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Abstract: We propose multi-objective social learning pigeon-inspired optimization (MSLPIO) and apply it to obstacle avoidance 
for unmanned aerial vehicle (UAV) formation. In the algorithm, each pigeon learns from the better pigeon but not necessarily the 
global best one in the update process. A social learning factor is added to the map and compass operator and the landmark operator. 
In addition, a dimension-dependent parameter setting method is adopted to improve the blindness of parameter setting. We sim-
ulate the flight process of five UAVs in a complex obstacle environment. Results verify the effectiveness of the proposed method. 
MSLPIO has better convergence performance compared with the improved multi-objective pigeon-inspired optimization and the 
improved non-dominated sorting genetic algorithm. 
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1  Introduction 
 

In recent years, artificial intelligence technolo-
gies have rapidly developed, and unmanned systems 
have been successfully applied in many fields (Flo-
reano and Wood, 2015; Zhang et al., 2017). As part of 
the unmanned systems, unmanned aerial vehicles 
(UAVs) play an important role in civil and military 
fields. In many cases, a UAV cannot accomplish 
complex tasks that require multi-UAV flocking. 
Flocking behavior is widespread in nature. Birds 

flying in groups in the air, creatures moving in groups 
on the ground, and fish groups under the water are 
examples of such behaviors. Researchers analyzed 
swarm behaviors and applied a swarm mechanism to 
other fields (Biro et al., 2016; Forestiero, 2017; Sun 
and Turkoglu, 2017; Wang et al., 2017; Yan et al., 
2017; Guo et al., 2018). UAV flocking technology is 
currently a hot issue, but it involves many problems 
such as cooperative formation flight, formation re-
configuration, and flocking obstacle avoidance 
(Mohanty and Parhi, 2012; Faisal et al., 2013; Di et al., 
2015; Ho and Do, 2017; Kownacki and Ambroziak, 
2017; Qiu and Duan, 2017a; Ferri et al., 2018; Ben-
jamin et al., 2019; Molinos et al., 2019). Therefore, 
multi-UAV obstacle avoidance is a meaningful re-
search subject. 

There is a lot of research on obstacle avoidance 
in UAVs. Based on the Olfati-Saber multi-agent ob-
stacle avoidance framework, a new flocking obstacle 
avoidance algorithm was proposed, which improves 
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the cooperative obstacle avoidance capability of UAV 
flocking (Zhao et al., 2019). A formation control 
method using local interaction information was im-
plemented, and the effectiveness of the algorithm was 
verified by flocking simulation through obstacles 
(Alonso-Mora et al., 2016). Our team has been 
working on this issue as well. A pigeon hierarchy 
characteristic was applied to UAV flocking, and a 
UAV distributed control framework was presented, 
which shows a stable performance (Luo and Duan, 
2017). Considering a pigeon mode of transformation 
between hierarchical and egalitarian interactions, a 
pigeon flocking model and a pigeon-coordinated 
obstacle avoidance model were proposed (Qiu and 
Duan, 2017b). 

Parameter optimization is essential in making 
the flocking control algorithm perform well. As a new 
swarm intelligence optimization algorithm, pigeon- 
inspired optimization (PIO) has shown great potential. 
Since it was proposed by Duan and Qiao (2014), it has 
drawn close attention and has been widely used. The 
multi-objective optimization problem is one of the 
important applications of PIO. The UAV flocking 
problem among obstacles was transferred to a multi- 
objective optimization problem, and an improved 
multi-objective pigeon-inspired optimization (MPIO) 
was put forward, realizing that UAVs can fly stably in 
an obstacle environment (Qiu and Duan, 2020). On 
this basis, we design a flocking control strategy, 
propose multi-objective social learning pigeon- 
inspired optimization (MSLPIO), and realize smooth 
passage of multiple UAVs among complex obstacles. 
The social learning mechanism is inspired by the 
social learning particle swarm optimization (SL-PSO) 
proposed by Cheng and Jin (2015). They improved 
particle swarm optimization (PSO) using a social 
learning mechanism to make the algorithm converge 
faster. In this study, a social learning mechanism is 
introduced to MPIO, which improves the conver-
gence of the algorithm and the blindness of parameter 
setting. 

