system upgrade, materials development and stable com-
bustion technology at ultra-low rated load should be employed to ensure 
the operational safety of once-through boiler. On the other hand, due to 
the lack of drum in USC unit the load response speed is reduced and the 
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load disturbance is increased. Frequent load fluctuations have exceeded 
the inherent regulation ability of the traditional USC unit which is not 
beneficial for its flexible operation under full operating conditions. 
Thus, flexibility renovations on USC unit are urgent. 

With the flexible operation of supercritical coal-fired power unit 
becoming a research hotspot, achievements emerge in large numbers. 
They mainly focus on these four aspects, namely the modeling methods 
and devices materials development of once-through boiler, steam 
extraction and energy storage from steam turbine, the upgrading of 
coordinated control system and the cooperation of unit with renewable 
energy generation. In modeling, a fuzzy neural network modeling 
scheme combined with the fuzzy rules, k-means++ and supervised 
adaptive gradient descent algorithms was used to establish the model of 
1000 MW USC unit to meet the operational stability requirements. The 
satisfactory modeling accuracy of the proposed algorithm was 
confirmed by simulation results [9]. To investigate the dynamics of the 
supercritical unit, a flexible modeling method integrated by T-S fuzzy 
modeling, automatic clustering and adaptive moth-flame optimization 
was put forward. The established model revealed the ideal identification 
precision within [30%BRL, 100%BRL]. Nevertheless, the covered load 
range still need to be enlarged [10]. Additionally, a multiple-process 
model optimized by the gray wolf optimizer was constructed for a 
cleaner supercritical power unit. That model covered all processes from 
ultra-low rated load to the maximum boiler continuous rating then to 
shutdown which laid a good foundation for the flexible operation of unit 
[11]. However, more comparisons were required to validate the pa-
rameters optimization performance of the gray wolf algorithm. To 
achieve the flexible and economic operation of a 660 MW direct 
air-cooling coal-fired power unit, the carbon capture was introduced and 
then a dynamic modeling of unit was presented. Results showed that the 
minimum power load of the unit was reduced by 44 MW and the 
ramping speed was improved by 3.75 MW min− 1 [12]. A 
distributed-parameter model which made it possible to simulate the 
power boiler operation in the conditions of rapid load variations was 
proposed. Then, model suitability was successfully confirmed by various 
analyses [13]. However, the above-mentioned models were usually 
accompanied by enormous calculations and high-cost which is not 
conducive to industrial extension. Moreover, finding a new material that 
can withstand high-temperature and high-pressure to reform the devices 
in once-through boiler is also instrumental in the deep peak shaving 
capability promotion. Nanomaterial manufactured and used at a very 
small scale but with positive electrical and mechanical properties is 
considered as potential industrial application including oil refineries, 
petrochemical industries and buildings [14]. The latest research results 
revealed that the addition of Li2SO4 had positive effect on the thermal 
stability of polyvinyl alcohol-carbon based nanotubes based thin film 
composites [15]. Besides, the structural and dielectric properties of 
nanosized crystal X-type hexagonal ferrites could be tuned by the vari-
ations of Co and Zn [16]. These successful nanomaterials attempts 

provided effective references for improving the deep peak shaving 
ability of boiler from material transformation. Nevertheless, new 
nanocomposites that can balance the mechanical, thermal stability, 
electrical and environmentally friendly properties still need to be 
developed [17]. Furthermore, the steam extraction renovation of steam 
turbine is an efficient way for unit to quickly change the output power. 
For the load flexibility improvement of power unit, a load regulation 
method based on the multi-scale energy storage utilization and combi-
nation of extraction throttling and feedwater bypass throttling was 
proposed. The flexible load regulation under different load command 
conditions was proved by results [18]. However, the energy storage 
characteristics of different feedwater heaters should be further analyzed. 
Furthermore, the condensate throttling strategy was also beneficial to 
the flexible operation of a 600 MW supercritical pure condensing unit 
[19] and a 350 MW cogeneration unit [20]. Five different measures were 
introduced to regulate the extraction steam of high-pressure heaters in a 
660 MW supercritical coal-fired unit for operational flexibility. The 
thermal storage was validated as a feasible solution for the flexibility 
enhancement of unit [21]. Nevertheless, the control strategies and other 
influencing factors were not considered in the operational flexibility 
evaluation of the coal-fired unit. Then, an improved control model 
considering heat storage changes was presented for the flexible opera-
tion of double-reheat power unit. The load response speed of unit had 
been increased with the improved controller [22]. Additionally, the heat 
storage tank, electric boiler, high pressure-low pressure bypass heating 
[23] as well as the high back-pressure and the low-pressure turbine zero 
power output renovations [24] were successfully used to promote the 
peak shaving capacity of the cogeneration unit. Whereas, the valve 
safety was ignored in the regulation process of extraction steam. Besides, 
the energy storage technologies had not come to the industrial extension 
stage. Next, an integrated generation scheme combined with the power 
plant and solar thermal power was given to boost the unit to undertake 
peak-shaving tasks. The maximum load cycling rate of the 660 MW 
solar-aided coal-fired power unit was increased from 3.3 MW min− 1 to 
13.2/13.2/9.9 MW min− 1 under sunny/light cloud cover/strong cloud 
cover cases, respectively [25]. Whereas, the coordinated control system 
matched with the integrated power generation technology still need to 
be investigated. Significantly, the coordinated control system upgrading 
which has a positive effect on the rapid flexibility promotion of power 
unit is favored by researchers due to its climate independence and 
low-cost. To enhance the coordinated control performance of a 1000 
MW USC unit in flexible-operation mode, a novel nonlinear model 
predictive control approach combined with the input convex neural 
network was proposed. Results demonstrated that the fast and stable 
load tracking capacity of USC unit was obtained based on the improved 
control method [26]. The issue of reheat steam over temperature has 
limited the load ramping rate of the double-reheat USC unit. To solve 
this problem, a new coordinated control strategy assisted by 
high-pressure extraction steam throttling was presented and verified in 

Nomenclature 

Acronyms 
ADRC active disturbance rejection control 
EADRC error-based active disturbance rejection control 
USC ultra-supercritical 
T-S Takagi-Sugeno 
PSO particle swarm optimization 
PIO pigeon-inspired optimization 
BQPIO bi-quantum pigeon-inspired optimization 
ABC artificial bee colony 
EPO emperor penguin optimization 
AGC automatic generation control 

ESO extended state observer 
ωo observer bandwidth 
ωc controller bandwidth 
b0 input gain of controller 
uB coal feeding rate (t/h) 
μT position of main steam valve (t/h) 
uW water feeding rate (t/h) 
N active power (MW) 
PT main steam pressure (MPa) 
T intermediate point temperature (◦C) 
RBL boiler rated load 
RCM load ramping rate  
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the flexible operation of unit [27]. However, the throttling loss was not 
taken into account which influences the operational economy of unit. 
Besides, an optimal control strategy integrated the stair-like predictive 
control, feedforward and decoupling control concepts was utilized to 
guarantee the operational flexibility, stability and economy of USC unit. 
Experiments showed its effectiveness but depended on the traditional 
control experience [28]. The load tracking capability of a drum boiler 
unit which considered the energy demand decoupling was effectively 
promoted by the generalized predictive control algorithm [29]. Addi-
tionally, both the energy-saving efficiency and control performance of a 
1000 MW USC unit were enhanced via the energy-saving predictive 
control scheme [30]. Rapid and stable load response was acquired by the 
USC unit thanks to the affine nonlinear control method when fast load 
variations and frequency disturbances existed in power grid [31]. 
Nevertheless, how to make use of the above-mentioned complex or 
nonlinear control algorithms in the actual power generation process is 
still a significant problem to be solved. Especially, there are few existing 
solutions that can realize the flexible operation of 1000 MW USC unit 
under full operating conditions. Under these circumstances, the 
error-based active disturbance rejection control (EADRC) technology 
with remarkable control performance and industrial practicability is 
created and developed commendably. The EADRC has been proved to be 
a replacement for the industrial PID. Hence, a practical EADRC scheme 
is necessary for the flexible operation of USC unit under full operating 
conditions. 

EADRC is an advanced control algorithm that commendably inherits 
and develops the prominent estimation and disturbance rejection per-
formance as well as the strong robustness of traditional linear active 
disturbance rejection control (ADRC) [32–34]. With the gains of EADRC 
are bandwidthized, the parameters tuning problem is simplified. That 
effectively improves its industrial applicability [35,36]. Particularly, by 
directly regulating the error dynamics of closed loop in real-time, 
EADRC can efficiently deal with high-frequency uncertainties without 
the higher-order time-derivative of reference input. Additionally, 
EADRC enables a magnitude and/or rate limitation of the control signal 
as well as bumpless changes with the industrial controller. Based upon 
that, the EADRC with a fixed 1- degree-of freedom structure and model 
independence realizes a leap from theoretical research to engineering 
practice. A multi-agent EADRC scheme was effectively employed to 
enhance the flexible operation capacity of supercritical cogeneration 
unit. However, the stability of the reinforcement learning algorithm was 
hard to ensure that impacted the stable control performance of 
boiler-turbine unit [37]. In Ref. [38], the EADRC approach was suc-
cessfully applied for pitch control of variable speed wind turbine to track 
the power reference on a 1.5 MW FAST simulator. To obtain the constant 
power generation of photovoltaics, the EADRC technology was used to 
improve the maximum power point tracking performance. Simulations 
demonstrated the capability of EADRC strategy in reference power 
tracking with a tracking error of 0.21% and settling time of 0.019s [39]. 
The flexible load control of coal-fired unit [40] and nuclear cogeneration 
unit [41] was achieved by the ADRC. However, the gains tuning by 
manual was time-consuming. The EADRC, feedforward and 
feedback-type disturbance observer were combined to constitute a hi-
erarchical anti-disturbance control method and applied to the motion 
control of piezo-actuated nano positioner. The superior control perfor-
mance of the proposed controller was confirmed [42]. An EADRC 
approach was designed to accomplish the trajectory tracking task, re-
sults verified its excellent tracking performance in vibration suppression 
[43]. The above effective applications adequately illustrated the 
extraordinary response speed, disturbance rejection ability and indus-
trial practicability of EADRC. Against this background, employing the 
EADRC strategy to improve the deep peak shaving and rapid load 
regulation capacities of USC unit devoted to the flexible operation under 
full operating conditions is practical and forward-looking. 

Parameters selections of EADRC play a key role on its control per-
formance. In practice, the parameters of controllers are usually tuned by 

manual which is inefficient and time-consuming. Thus, an intelligent 
and convenient scheme for automatic parameter acquisition should be 
investigated. Swarm intelligent algorithms with the advantages of sim-
ple principle, extensive and accurate search ability are popular in the 
optimization field [44,45]. The quantum simultaneous whale optimi-
zation algorithm [46] was employed to minimize the operating costs in 
the energy field. Significant cost reduction was obtained by experiments. 
The particle swarm optimization (PSO) algorithm exhibited well in the 
efficient parameters extraction of photovoltaic models [47]. A hybrid 
artificial bee colony differential evolution optimizer was developed to 
accurately estimate the optimum parameters of the proton exchange 
membrane fuel cells model to reach accurate current/voltage curves 
[48]. However, the universality and convergence speed of the 
above-mentioned swarm intelligent algorithms had not been fully con-
cerned. To this end, a novel two-stage optimization algorithm namely 
pigeon-inspired optimization (PIO) was proposed [49]. Inspired by the 
homing behavior of pigeons, the map and compass operator and the 
landmark operator constitute the two optimization stages of the PIO 
algorithm [50]. The PIO algorithm had been extensively applied because 
of its strong exploration and exploitation ability. The enhanced PIO al-
gorithm with Taguchi method was presented to extract the optimal 
parameters of photovoltaic modules for maximum power point tracking 
and control. A stable maximum power tracking value at 5.15 × 103 W 
was achieved under 100% light, 80%, 60%, 40% and 20% by experi-
mental calculations [51]. It is noted that the dimension setting and the 
orthogonal tables construction in Taguchi method still needs to be 
focused. Besides, the superiorities of hierarchical PIO [52] in the 
parameter estimation of maximum power point tracking method for 
photovoltaic systems were also verified. The multi-strategy PIO [53] and 
modified PIO [54] were also successfully employed to optimize the 
parameters of ADRC in unmanned aerial vehicles and mobile robots, 
respectively. Nevertheless, the convergence rate of the above improved 
PIO algorithm had become one of the most important factors restricting 
its application in practical optimization problems. For flexibility pro-
motion, the optimal parameters of the fuzzy model of cogeneration unit 
under different heat-power coupling technologies were quickly attained 
by the bi-quantum pigeon-inspired optimization (BQPIO) algorithm 
[55]. It follows that the novel BQPIO algorithm is an extremely effective 
solver in the optimal parameter extraction of process model for power 
unit. 

The motivation of this paper is to propose the practical EADRC 
scheme for the operational flexibility promotion of 1000 MW USC unit 
under full operating conditions. Wherein, the parameters choices of 
EADRC play a vital role in the load tracking performance of the USC 
unit. Besides, there are few applications of the BQPIO algorithm in the 
parameters optimization of EADRC, and its enough potential worth to be 
tapped. Consequently, further investigating the convergence speed and 
search precision of the BQPIO algorithm to quickly obtain the optimal 
parameters of EADRC can facilitate the flexible operation of USC unit. 

To sum up, a practical EADRC scheme is constructed and employed 
to enhance the flexible operation capacity of 1000 MW USC unit under 
full operating conditions. The main contributions of this paper can be 
summarized as follows.  

1) An industrially practical EADRC solution is presented for the flexible 
operation issue of a 1000 MW USC unit. In EADRC framework, all the 
unknown uncertainties include unmodeled dynamics and coal 
quality variations are intensively estimated and compensated in real- 
time which contributes to the flexible operation of USC unit.  

2) The load tracking accuracy and smoothness of manipulate variables 
are considered in the multi-criteria objective function. Then, the fast 
BQPIO algorithm with desired industrial computing speed is used to 
obtain the optimal parameters of EADRC by minimizing the objective 
function. The transparent parameter optimization process enables 
the control performance of USC unit can always meet the flexibility 
requirements. 
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3) Based on the actual on-site data of 1000 MW USC unit, the effec-
tiveness of the presented EADRC scheme is proved via comparative 
simulation experiments. Corresponding results indicate the ideal 
flexible operation capacity of USC unit under the wide load range 
from 30% BRL to 90% BRL. 

The rest of this paper is organized as follows: in Section 2, the flex-
ibility requirements of 1000 MW USC unit under full operating condi-
tions are described. Afterwards, the details of the flexible EADRC 
approach, multi-criterion optimization objective and BQPIO algorithm 
are proposed in Section 3. Then, the simulation tests and evaluations on 
the rapid load regulation ability of the 1000 MW USC unit are illustrated 
in Section 4 to verify its operational flexibility under full operating 
conditions. Finally, conclusions and future research directions are dis-
cussed in Section 5. 

2. Flexibility of the 1000 MW USC unit 

2.1. Description of USC unit 

The structural schematic diagram of 1000 MW USC unit and its 
simplified model is exhibited in Fig. 1. It can be seen that USC unit can 
be regarded as a huge and complex thermodynamic system consisted by 
two major subsystems namely the once-through boiler and steam tur-
bine. Besides, the heat recovery system is used to supplement the boiler 
and turbine. The once-through boiler provides the heat for working 
medium by burning the coal. The heat is converted into mechanical 
energy in steam turbine and then to the electricity. Ulteriorly, the 
working process of the 1000 MW USC can be simply described as fol-
lows. Firstly, the feed water is heated in combustor with the energy from 
coal combustion and then passes through the water wall, separator and 
superheaters finally turned into the main steam. Afterwards, the high- 
temperature and high-pressure steam flows into the steam turbine to 

drive the generator to produce electricity. In the end, the exhaust steam 
is condensed, deoxidized and heated in the heat recovery system and 
flows the economizer finally becomes the feed water for boiler. The 
multistage utilization of energy brings high thermal efficiency to the 
USC unit. 

In summary, the shape and dynamic characteristics of working me-
dium in once-through boiler are complicated and changeable. Consid-
ering the most significant factors in operating process and the 
convenience of controller designing, the USC unit can be simplified as a 
three-input three-output system illustrated in Fig. 1. The coal feeding 
rate (uB, t/h), position of main steam valve (μT, %) and water feeding 
rate (uW, t/h) are regarded as the input variables. The three output 
variables are active power (N, MW), main steam pressure (PT, MPa) and 
intermediate point temperature (T, ◦C). 

2.2. Flexibility requirements 

Promoting the deep peak shaving and rapid load regulation abilities 
are the two main effective ways to achieve the flexible operation of USC 
unit under full operating conditions. To this end, a smaller load tracking 
error and shorter settling time are desired for USC unit during the load 
regulation. Besides, it is necessary for the USC unit to maintain the 
distinguished disturbance rejection performance, stable main steam 
pressure and intermediate point temperature. Meanwhile, smooth po-
sition of the main steam valve, coal feeding rate and water feeding rate 
are required to ensure the operational economy and safety of unit. 
However, restricted by the minimum steady burning rate of once- 
through boiler, a load ramping rate higher than 2.5% MCR/min is 
hard for the traditional USC unit to achieve when operating at a lower 
35% rated load. Consequently, employing the practical EADRC tech-
nology to upgrade the control performance of USC unit for above- 
mentioned requirements attainment is benefit to the flexible operation 
under full operating conditions. 