 
 

2  Problem formulation 

2.1  Unmanned aerial vehicle model 

A UAV model is simplified as the first-order 
Mach number maintaining autopilot, the first-order 
course maintaining autopilot, and the second-order 

altitude maintaining autopilot (Wu, 2013; Qiu and 
Duan, 2020). The specific model is expressed as  
follows: 
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where Xi, Yi, and Hi are the positions of the ith UAV in 
the X, Y, and Z directions respectively, Vi, φi, and ηi 
are the horizontal velocity, the horizontal course, and 
the rate of change in altitude respectively, and τV, τφ, τa, 
and τb are the time constants. c c c, , andi i iV Hϕ  are the 
inputs of the autopilot for the ith UAV, and they are 
expressed as follows: 
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where 1,iu  2 ,iu  and 3

iu  denote the control components 
in the x, y, and z directions, respectively. In addition, 
the following constraints need to be met: 
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where nmax is the maximum lateral overload and g the 
gravitational acceleration set to 10 m/s2. 

2.2  Flocking control strategy 

During the process of UAV flocking obstacle 
avoidance, the following movement rules should be 
ensured: (1) A safe distance should be maintained  
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among UAVs; (2) All UAVs should maintain the same 
speed; (3) All UAVs should be kept at a desired height; 
(4) Collision should be avoided between an obstacle 
and a UAV. 

Therefore, we design the flocking control model 
to include the following components: formation con-
trol component, collision avoidance control compo-
nents among UAVs, obstacle avoidance control 
component between a UAV and an obstacle, con-
sistent UAV speed control component, expected 
speed control component, and vertical height control 
component. Details are as follows (Qiu and Duan, 
2020): 

 

f c o nv

ev eh

,  1,2,
,  3,

k
i

u u u u k
u

u u k
+ + + =

=  + =
        (4) 

 

where k
iu  represents the total control quantity with 

k=1, 2, and 3 denoting the corresponding components 
in the x, y, and z directions, respectively. The com-
ponents are given in the following. 
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where Cf is the formation control coefficient, which is 

set to 0.2, 
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tance between the ith and jth UAVs, Dc the communi-
cation distance, which is set to 10 m, α the weight 
factor, Pi and Pj the positions of the ith and jth UAVs 
respectively, and Dd the desired horizontal distance 
among UAVs, which is set to 10 m. 

2. Collision avoidance control component uc: 
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where Cc is the collision control coefficient among 
UAVs, which is set to 105, Ds the minimum distance 
against collision among UAVs, which is set to 2 m. 

3. Obstacle avoidance control component uo:  
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where Co is the obstacle avoidance control coefficient, 

which is set to 2, Ve the desired velocity, which is set 
to 10 m/s, k

iv  the velocity of the ith UAV, and δ the 
desired obstacle avoidance course angle, which is 
equal to the inverse tangent between the ith UAV and 
the nearest edge point of the nearest obstacle. Note 
that the field-of-view of a UAV is 180°, and that the 
obstacle perception distance is set to 120 m. 

4. Consistent UAV speed control component unv: 
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where Cnv is the coefficient that keeps a consistent 
velocity with that of the neighbor, and is set to 0.2. 

5. Expected speed control component uev: 
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where Cev is the coefficient that keeps a consistent 
velocity with the expected one, and is set to 8. 

6. Vertical height control component ueh: 
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where Ceh is the coefficient that keeps a consistent 
altitude with the expected one and is set to 20, and he 
is the desired altitude, which is set to 50 m. 

2.3  Cost function design 

To ensure the smooth and consistent passage of 
multiple UAVs in many obstacles, many control 
components need to be considered. In this study, two 
cost functions are designed according to the for-
mation control effect and speed consistency (Qiu and 
Duan, 2020). 