Fig. 1. Structural schematic diagram and corresponding simplified model of the 1000 MW USC unit.  
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3. Proposed flexible operation approach fusing the EADRC and 
BQPIO algorithm 

The designing of the flexible EADRC approach shown in Fig. 2 for the 
USC unit contains two steps. First of all, EADRC1, EADRC2 and EADRC3 
are assigned for the active power, main steam pressure and intermediate 
point temperature channels of USC unit, respectively. Afterwards, the 
fast BQPIO algorithm is used to automatically obtain the optimal pa-
rameters of EADRC. In EADRC, all the unknown uncertainties in the USC 
unit are regarded as a total disturbance. When appropriate parameters 
are selected for EADRC, the total disturbance is exactly estimated by 

extended state observer (ESO) in real-time and then compensated by the 
state feedback control. Under these circumstances, the control perfor-
mance of USC unit regulated by the flexible EADRC scheme can always 
meet the flexibility requirements. 

3.1. Essentials of EADRC approach 

With the rapid development of advanced control strategies, the 
control performance is not the only index to evaluate the effectiveness of 
a control strategy in actual industrial process. The industrial practica-
bility of controller is important as well. Accordingly, the EADRC strategy 

Fig. 2. Framework of the flexible EADRC approach for the 1000 MW USC unit.  
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which reaches a reasonable trade-off between the control performance 
and facilitation is instrumental in the operational flexibility improve-
ment of USC unit under wide-load range. The EADRC1 for active power 
channel of USC unit is taken as an example to describe the principle of 
EADRC, others are similar. 

Generally, the power generation process can be described as a 
second-order controlled process: 

N̈ = g(t, ⋅ ⋅ ⋅ , ud1) + buB (1)  

Where N̈ stands for the second-order derivative of active power in USC 
unit. g is the synthesis function of time variation t, external disturbance 
ud1 caused by the variation of environment and coal quality, etc. b∕=0 is 
the high frequency uncertainties in USC unit. The estimation of b is 
noted as b0. Define the total disturbance f as f = g+ (b − b0)uB, 
including the unknown external disturbance and internal dynamics. The 
estimation of f is denoted as f *. 

The state variable matrix ρ = [ρ1 ρ2 ρ3] = [e1 ė1 f∗] is chosen in the 
designing of second-order Luenberger ESO in EADRC1. ρ3 = f * is added 
as the expanded state of ESO. Then, the load tracking error of USC unit 
and its derivatives are defined as follows: 

e1 = Ns − N = ρ1
ė1 = Ṅs − Ṅ = ρ̇1 = ρ2
ë1 1 = N̈s − N̈ = ρ̈1 = ρ̇2 = N̈s − f − b0⋅uB

(2)  

Where Ns is the load demand from AGC. Evidently, the EADRC has a 1- 
degree-of freedom structure. The expansion state of Eq. (2) can be 
rewritten as: 
⎧
⎨

⎩

ρ̇1 = ρ2
ρ̇2 = ρ3 − b0⋅uB

ρ̇3 = ḟ
∗

(3)  

Where ḟ
∗
= N

…
S − ḟ . It’s assumed here that f∗ is time-differentiable and ḟ

∗

is bounded. For the above system expressed in error-based form, the 
corresponding second-order ESO considered its model and assumed 
polynomial-type disturbance model can be formulated as: 
⎧
⎨

⎩

ż1 = z2 + l1⋅e1
ż2 = z3 − b0⋅uB + l2⋅e1
ż3 = l3⋅e1

(4)  

Where l = [l1 l2 l 3] is the pending gains of ESO. z1, z2 and z3 are the 
outputs of ESO. The load tracking error e1and total disturbance f can be 
accurately estimated in real-time by ESO when the gains are appropri-
ately set. Then, the state feedback control law is presented as a PD 
control law for USC unit to precisely response to the load demand NS. 

uB =
k0⋅z1 + k1⋅z2 + z3

b0
(5) 

According to the stability analysis of EADRC, the choices of gains are 
as follows: k1 = 2ωc, l1 = 3ωo‒k1, k0 = ω2

c ,l2 = 3ω2
o − l1k1,l3 = ω3

o . Here, 
the ωc and ωo are the bandwidths of controller and observer, respec-
tively. The larger observer bandwidth ωo, the better the tracking per-
formance of the extended states is. Then, the total disturbance including 
the high-frequency perturbations can be estimated and compensated 
more precisely by the controller. However, the increasing ωo will lead to 
the amplifying of measurement noise. On the other hand, the parameters 
tuning problem of EADRC is greatly simplified by placing all the poles of 
controller at the same location -ωc. Stable control performance at lower- 
frequency can be improved by enlarging the desired controller band-
width ωc. Therefore, the tunings of ωc and ωo is a trade-off among the 
tracking performance, robustness and measurement noise sensitivity of 
EADRC in practice. The observer bandwidth ωo is always wider than the 
controller bandwidth ωc. A good rule of thumb is that ωo ≈ 3 ∼ 5ωc [56]. 
An appropriate value must be arranged for b0 according to the system 
since it scales the entire feedback control law thus significantly 

influencing the tracking performance of controller. Based on the above 
theoretical derivation, the structure of second-order EADRC is illus-
trated in Fig. 3. The EADRC in the three output channels of USC unit has 
the same structure. 

3.2. Parameters optimization problem of EADRC 

To sum up, prominent control performance of EADRC strategy can be 
attained when its parameters ωc, ωo and b0 are assigned with appropriate 
values. To satisfy the flexibility demands of USC unit under full oper-
ating conditions, J is chosen as the total objective function in the load 
response process. The optimization ranges of parameters are selected 
according to the empirical method. Thus, the EADRC parameters opti-
mization problem is formulated as 

Min J
(
Pk

i

)
=

∫ Tmax

0
(w1|e(t)| + w2|u̇(t)|)dt

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|e(t)| =
∑3

s=1
|es(t)|

|u̇(t)| =
∑3

s=1
|u̇s(t)|

300 MW ≤ N ≤ 1000 MW

65 t/h ≤ uB ≤ 390 t/h

750 t/h ≤ uW ≤ 2500 t/h

μT ∈

{
[35%, 75%], sliding pressure mode

[75%, 95%], constant pressure mode

|u̇(t)| ∈ (0, 0.1NS]

0.05 ≤ b0s ≤ 50

0.05 ≤ ωos ≤ 50 s = 1, 2, 3.

0.05 ≤ ωcs ≤ 50

(6)  

Where Pk
i is the parameters matrix of EADRC scheme that is symbolized 

by the i-th individual in k-th iteration in the BQPIO algorithm. u̇(t)
represents the smoothness of the manipulated variables in the USC unit 
during the load regulation process. The tracking error is noted as es(t). w1 
and w2 are the weight factors of sub-objective functions in the load 
response process. Tmax is the maximum value of sampling time. 

3.3. The two-stage BQPIO algorithm 

The BQPIO algorithm mainly contains four improvements that 
contribute to the remarkable search accuracy and convergence speed, 
namely the two-stage optimization, bi-quantum population, parallel 
optimization and chaotic mapping. The two-stage optimization and 
chaotic mapping bring out the remarkable search precision of BQPIO 
algorithm by effectively avoiding the pigeons falling into the local 
optimal solution. Besides, the bi-quantum population and parallel 
optimization characteristics of the BQPIO algorithm accelerate the pi-
geons approach to the global optimal solution. Then, considering the 
important influence of parameter selections on the control performance 
of EADRC, the BQPIO algorithm is used to quickly obtain the optimal 
parameters of EADRC scheme to achieve the flexible operation of USC 
unit covered wide-load range. The two-stage homing behavior consisted 
by map and compass navigation and landmark navigation enabling pi-

Fig. 3. Structure of the second-order EADRC1.  
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geons to fast find their nest. In the initial stage of pigeons’ homing, the 
individual with the minimum fitness will be considered as the initial 
position of the pigeon nest. Then, other individuals approach to the 
pigeon nest. Each individuals of pigeon groups represents a parameter 
matrix of EADRC. The global optimal individual is selected as the 
location of the pigeon nest which is also the optimal parameters of 
EADRC. The details of the BQPIO algorithm are described as follows. 

Step 1. Two opposite sequences [-1,0] and [0,1] are used to initialize 
the individuals in two populations A and B respectively. Thus, in-
dividuals can traverse the solution space of [-1,1] to search for precise 
solution. 

Gj(i+ 1)=φ ⋅ Gj(i)⋅[1 − Gj(i)
]
(i= 1, 2, ⋅ ⋅ ⋅ ,M; j= 1, 2) (7)  

Where φ is selected as 4. All individuals are in the state of complete 
chaotic. G1(1), G2(1)∈rand(-1,0), M is the population size. 

Based on the logistic chaotic sequence Eq. (7), the positions of in-
dividuals in two populations are initialized: 

Pj
i(0)=Pmin +Gj(i)⋅

(
Pmax − Pmin) (i= 1, 2, ⋅ ⋅ ⋅ ,M; j= 1, 2) (8)  

where Pj
i(0) is the initial position of i-th individual in the j-th pigeon 

population. Pmax and Pmin are the upper and lower borders of the search 
range, respectively. 

Step 2. Above two populations are merged and then divided it into two 
populations with equal number of individuals by random grouping. 
Fitness of all individuals are calculated to obtain the current global 
optimal solution PBest. The optimal solutions AgBest and BgBest of pi-
geon groups A and B are compared, the one with smaller fitness is 
selected as the current global optimal solution PBest. 

Step 3. Enter the map and compass operator navigation stage. The 
maximum iteration number of the map and compass operator is set to 
K1. Updating the positions of individuals based on PBest and quantum 
wave function ln (1/φ):   

τ =
0.5⋅(k − K1)

K1
+ 0.5

R =
η1⋅Pj pbest

i (k) + η2⋅PBest
η1 + η2

(10)  

Where k is the current number of iteration. φ∈(0,1), η1, η2∈rand (0,1). 
The average value of position vector of all individuals in the j-th pigeon 
group is noted as Pj

mbest. The Pj− pbest
i stands for the local optimal position 

of i-th individual in the j-th pigeon group. 

Step 4. Compute the fitness of new individuals and update the local 
optimal solution. The individual with the smallest fitness is retained as 

the local optimal solution. Then, the local optimal solution is chaotic 
mapped to generate the new individuals Pj− Cnew

i . The fitness of the new 
individuals are calculated and the local optimal solution is updated. 

Pj− Cnew
i (k) =

(
PBest+Gj(i+ 1)

) /
2 (11) 

Finally, AgBest and BgBest are compared, and the one with smaller 
fitness is reserved as the local optimal solution PBest of this iteration. 

Step 5. Judge whether the current iteration has reached the maximum 
iteration number of the map and compass operator. If so, the PBest is 
regarded as the current global optimal solution gBest, then continue to 
next step. Otherwise, return to step 3. 

Step 6. Enter the landmark operator navigation stage. The maximum 
iteration number of landmark operator is set as K2. Individuals are ar-
ranged from small to large based on their fitnesses. Then, according to 
the elite retention strategy, the individuals with small fitness in the first 
half of the population are retained, and the second half was abandoned 
according to the elite retention strategy. Both the number of retained 
individuals in two populations are: 

Mk =

{
Mk/2,Mk = 2i

(Mk + 1)/2,Mk = 2i − 1 (i= 1, 2,⋯,M) (12)  

Where k∈[K1+1, K1+ K2],Mk is the population size of current pigeon 
groups and its initial value is M. 

Step 7. The location of landmark is calculated by Eq. (13), and the 
retained individuals are guided to the nest: 

Pj
center(k)=

∑Mk

i=1
Pj

i(k)⋅J
[
Pj

i(k)
]

Mk
∑Mk

i=1
J
[
Pj

i(k)
]

(k=K1 + 1,⋯,K1 +K2; j= 1, 2) (13)  

Pj
i(k+ 1)=Pj

i(k)+ θ⋅
[
Pj

center(k) − Pj
i(k)

]
(i= 1, 2,⋯,Mk; j= 1, 2) (14)  

Where θ∈(0, 1), Pj
centre stands for the center of j-th pigeon group. 

Step 8. The learning factor ℓ is introduced to guide the individuals 
approach to the optimal solution. Then, make greedy choice between the 
new position vectors and originals according to their fitness values.   

Pj
i(k+ 1)=

{
Pj Lnew

i (k), J
[
Pj Lnew

i (k)
]
< J

[
Pj

i(k)
]

Pj
i(k), J

[
Pj Lnew

i (k)
]
≥ J

[
Pj

i(k)
] (16)  

Where Pj− Lnew
i (k) is the new position vector of k-th iteration. γ, ϖ∈(0, 1). 

Step 9. Calculate the fitness of the updated individuals and update the 

Pj
i(k+ 1)=

{
R + τ⋅

⃒
⃒Pj

mbest(k) − Pj
i(k)

⃒
⃒⋅ln(1/φ),φ > 0.3

R − τ⋅
⃒
⃒Pj

mbest(k) − Pj
i(k)

⃒
⃒⋅ln(1/φ),φ ≤ 0.3

(i= 1, 2,⋯,M; k= 1, 2,⋯,K1; j= 1, 2) (9)   

Pj Lnew
i (k) = Pj

i(k) + γ⋅
[
PBest − l ⋅Pj

mbest(k)
]
(i = 1, 2,⋯,Mk; k = K1 + 1,⋯,K1 + K2; j = 1, 2)

l = round(1 + ϖ)
(15)   
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AgBest and BgBest. Finally, the global optimal solutions AgBest and 
BgBest of populations A and B are compared, the one with the smaller 
fitness is regarded as the global optimal solution PBest in current 
iteration. 

Step 10. Judge whether the current iteration number has reached the 
maximum iteration number of the landmark operator stage. If so, the 
PBest is regarded as the global optimal solution gBest of the whole 
optimization process. Then, the gBest is returned to the EADRC frame-
work as optimal parameters matrix. Otherwise, return to step 6. 

Correspondingly, the two-stage optimization, parallel search of bi- 
quantum population, elite retention strategy based on the halving pi-
geon population and the elite learning mechanism make the BQPIO 
achieve the accurate and fast optimization performance. The Pseudo 
code of the BQPIO algorithm is exhibited in Algorithm 1. 

Algorithm 1. BQPIO 
Start. 
Initializations of population size M, search dimension DP, map and 

compass operator maximum iteration number K1, landmark operator 
maximum iteration number K2, search range [Pmin, Pmax], pigeon pop-
ulations A and B, local optimal solution AgBest and BgBest in pop-
ulations A and B, current global optimal solution PBest. 

While (k ≤ K1) 
For j = 1: 2 
For i = 1: M 
Update Pj

i(k+1) by Eq. (9). 
if Pj

i(k+1) > Pmax 

Update Pj
i(k+1) by Eq. (8). 

end 
if Pj

i(k+1) < Pmin 

Update Pj
i(k+1) by Eq. (8). 

end 
end 
end. 
Fitness calculation and update Pj pbest

i (k) and Pj
mbest, fitness calcula-

tion of the new individual Pj− Cnew
i generated in chaotic mapping via Eq. 

(11), obtain the current global optimal solution PBest. 
end while. 
While (K1 + 1≤k≤ K2) 
Pigeons are sorted from small to large according to their fitness and 

the individuals with lower fitness are retained. The number of retained 
pigeons Mk is computed by Eq. (12). Then, calculating the landmark 
location Pj

center(k) of pigeons via Eq. (13). 
For j = 1: 2 
For i = 1:M. 
Update Pj

i(k+1) by Eq. (14). 
if Pj

i(k+1) > Pmax 

Update Pj
i(k+1) by Eq. (8). 

end 
if Pj

i(k+1) < Pmin 

Update Pj
i(k+1) by Eq. (8). 

end. 
Obtain new position Pj Lnew

i (k) of individuals by Eq. (15).Then, up-
date Pj

i(k+1) via making greedy choice by Eq. (16). 
end 
end. 
Update Pj pbest

i (k), Pj
mbest, AgBest, BgBest and gBest. 

end while 
return global optimal solution gBest 
end. 

4. Simulations and experimental evaluations 

To verify the flexible operation capacity of the USC unit regulated by 
the EADRC strategy, simulations are carried out in the following step. 
Firstly, the search accuracy and convergence speed of the BQPIO algo-
rithm are tested on the CEC2014 test library. Secondly, the optimal 
parameters of EADRC scheme are obtained by the validated BQPIO al-
gorithm. the USC unit is guided to meet the flexibility requirements via 
minimizing the multi-objective function. Then, to confirm the superi-
ority of EADRC, control performance of USC unit respectively regulated 
by three industrial control strategies (EADRC + BQPIO, ADRC + BQPIO, 
PID + BQPIO) are given out. All simulations are carried out based on the 
on-site data of a 1000 MW USC unit in northern China. The experimental 
platforms are MATLAB 2021a and SIMULINK 2021a on a PC with AMD 
Ryzen 5 3500 × 3.6G CPU and 8 GB RAM. 

4.1. Performance verification of BQPIO based on benchmark functions 

4.1.1. Selections of benchmark functions and comparison algorithms 
In the EADRC designing, the parameters choices play a key role to its 

control performance. However, the parameters of EADRC are usually 
tuned by manual in engineering which is tedious and time-consuming. 
On the contrary, the heuristic method has simple principle and strong 
scalability which reveal excellent superiority in parameters optimiza-
tion. Thus, considering the prominent optimization capacity of PIO, the 
BQPIO algorithm as a promotion of conventional PIO is presented. 
Before using the BQPIO algorithm to obtain the optimal parameters of 
EADRC scheme, a performance test of BQPIO is required. 

The CEC 2014 [57] is regarded as the benchmark functions library to 
provide a desired platform for the presented BQPIO performance test. 
There are 30 functions of four typical categories totally included in CEC 
2014, namely unimodal function, simple multimodal function, hybrid 
function and composition function. Considering the similarity among 
the functions in the same category and test complexity, 12 benchmark 
functions include 3 unimodal functions, 3 simple multimodal functions, 
3 hybrid functions and 3 composition functions are selected to carry out 
the performance tests. The selected test functions are listed in Table 1. 
Since the development maturity and effectiveness of a certain optimi-
zation algorithm are main factors considered in comparison test 
designing, the PIO, PSO, artificial bee colony (ABC) and emperor pen-
guin optimization (EPO) algorithms are chosen as contrast algorithms 
here. The PSO, ABC and EPO algorithms are selected for comparison 
from their representative significance in the field of heuristic algorithms. 
For decreasing the occasionality of results, 50 executed are repeated for 
each test and the optimal one is selected. All the 3000 (12 × 5 × 50) tests 
in total are carried out in the same experimental environment to achieve 
a fair comparison. In Table 1, F∗

i stands for the optimal solution of 

Table 1 
The selected 12 benchmark functions from CEC 2014 for the performance tests 
of CBQPIO algorithm.  