The first cost function is divided into two parts: 
(1) When there are obstacles within the detected range 
of the ith UAV, the cost function represents the degree 
of passage through the obstacle zone, and its value is 
the projection of the horizontal position of the ith UAV 
in the direction of the desired horizontal velocity. (2) 
When there is no obstacle within the detected range of 
the ith UAV, the cost function represents the degree of 
consistency with the desired horizontal velocity. The 
first cost function is expressed as follows: 
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where k=1, 2, ve is the expected velocity, vi the ve-
locity of the ith UAV, and Pi,obstacle the set of obstacles 
detected by the ith UAV.  

The second cost function represents the perfor-
mance of UAV flocking and the degree of consistency 
with neighbors’ velocity, expressed as follows: 
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where l is the influence factor, and is set to 1. 

In addition, two constraints need to be satisfied, 
which are the distance between a UAV and an obsta-
cle and the distance among the UAVs within the 
safety threshold. 

Therefore, the obstacle avoidance control strat-
egy of multiple UAVs designed in this study can be 
transformed into a multi-objective optimization 
problem. Two cost functions are described above. The 
optimization parameter is the weight factor α, and the 
constraint conditions should be satisfied. 

Note that for the variables in this study, the dis-
tance unit is m, the time unit is s, the velocity unit and 
the rate of change in altitude unit are both m/s, and the 
angle unit is rad. In addition, the constants of the 
flocking model are set according to Qiu and Duan 
(2020). 

 
 

3  Multi-UAV obstacle avoidance control via 
MSLPIO 

3.1  Social learning pigeon-inspired optimization 

Cheng and Jin (2015) applied a social learning 
mechanism to PSO for the first time and obtained 
good results. The so-called social learning is the be-
havior of an individual to learn from its example. As 
an accessible example, you should learn from not 
only the students who are the first in school but also 
students who are better than you. The same principle 
applies to the biological groups. In this study, the 
social learning mechanism is introduced to MPIO, 
named MSLPIO. Detailed description of MSLPIO is 
given in this section. 

Generally, swarm size is an important parameter 
for PIO and MPIO. It has no specific rules and is 
usually set at random. Therefore, we develop a 
method to determine the swarm size according to the 

search dimension, which is expressed as follows: 
 

floor( 5),N M D= +                     (13) 
 

where N is the swarm size, M the base number, 
floor(D/5) the largest integer less than or equal to D/5, 
and D the search dimension. In this study, M is set to 
50. 

First, in the map and compass operation, pigeon 
positions and velocities are randomly generated and 
denoted as Xi=[xi1, xi2, …, xiD] and Vi=[vi1, vi2, …, viD] 
(i=1, 2, …, N), respectively. New position Xi and 
velocity Vi at the next iteration are updated as follows: 
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where R is the map and compass factor, set between 0 
and 1, nc the current number of iterations (when nc 
reaches the maximum iteration number of this stage, 
the map and compass operation ends), c1 the learning 
factor (c1=1−log(D/M)), and Xmodel the demonstrator 
position superior to the current pigeon. Each pigeon 
follows the superior one, and this is called the learn-
ing behavior. The schematic for selecting Xmodel is 
shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 

Second, in the landmark stage, pigeons from the 
center will be removed and other pigeons fly toward 
the center, which is called the social behavior. The 
update process is expressed as follows: 
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Fig. 1  Social learning mechanism: how to select Xmodel 
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where c2 is the social influence factor (c2=α(D/M), 
where α=0.5 is called the social coefficient) and  
Nremoved the number of the pigeons removed in each 
iteration. When nc reaches the maximum iteration 
number, the landmark operator will stop. 

3.2 Multi-objective social learning pigeon- 
inspired optimization (MSLPIO) 

For a multi-objective optimization problem, it 
needs to balance multiple cost functions and select the 
best solution. The Pareto sorting scheme has been 
successfully used in many multi-objective optimiza-
tion algorithms. It includes two steps: non-dominated 
sorting and crowded distance comparison. In this 
study, the Pareto sorting scheme is applied in 
MSLPIO. 