Categories  Functions  Fi*  Range 

Unimodal 
functions  

F1 Rotated High Conditioned 
Elliptic Function  

100  [-100,100]D 

F2 Rotated Bent Cigar Function  200  [-100,100]D 

F3 Rotated Discus Function  300  [-100,100]D 

Simple 
Multimodal 
Functions  

F6 Shifted and Rotated Weierstrass 
Function  

600  [-100,100]D 

F10 Shifted Schwefel’s Function  1000  [-100,100]D 

F16 Shifted and Rotated Expanded 
Scaffer’s F6 Function  

1600  [-100,100]D 

Hybrid functions  F17 Hybrid Function 1 (N = 3)  1700  [-100,100]D 

F20 Hybrid Function 4 (N = 4)  2000  [-100,100]D 

F22 Hybrid Function 6 (N = 5)  2200  [-100,100]D 

Composition 
functions  

F23 Composition Function 1 (N = 5)  2300  [-100,100]D 

F25 Composition Function 3 (N = 3)  2500  [-100,100]D 

F29 Composition Function 7 (N = 3)  2900  [-100,100]D  
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Table 2 
Parameters setting of five optimization algorithms in the performance tests.  

Parameters    BQPIO  PIO  PSO  ABC  EPO 

M  100  100  100  100  100 
D  30  30  30  30  30 
K1 (map and compass operator)  50D  50D  /  50D  / 
K2 (landmark operator)  50D  50D  /  50D  / 
K (Maximum number of iterations)  100D (50D +50D)  100D (50D +50D)  100D  100D  100D 
ω (Inertia weight)  /  /  0.5  /  / 
c1, c2 (Acceleration constant)  /  /  1.4  /  / 
CO (Compass factor)  /  /  /  /  0.7 
Q (Motion parameters)  /  /  /  /  2 
l1, l2 (exploitation factors)  /  /  /  /  2 
Limit (Maximum for honey stay)  /  /  /  10  / 
s (Earch number)  /  /  /  5  /  

Table 3 
Statistic results of performance indicators in benchmark functions optimization tests using different algorithms.  

Categories  Functions  Indicator  BQPIO  PIO  ABC  PSO  EPO 

Unimodal functions  F1  Best  1.102E+02  4.228E+04  3.758E+05  1.608E+02  5.743E+05 
Mean  1.337E + 05  6.652E+05  1.490E+07  5.670E+05  4.763E+08 
SD  3.066E + 05  3.850E+05  1.182E+07  2.213E+06  2.702E+08 
TC  1.970s  2.440s  5.820s  9.060s  12.540s 

F2  Best  11.529E+03  3.172 E + 02  6.454E+09  1.489E+10  3.091E+09 
Mean  2.511E + 03  3.875E+03  7.869E+09  3.486E+10  8.086E+09 
SD  3.114E + 03  3.776E+03  4.758E+08  1.426E+10  2.008E+09 
TC  1.840s  3.290s  5.980s  8.740s  10.720s 

F3  Best  3.020E-01  5.900E-01  9.272E+03  1.067E+04  1.110E+05 
Mean  3.560E + 03  6.811E+03  1.321E+04  1.936E+04  9.815E+05 
SD  1.843E + 03  6.220E+03  1.416E+04  4.102E+03  1.336E+06 
TC  1.130s  1.859s  6.240s  8.810s  15.060s 

Simple 
Multimodal 
Functions  

F6  Best  4.160E-01  6.659 E+00  9.479E+00  1.033E+01  1.305E+00 
Mean  4.311E + 00  1.061E+01  1.539E+01  2.271E+01  9.849E+00 
SD  2.107E-01  1.138 E+00  3.930 E− 01  9.820E-01  3.280E+00 
TC  2.600s  5.130s  7.510s  18.200s  14.010s 

F10  Best  2.210E + 01  1.069E+03  1.138E+03  1.967E+03  2.842E+01 
Mean  8.299E + 02  1.834E+03  1.735E+03  2.488E+03  9.009E+02 
SD  3.663E+02  3.708E+02  2.101E+02  1.819E + 02  3.767 + 02 
TC  3.440s  5.870s  3.862s  9.641s  18.120s 

F16  Best  1.477E + 00  3.664E+00  3.881E+00  3.573E+00  2.213E+00 
Mean  3.096E + 00  7.138E+00  4.542E+00  3.957E+00  5.297E+00 
SD  1.200E-01  2.250E-01  1.510E-01  5.240E-01  4.710E-01 
TC  1.950s  2.400s  5.320s  8.995s  12.750s 

Hybrid functions  F17  Best  2.049E + 02  2.186E+05  2.894E+05  4.678E+05  2.302E+02 
Mean  6.899E + 03  7.604E+05  4.087E+05  2.279E+07  8.833E+03 
SD  1.587E + 04  3.314E+05  6.732E+04  1.957E+07  1.706E+04 
TC  2.020s  4.600s  14.770s  9.350s  25.610s 

F20  Best  3.134E + 01  4.066E+03  3.994E+03  6.125E+05  5.737E+01 
Mean  1.652E + 03  2.399E+04  1.036E+04  2.096E+07  1.959E+04 
SD  5.530E + 03  1.972E+04  6.002E+03  2.403E+07  5.688E+04 
TC  2.600s  5.580s  5.410s  9.120s  14.000s 

F22  Best  2.195E + 01  1.877E+02  3.680E+02  5.133E+02  3.072E+01 
Mean  1.229E + 02  6.204E+02  4.908E+02  8.517E+02  1.511E+02 
SD  1.009E+02  1.397E+02  4.861E + 01  1.202E+02  1.667E+02 
TC  1.330s  0.900s  6.000s  9.500s  19.120s 

Composition 
functions  

F23  Best  2.000E-02  2.015E+02  2.095E+02  6.069E+02  3.294E+02 
Mean  2.097E + 02  4.220E+02  3.034E+02  1.053E+03  3.867E+02 
SD  3.869E + 00  6.121E+01  7.949E+01  2.986E+02  1.370E+01 
TC  1.170s  2.290s  8.200s  12.040s  11.460s 

F25  Best  1.261E + 02  1.996E+02  1.683E+02  2.000 E+02  1.373E+02 
Mean  1.932E + 02  4.031E+02  2.702E+02  2.386E+02  2.129E+02 
SD  1.240E-01  6.380 E− 01  1.841E+01  2.245E+01  2.004E+01 
TC  3.200s  4.180s  7.960s  17.400s  27.870s 

F29  Best  3.525E + 02  8.617E+03  3.906E+06  1.752E+06  3.955E+02 
Mean  6.099E + 04  3.416E+05  1.344E+08  8.142E+06  5.683E+05 
SD  5.920E + 04  9.993E+05  7.115E+07  4.668E+06  1.584E+06 
TC  1.300s  6.090s  9.520s  13.160s  19.430s  
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corresponding function in search range [− 100,100] under D dimension. 

4.1.2. Parameters determination of comparison algorithms 
The dimension of the benchmark function is set to D = 30 for veri-

fying the effectiveness of BQPIO algorithm in dealing with high- 
dimensional problems. Except for the unique parameters of each algo-
rithm, all the common parameters are equally set and shown in Table 2. 

4.1.3. Benchmark functions test results 
Performance tests are carried out based on the 12 benchmark func-

tions and 5 contrast algorithms. Four statistic indicators including the 
minimum value (Best), mean value (Mean) and standard deviation (SD) 
of optimization error and total computing time (Time) are displayed in 
Table 3 for proving the superiorities of BQPIO. The definitions of Mean 
and SD are shown in Eq. 17 and 18. 

Mean=
1

Nre

∑Nre

i=1
Fi (17)  

SD=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Nre

∑Nre

i=1

(
Fi − Mean

)2

√
√
√
√ (18)  

Where Nre is the repeated time of each test and its value is set to 50 here. 
The optimization value of corresponding function in the i-th test is noted 
as F i. 

As presented in Table 3, the proposed BQPIO reveals overwhelming 
advantages in the optimization of F1, F3, F6, F16, F17, F20, F23, F25 and F29. 
Although some other algorithms exhibit higher optimization accuracy of 
F2, F10 and F22, the computing speed of BQPIO is prominent in most 
cases. Therefore, the BQPIO is proved to be a successful attempt 
simultaneously considering exploration and exploitation. 

4.2. EADRC optimized by BQPIO 

Adding the information of unit is conducive to reduce the estimation 
burden of ESO for control performance improvement. Therefore, the 
state space model of SUC unit given in Eq. (19) is obtained by the sub-
space identification method [58] based on its 5000 sets on-site data at 
first. The operating conditions of USC unit under various rated load are 

also displayed in Table 4. Then, the BQPIO algorithm with excellent 
exploration ability is used to automatically attain the optimal parame-
ters of EADRC strategy to improve the operational flexibility of USC unit. 

For fair comparisons, parameters in ADRC and PID methods are also 
optimized by the BQPIO algorithm. In all the parameters optimization 
processes, the parameter settings of BQPIO algorithm are remained 
unchanged expect for individual dimension DP. The individual dimen-
sion DP is determined by the number of parameters to be tuned in 
controller. Considering the rationality and experience in the designing 
of EADRC scheme, the parameters search range is set as [0.05,50]Dp . 
There are totally 9 parameters in EADRC strategy to be undetermined, 
then DP is equal to 9. The maximum iteration number of compass 
operator K1 and landmark operator K2 are respectively set to 20 and 30. 
And the population size M, constant factors φ, θ, γ and ϖ are set as 30, 
0.7,0.4,0.22 and 0.19, respectively. As a rule of thumb, the weight fac-
tors w1 and w2 are assigning as 0.7 and 0.3, respectively. The parameters 
optimization of EADRC shown in Algorithm 1 is taken as example, other 
control methods are similar. Parameters optimization results of all 
control methods are displayed in Table 5. Particularly, Ps and Is (s=
1,2,3) are the proportional and integral coefficients of decoupling PID 
controllers. b0A and ωcA are the optimal parameters in ADRC control 
strategy. 

4.3. Tracking performance test 

In the setpoint tracking performance test, the load ramping rate and 
shedding rate are respectively set to 3.3% MCR/min and 5.5% MCR/ 
min. Simulations are carried out to test the flexible operation ability of 
USC unit within the wide-load ranges of [30% RBL, 90% RBL]. In the 
tests, the USC unit can experience the deep peak shaving and normal 
load regulation processes. The amplitude of each load variation is set as 
100 MW. Responses of output variables and manipulated variables of 
USC are illustrated in Figs. 4–5. For standardly evaluating the load 
tracking performance of USC unit regulated by different control 
methods, the total objective function value J, settling time ts and 
smoothness of manipulated variables (shown in Eq. (20)) are chosen as 
evaluation indicators. The performance indicators for unit to response to 
the load demands are recorded in Table 6. 

Table 4 
The operating conditions and model of 1000 MW USC unit under various rated load. 

ẋ(k + 1) = Amx(k) + Bmu(k)

y(k) = Cmx(k) + Dmu(k)

u = [ uB μT uW ]; y = [N PT T ]

Am =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− 10.92 6.86 − 2.26 − 6.19

15.44 − 10.09 6.14 3.07

19.47 − 37.58 − 13.48 − 14.60

30.82 − 53.10 − 14.48 − 29.05

⎤

⎥
⎥
⎥
⎥
⎥
⎦

;Bm =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− 0.35 − 0.02 0.03

0.24 0.02 0.07

− 1.90 0.03 0.06

− 3.08 0.11 0.09

⎤

⎥
⎥
⎥
⎥
⎥
⎦

;Cm =

⎡

⎢
⎢
⎣

− 358.10 171.50 − 94.62 2.80

− 13.36 0.03 0.03 0.05

− 275.8 − 180.80 − 9.80 0.38

⎤

⎥
⎥
⎦;Dm = 0

(19)   

Operating 
condition  

N(MW)  PT (MPa)  T(◦C)  μT (%)  uB (t/h)  uW (t/h) 

90% rated load  917.55  24.07  381.47  88.06  318.38  2147.09 
80% rated load  816.97  21.80  376.00  85.37  279.75  1976.60 
70% rated load  715.22  19.91  370.90  84.60  242.39  1798.11 
60% rated load  617.05  18.04  366.10  81.52  205.10  1615.62 
50% rated load  517.07  15.80  361.94  79.03  167.80  1435.00  
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TVs =

∫ Tmax

0
(us(t+ 1) − us(t))dt, s= 1, 2, 3 (20) 

As exhibited in Fig. 4, lines with different colors and line-type stand 
for the load regulation effect of USC unit combined with diverse control 
techniques. The variations of output power, main steam pressure and 
intermediate point temperature in USC unit are respectively drawn in 
Fig. 4(a), (b) and (c) under various load demands. Thanks to the EADRC 
+ BQPIO algorithm, USC unit can quickly change its output power to 
suppress the randomness of renewable energy sources. During the deep 
peak shaving process (0s–880s), the load demand reveals the fastest load 
shedding rate and highest tracking accuracy by USC unit based on the 
EADRC + BQPIO algorithm, then is the ADRC + BQPIO method. As 
shown in Fig. 4(a), when USC unit is regulated by the EADRC + BQPIO 
strategy represented by the red solid line, its output power curve is very 
close to the setpoint value. And the main steam pressure and tempera-
ture of USC unit are fluctuating within the smallest ranges according to 
Fig. 4(b ~ c). It can be seen from Table 6 that the load tracking error es of 
USC unit regulated by EADRC + BQPIO strategy are only 0.3547 MW 
and 1.942 MW while the ADRC + BQPIO strategy are 2.236 MW and 
4.460 MW. The settling times ts of USC unit combined the EADRC +
BQPIO scheme are respectively reduced to 137.8s and 123.2s from 

272.2s to 260.5s compared to the PID + BQPIO method. Then, the 
percentage improvements of the EADRC + BQPIO strategy versus the 
ADRC + BQPIQ in tracking errors are 75.53% and 56.45% while they 
are 20.57% and 21.73% in settling times according to Table 7. Thereby, 
the flexible operation capacity of USC unit is promoted thanks to the 
EADRC + BQPIO scheme. As to the operational economy J, the per-
centage improvements for EADRC + BQPIO based USC unit versus the 
ADRC + BQPIQ algorithm are 21.44% and 22.48%. Furthermore, as can 
be seen from Fig. 5(a), the position of main steam valve in USC unit 
based on the EADRC + BQPIO is remained relatively stable that is favor 
to extend its service life. Regulated by the EADRC + BQPIO technology 
with remarkable control performance, the load demands can be reached 
by the minimum variations of coal feeding rate and water feeding rate of 
unit. Hence, the smoothness of manipulated variables of USC unit 
regulated by the EADRC + BQPIO strategy are fully verified by the least 
values of TV1, TV2 and TV3. The suitable water-coal-ratio reveals the 
most prominent safe operation ability of boiler. It is also can be seen 
from Table 8 that the settling time for the three output variables in USC 
unit are respectively reduced to 172.950s, 232.875s and 186.375s due to 
the EADRC + BQPIO algorithm. Benefit from the integrated EADRC +
BQPIO strategy, the mean load tracking error for USC to response to load 
requirements is 3.052 MW which is 65.37% of the ADRC + BQPIO 
method. Thus, transforming the USC unit by EADRC + BQPIO strategy, 
the improved deep peak shaving ability is attained which is advanta-
geous to its flexible operation. 

As shown in Fig. 4, combined with the superior EADRC + BQPIO 
scheme, the USC unit can also obtain the most remarkable load ramping 
rate and tracking accuracy during the load rising process(880s–4000s). 
As recorded in Table 7, except for the load changes of 317 MW–417 MW, 
the load tracking error of the USC unit based on the EADRC + BQPIO 
algorithm are 9.74%, 70.72%, 37.50%, 22.33% and 46.31% of ADRC +
BQPIQ. Compared to the ADRC + BQPIO algorithm, the settling times 
for USC unit which regulated by the EADRC + BQPIO strategy to 
response to load demands are all reduced by more than 6%. Especially, 

Table 6 
The performance comparison of USC unit under different controllers in the tracking performance test.  