1. Pareto sorting scheme 
(1) Non-dominated sorting process 
Position Xi of the ith pigeon is considered supe-

rior to position Xj of the jth pigeon, when both of the 
following conditions are satisfied: 
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where Costk is the kth cost function. Note that these 
conditions are for the minimization problems. For the 
maximization problem, a larger Costk should be  
selected. 

Through a non-dominated sorting process, pi-
geons’ positions will be divided into different sets and 
denoted as 1 2, , ..., .X X X

mS S S  The surface formed by 

solutions in the best non-dominated set 1
XS  is known 

as the Pareto frontier. 
(2) Crowded distance comparison 
After the non-dominated sorting process, pi-

geons’ positions in each set are arranged in descend-
ing order from large to small crowded distance.  

The crowded distance of the ith pigeon in set X
jS  

is defined as follows: 
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ji n∈ −  and X
jn  is the number of 

pigeons in .X
jS  maxCostk  and minCostk  are the maxi-

mum and minimum of the kth cost function, respec-
tively. Dis(X1) and Dis( )X

jn
X  are set to ∞. To ensure 

the diversity of solutions, a greater crowding distance 
is deemed to be better. 

2. MSLPIO 
To improve the flexibility of the algorithm, the 

map and compass operation and the landmark opera-
tion are combined. The specific process is expressed 
below: 
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where Xmodel and nc 1
centerX −  are calculated from the data 

in Pareto frontier. 
The pseudo code of MSLPIO is shown in Algo-

rithm 1. 
 

Algorithm 1    MSLPIO 
/* Parameter initialization */ 
Set M=50, D=5, α=0.5, R=0.3, Nmax=20, Nremoved=2, N=M+ 
floor(D/5), c1=1−log(D/M), c2=α(D/M), and the upper and 
lower bounds of the position and velocity 
/* Pigeon initialization */ 
Initialize the positions and velocities of pigeons 
Calculate the cost function 
Obtain Xmodel and Xcenter by Pareto sorting 
/* Main loop */ 
1   for nc=1 to Nmax do 
2      Update positions by Eq. (18) 
3      Calculate the cost function 
4      Pareto sorting 
5      Calculate Xcenter by Eq. (15) 
6      Store the Pareto frontier in A 
7      Pick one solution from A as Xmodel 
8      nc=nc+1 
9      N=N−Nremoved 
10 end for 
11 Output the Pareto frontier 
     

To sum up, the complete steps of MSLPIO are as 
follows: 

Step 1: Determine the swarm size N according to 
the search dimension D and set the maximum number 
of iterations (Nmax). 

Step 2: Initialize the pigeons randomly with  
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position X and velocity V. Set the upper and lower 
limits of position and velocity and take the limit val-
ues if they exceed the range. 

Step 3: Calculate the cost function of each pi-
geon and perform the Pareto sorting scheme. Calcu-
late nc 1

centerX −  and add pigeons’ positions in the Pareto 
frontier to archive A (A is the historical information 
base, used to store the Pareto frontier). 

Step 4: Perform the Pareto sorting scheme again 
to pigeons’ positions in A and keep the new Pareto 
frontier in A, which is denoted as 1 .AA S=  Xmodel is 
any of A. 

Step 5: Update velocity V and position X ac-
cording to Eq. (18). 

Step 6: Update iteration counter nc by nc=nc+1. 
Step 7: Continue step 3 until nc reaches the 

maximum iteration number. Otherwise, output the 
optimal solution according to the Pareto frontier. 

3.3  Total process of the proposed control strategy 

According to the above UAV model and flocking 
control strategy, appropriate parameters are deter-
mined by MSLPIO, and finally the smooth passage of 
multiple UAVs in multiple obstacles is realized.  

The multi-UAV obstacle avoidance control 
strategy via MSLPIO is shown in Algorithm 2. 
 