Time (s)  Load changes  Controller  es (MW)  ts (s)  TV1  TV2  TV3  J 

t = 0s–440s  517 MW–417 
MW  

EADRC +
BQPIO  

0.547  137.800  106.960  310.099  713.232  5472.806 

ADRC + BQPIO  2.236  173.500  605.451  475.824  788.300  6966.142 
PID + BQPIO  2.613  272.200  722.230  480.594  801.285  7107.935 

t = 440s–880s  417 MW–317 
MW  

EADRC +
BQPIO  

1.942  123.200  759.445  323.431  16589.223  6034.684 

ADRC + BQPIO  4.460  157.400  1478.969  519.124  22193.536  7784.886 
PID + BQPIO  4.694  260.500  2037.941  541.201  22995.297  10531.589 

t = 880s–1320s  317 MW–417 
MW  

EADRC +
BQPIO  

1.998  184.800  1232.195  508.614  25266.300  10253.504 

ADRC + BQPIO  0.290  197.500  1220.432  503.600  25016.177  10159.416 
PID + BQPIO  0.578  212.700  3356.476  925.156  47881.252  17873.850 

t = 1320s–1760s  417 MW–517 
MW  

EADRC +
BQPIO  

7.644  199.000  1450.415  596.640  29512.093  12167.733 

ADRC + BQPIO  8.469  215.800  1461.592  901.273  29742.771  12260.084 
PID + BQPIO  8.651  297.800  3988.762  997.421  30693.176  21342.227 

t = 1760s–2200s  517 MW–617 
MW  

EADRC +
BQPIO  

1.395  186.800  1806.072  803.486  40020.597  15913.832 

ADRC + BQPIO  4.764  216.500  2009.514  824.892  40689.488  16943.210 
PID + BQPIO  4.955  298.400  3490.446  1180.812  57852.838  21467.858 

t = 2200s–2640s  617 MW–717 
MW  

EADRC +
BQPIO  

2.795  184.700  2145.190  879.241  43283.416  18151.922 

ADRC + BQPIO  4.472  214.200  2411.392  988.240  48642.281  20409.629 
PID + BQPIO  4.668  300.700  3956.913  1810.483  53334.639  35472.358 

t = 2640s–3080s  717 MW–817 
MW  

EADRC +
BQPIO  

4.195  183.000  2441.119  999.310  49114.373  20125.080 

ADRC + BQPIO  5.401  211.100  2504.197  1025.093  50379.035  22714.942 
PID + BQPIO  5.634  299.600  4168.572  1880.091  56969.849  36920.224 

t = 4000s–3520s  817 MW–917 
MW  

EADRC +
BQPIO  

3.896  184.300  2725.000  1114.457  54703.462  23175.422 

ADRC + BQPIO  7.256  215.000  2798.804  1144.608  56181.301  23804.680 
PID + BQPIO  7.249  302.000  4759.018  2045.796  8358.730  40248.208  

Table 5 
Parameter optimization results of different control strategies based on the 
BQPIO algorithm.  

Control 
strategies  

Parameters 

EADRC +
BQPIO  

b01 = 28.111 
ωo1 = 9.200 
ωc1 = 4.583  

b02 = 10.400 ωo2 =

20.150 ωc2 = 5.864  
b03 = 0.126 ωo3 =

22.377 ωc3 = 5.993 

ADRC +
BQPIO  

b0A1 = 24.216 
ωcA1 = 3.829  

b0A2 = 5.050 ωcA2 =

8.264  
b0A3 = 0.600 
ωcA3 = 1.300 

PID + BQPIO  P1 = 3.700 
I1 = 0.800  

P2 = 19.180 
I2 = 18.020  

P3 = 14.359 
I3 = 6.400  
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Fig. 4. Responses of output variables in USC unit with the load setpoint variations under wide-load ranges from 30%RBL to 90% RBL.  

Table 7 
The percentage improvement of the EADRC + BQPIO versus the next ADRC + BQPIQ in the tracking performance test and disturbances rejection ability test.  

Test  Time (s)  Changes  Controller  Improvement (%) 

es  ts  σ  TV1  TV2  TV3  J 

Tracking performance test  t = 0s–440s  517 MW–417 MW  EADRC +
BQPIO  

75.53  20.57  /  82.33  34.83  9.52  21.44 

t = 440s–880s  417 MW–317 MW  EADRC +
BQPIO  

56.45  21.73  /  48.65  37.70  25.30  22.48 

t = 880s–1320s  317 MW–417 MW  EADRC +
BQPIO  

− 588.96  6.43  /  − 0.96  − 0.99  − 1.00  − 0.92 

t =
1320s–1760s  

417 MW–517 MW  EADRC +
BQPIO  

9.74  7.78  /  0.76  33.80  0.78  0.75 

t =
1760s–2200s  

517 MW–617 MW  EADRC +
BQPIO  

70.72  13.71  /  10.12  2.60  1.64  6.08 

t =
2200s–2640s  

617 MW–717 MW  EADRC +
BQPIO  

37.50  13.77  /  11.04  11.02  11.01  11.06 

t =
2640s–3080s  

717 MW–817 MW  EADRC +
BQPIO  

22.33  13.30  /  2.52  2.51  2.51  11.40 

t =
3080s–4000s  

817 MW–917 MW  EADRC +
BQPIO  

46.31  14.27  /  2.64  2.63  2.63  2.64 

Disturbances rejection 
ability test  

t = 120s  Active power (+20 MW)  EADRC +
BQPIO  

/  45.63  84.41  69.51  59.43  40.33  41.36 

t = 480s  Main steam pressure (+0.2 
MPa)  

EADRC +
BQPIO  

/  13.70  41.53  3.26  3.08  2.70  − 3.23 

t = 840s  Intermediate point temperature 
(+10 ◦C)  

EADRC +
BQPIO  

/  − 19.62  1.15  0.28  0.89  3.27  3.09  
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the main steam pressure and intermediate point temperature of USC unit 
regulated by the EADRC + BQPIO algorithm fluctuate within the min-
imum ranges. These desired results effectively avoid the operating ac-
cidents caused by excessive temperature and steam pressure of 
equipments in once-through boiler. Conclusion can be drawn that the 
capacity of USC unit modified by the EADRC + BQPIO algorithm to 
rapidly change its output power has been promoted. Moreover, it can be 
concluded from Fig. 5, the load demands still able be satisfied by USC 
unit based on the EADRC + BQPIO strategy with the smallest increment 
of coal feeding rate and water feeding rate. The least TV1, TV2, TV3 noted 
in Table 6 display the perfect smoothness of manipulated variables of 
USC unit regulated by the EADRC + BQPIO scheme in all the load 
response processes. Therefore, the operational economy of unit is pro-
moted due to the remarkable control performance of EADRC + BQPIO. 
In addition, as depicted in Table 6, except the load range of 317 

MW–417 MW, all the load tracking precision of the EADRC + BQPIO 
based USC unit are the highest. The average load tracking error of USC 
unit combined with the EADRC + BQPIO method during the load rising 
process is only 3.653 MW while ADRC + BQPIO and PID + BQPIO al-
gorithms are 5.108 MW and 5.289 MW respectively. What’s more, the 
load demands also reveal the fastest load regulation capacity of USC unit 
regulated by the EADRC + BQPIO strategy. The average settling time of 
EADRC + BQPIO method based USC unit during the load rising is 
reduced to 187.1s while ADRC + BQPIO and PID + BQPIO algorithms 
are 211.6s and 285.2s respectively. In the entire load regulation process, 
the load tracking error of USC unit based on the EADRC + BQPIO 
method is within [0.547 MW, 7.644 MW] when it’s [0.290 MW, 8.469 
MW] for ADRC + BQPIO algorithm according to Table 8. Benefit from 
the EADRC + BQPIO strategy, the operation safety of USC unit is 
effectively improved. At every power variation, the main steam pressure 

Fig. 5. Responses of manipulated variables in USC unit with the load setpoint variations under wide-load ranges from 30%RBL to 90% RBL.  

Table 8 
The improvement of the EADRC + BQPIO than ADRC + BQPIQ across the entire range from 0 to 4000 s for all three output variables.  

Output channel  Controller  Regulation error/Fluctuation range  Regulation time (s) 

Range  Mean  Range  Mean 

Active power es (MW)  EADRC + BQPIO  [0.547, 7.644]  3.052  [123.2, 199.0]  172.950 
ADRC + BQPIO  [0.290, 8.469]  4.669  [157.4, 216.5]  200.125 

Main steam pressure 
ΔPt (MPa)  

EADRC + BQPIO  [1.98, 2.24]  2.048  [203.0, 254.0]  232.875 
ADRC + BQPIO  [1.90, 2.40]  2.166  [275.0, 451.0]  341.750 

Intermediate point temperature 
ΔT (◦C)  

EADRC + BQPIO  [4.85, 5.00]  4.973  [149.0, 213.0]  186.375 
ADRC + BQPIO  [4.50, 6.82]  5.609  [181.0, 295.0]  221.375  
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and intermediate point temperature in EADRC + BQPIO based USC unit 
fluctuate within [1.98 MPa, 2.24 MPa] and [4.85 ◦C, 5.00 ◦C] while they 
are [1.90 MPa, 2.40 MPa] and [4.50 ◦C, 6.82 ◦C] for ADRC + BQPIO. All 
the three output variables in USC unit achieve improvements thanks to 
the remarkable control performance of EADRC + BQPIO algorithm. 
Therefore, employing the EADRC + BQPIO algorithm to USC unit to 
promote its flexible operation capability under full operating conditions 
is a successful attempt. 

4.4. Disturbance rejection ability test 

Disturbances caused by coal quality and load variations in 

generation process becomes more and more obvious. Therefore, 
remarkable disturbance rejection ability is conducive to the flexible 
operation of USC unit. Then, a positive step disturbance with amplitude 
of 20, 0.2 and 10 is respectively added into the active power, main steam 
pressure and intermediate point temperature channels of USC unit when 
t = 120s, 480s and 840s for the disturbance rejection ability tests. Re-
sponses of output variables and manipulated variables of USC unit are 
respectively drawn in Figs. 6 and 7. The disturbance rejection perfor-
mance indexes of unit based on diverse control methods are recorded in 
Table 9. 

As depicted in Fig. 6, all the disturbances in the output channels of 
USC unit with the EADRC + BQPIO scheme are fast and accurately 

Fig. 6. Responses of output variables of USC unit under 50% rated load with the load, pressure and temperature disturbances additions when t = 120s, 480s and 
840s, respectively. 

Table 9 
The performance comparison of USC unit under different controllers in disturbance rejection ability test.  

Time (s)  Output variables  Controller  ts (s)  σ (%)  TV1  TV2  TV3  J 

t = 120s  Active power (+20 MW)  EADRC +
BQPIO  

49.100  0.235  11.637  3.978  670.639  205.942 

ADRC + BQPIO  90.300  1.507  38.170  9.806  1123.883  351.182 
PID + BQPIO  126.000  2.030  71.171  17.077  1684.816  531.167 

t = 480s  Main steam pressure (+0.2 MPa)  EADRC +
BQPIO  

148.000  0.418  89.920  19.020  1136.842  397.049 

ADRC + BQPIO  171.500  0.715  92.954  19.625  1168.440  384.618 
PID + BQPIO  201.600  1.044  97.809  20.592  1218.996  401.529 

t = 840s  Intermediate point temperature 
(+10 ◦C)  

EADRC +
BQPIO  

25.000  0.086  68.766  15.304  1182.080  379.085 

ADRC + BQPIO  20.900  0.087  68.957  15.441  1221.978  391.154 
PID + BQPIO  27.400  0.035  55.457  19.080  1502.447  381.008  
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suppressed. Meanwhile, the overshoots of the output variables in USC 
unit are relatively small under the EADRC + BQPIO framework. Besides, 
as drawn in Fig. 7, all the manipulated variables of USC unit fluctuate in 
the minimum ranges. According to Table 9, the setting time ts for 
EADRC + BQPIO strategy based USC unit to respectively suppress the 

disturbance in active power and main steam pressure channels are 
shortened to 49.1s and 148s while they are 90s and 171.5s by ADRC +
BQPIO method. In the suppression process of active power and steam 
pressure disturbances, the overshoots σ% of USC unit modified by the 
EADRC + BQPIO scheme are 0.235% and 0.418% while the PID +
BQPIO method are 2.03% and 1.044%. The settling time for the active 
power and main steam pressure channels in the EADRC + BQPIO 
strategy based unit to reject disturbances are decrease to 45.63% and 
13.70% of ADRC + BQPIO according to Table 7. It is shown that the USC 
unit regulated by the EADRC + BQPIO algorithm has shown an un-
beatable position in both the disturbance rejection tests of active power 
and main steam pressure channels. In the suppression process of tem-
perature disturbance, although the settling time of output variables of 
USC unit regulated by EADRC + BQPIO is longer than ADRC + BQPIO 
but the overshoot achieves the improvement of 1.15%. Besides, the 
smoothness of manipulated variables is satisfactory. Thus, above ana-
lysises fully illustrate that the EADRC + BQPIO strategy with invincible 
disturbance rejection capacity greatly improves the operational flexi-
bility and economy of USC unit under full operating conditions. 

4.5. Robustness test 

Practically, the operating conditions of unit often change affected by 
various uncertainties. Therefore, Monte Carlo stochastic tests are carried 
out to evaluate the robustness of the proposed control approach. Eq. (19) 
is regarded as the nominal model, its any two parameters (inertia 

Fig. 7. Responses of manipulated variables of USC unit under 50% rated load with the load, pressure and temperature disturbances additions when t = 120s, 480s 
and 840s, respectively. 

Fig. 8. The scatter distributions of load responses of USC unit when model 
parameters perturbation and a positive step with the amplitude of 10 are 
simultaneously added. 
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coefficient and time constant) were stochastically perturbed by±10% 
relative to the nominal value for the Monte Carlo random test. The 
number of samples is set to 200. Then, a positive step with amplitude of 
10 is added into the active power channel, results are displayed in Fig. 8. 
Performance indicators such as the average, variable range and standard 
deviation (denote as Mean, Range and SD) of settling time ts and over-
shoot σ% are recorded in Table 10. 

The Mean recorded in Table 10 represents the average performance 
level of the USC unit based on various controllers for the perturbed 
model. The smaller Mean stand for the stronger robustness. SD is used to 
describe the discrete degree of Monte Carlo random experimental re-
sults. It can be seen from Table 10 that the average overshoot of USC unit 
regulated by the EADRC + BQPIO algorithm is only 21.6% while the 
ADRC + BQPIO and PID + BQPIO strategies are 22.5% and 22.8% in the 
robustness test of active power channel. Whether it is the performance 
indicators in Table 10 or the perfectly concentrated red point cluster 
depicted in Fig. 8 reveals the strongest robustness of EADRC + BQPIO. 

In addition to the excellent target tracking performance, disturbance 
rejection capacity and robustness, the industrial practicability of the 
EADRC approach is also outstanding. The EADRC strategy with the fixed 
1- degree-of freedom structure is convenient for discretization. And 
then, a various of swarm optimization algorithms can be used to deal 
with the parameters optimization issue of EADRC in real-time. Under 
these circumstances, the flexible operation of 1000 MW USC unit under 
full operating conditions is easy to be realized by the practical EADRC 
scheme. 

5. Conclusions 

To accelerate the transformation of low-carbon power system, a 
flexible EADRC scheme optimized by the BQPIO algorithm is applied to 
promote the flexible operation capacity of the 1000 MW USC unit under 
full operating conditions. As an effective reference for the flexibility 
problem, here are the main conclusions.  

1) As the EADRC approach with remarkable control performance can be 
directly implemented on the existing control system, the rapid load 
regulation and deep peak shaving capacity of 1000 MW USC unit 
have been successfully improved. Benefit from this, the flexible 
operation of USC unit under full operating conditions can be ach-
ieved. However, only the EADRC method with the with discrete-time 
structure is convenient for its industrial expansion.  

2) A total of 3000 tests of 5 meta-heuristic optimization algorithms 
were carried out based on 9 benchmark functions on CEC 2014 li-
brary. The invincible optimization accuracy and convergence speed 
of BQPIO algorithm are confirmed in most tests. Then, the parame-
ters automatic tuning mechanism for EADRC is gained by the BQPIO 

algorithm. Profit from that, the control performance of USC unit can 
always meet the flexibility requirements which is conducive to its 
safe and stable operation. Nevertheless, the delay between the al-
gorithm execution and actual process should be further shortened.  

3) Thanks to the remarkable control performance of EADRC+BQPIO 
algorithm, the average settling time for USC unit to response to load 
demand is reduced to 130.50s while the ADRC+BQPIOand 
PID+BQPIO methods respectively are 165.45s and 266.35s in the 
deep peak shaving process. Additionally, during the load rising 
process, the average load tracking error of USC unit regulated by the 
EADRC + BQPIO scheme decreases to 3.653 MW, which is only 
71.51% and 69.06% of ADRC + BQPIO and PID + BQPIO algorithms. 

The practicability of the flexible EADRC technology mainly reflected 
in its direct implement on the existing discrete control system without 
any devices modifications. However, how to quickly and accurately 
choose the parameters of multivariable EADRC to ensure the stability of 
the closed-loop control circuit still need in-depth research. In addition, 
the inevitable delay of output variables in USC unit also affects the 
rapidity of EADRC algorithm. The structuration and solution of the 
multi-objective optimization function in the flexible operation of ther-
mal power unit is worth to be further discussed. In order to extend its 
industrial applications in thermal power unit, it is necessary to discretize 
the flexible EADRC algorithm. Thereby, future opportunities may 
involve the following trends: selecting the parameters ranges of EADRC 
based on theoretical analysises, exploring parameters on-online tuning 
method, investigating the discretization of EADRC, developing a 
comprehensive evaluation criterion to assess the flexible operation ca-
pacity of thermal power unit, and so on. 
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Table 10 
The performance comparison of different controllers in robustness test with 200 samples.  

Output channel  Controller  ts (s)  σ (%) 

Range  Mean  SD  Range  Mean  SD 

Active power  EADRC + BQPIO  [343.0, 
350.0]  

350.0  2.8  [19.8, 
22.9]  

21.6  1.3 

ADRC + BQPIO  [339.0, 355.7]  348.2  4.3  [16.7, 27.2]  22.5  2.4 
PID + BQPIO  [333.0, 364.1]  347.0  9.4  [16.4, 25.5]  22.8  2.9 

Main steam pressure  EADRC + BQPIO  [306.5, 
314.4]  

310.3  1.2  [6.9, 16.1]  10.4  1.1 

ADRC + BQPIO  [329.0, 337.0]  335.9  2.8  [13.0, 23.9]  17.0  3.6 
PID + BQPIO  [341.0, 351.0]  346.0  4.5  [15.3, 28.0]  19.1  7.5 

Intermediate point 
temperature  

EADRC + BQPIO  [282.1, 
364.8]  

313.1  5.2  [2.33, 4.5]  2.6  2.1 

ADRC + BQPIO  [314.6, 459.9]  355.7  8.7  [1.2, 9.0]  5.0  2.7 
PID + BQPIO  [370.0, 468.5]  383.1  13.4  [5.0, 18.9]  11.4  4.7  
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