Algorithm 2    The proposed control strategy 
1   Parameter initialization 
2   for t=1 to Tmax do 
3       for i=1 to N do 
4           Calculate control components by Eqs. (5)–(10) 
5           Obtain weight factor α by MSLPIO 
6           Obtain the final control variables and the control input 

of the ith UAV by Eqs. (2)–(4) 
7           Obtain the ith UAV state by Eq. (1) 
8           i=i+1 
9       end for 
10 t=t+1 
11 end for 
12 Output all UAV states 
     
 
4  Numerical simulation and comparison 
 

In this section, we used MATLAB R2016a as the 
simulation tool and proved the proposed method by 
five UAVs flying among seven obstacles. The five 
UAVs were simulated by MATALB and generated by 
the UAV model in Section 2.1. The UAV model pa-

rameters were as follows: τV=1 s, τφ=0.75 s, τa=1/3 s, 
τb=3 s. The maximum and minimum horizontal ve-
locities were 15 and 5 m/s, respectively. The maxi-
mum and minimum rates of change in altitude were 6 
and −6 m/s, respectively. The obstacles were circles 
with different radii. The sampling time was 0.5 s and 
the maximum running time (Tmax) was 42 s.  

Simulation results of the proposed method are 
shown in Fig. 2. In Fig. 2, the circles represent the 
obstacles, the triangles represent the UAVs, and the 
curves represent the flight paths of multiple UAVs. As 
can be seen in Fig. 2a, the obstacles were relatively 
dense, but multiple UAVs can form a tight formation 
and pass through the obstacles smoothly. UAVs did 
not pass through the obstacle areas above due to the 
designed control strategy. Velocity control compo-
nents include the component consistent with the ex-
pected speed. Expected velocity was in a horizontal 
direction, so UAVs tended to be along the horizontal 
direction through the obstacles (Fig. 2a). It was 
proved that the designed control strategy in this study 
is feasible. 

From Figs. 2b and 2c, in the obstacle areas, the 
speed fluctuated to a certain extent, and the yaw angle 
changed correspondingly. When multiple UAVs 
passed through the obstacle area, the velocity and yaw 
angle tended to be consistent very soon. From about 
35 s, the velocity and yaw angle of all UAVs remained 
consistent and converged to the expected level, 
proving good convergence of the proposed MSLPIO. 
All the results demonstrated the effectiveness of the 
proposed method. 

To highlight the advantages of MSLPIO based 
on the social learning mechanism, we made a com-
parison with the improved MPIO, and the simulation 
results are shown in Fig. 3. It can be seen from Fig. 3a 
that UAVs can pass through the obstacle areas; 
however, when the UAV flocking crossed the obstacle 
areas, several UAVs deviated from the course a little 
bit, and obvious bending occurred between 200 and 
250 m. As can be seen in Fig. 3b, the speeds of all 
UAVs did not converge in the end, but fluctuated all 
the time, reflecting the inappropriateness of the op-
timization algorithm. In Fig. 3c, five UAVs’ yaw 
angles eventually converged. The overall flocking 
control effect of MPIO was worse than that of the 
method proposed. 

To further demonstrate the superiority of the 
proposed method, the NSGA-II algorithm proposed  
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by Paul and Shill (2018) was simulated and analyzed, 
and the results are shown in Fig. 4. It can be seen that 
the UAVs can cross the obstacle areas well and the 
yaw angle can converge to the desired level, but the 
convergence speed was still poor. When crossing the 
first gap between two obstacles, the UAV group was a 
little crowded, and the formation of multiple UAVs 
gradually remained stable, but the speeds did not 
converge. This method is desirable in terms of the 
results of UAV flocking passing through obstacles, 
but it is inferior to the proposed method in terms of 
convergence. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Table 1, the convergence time of velocities 
and yaw angles under the three algorithms is given. 
Considering the convergence of velocity, we can see 
that for MPIO and NSGA-II, the velocities did not 
converge to the desired one, and for MSLPIO, the 
velocities of the five UAVs converged to the desired 
one at 37 s. As for the convergence of yaw angles, 
among the three algorithms, MSLPIO converged the 
fastest, MPIO the second, and NSGA-II the slowest. 
The convergence rate of MSLPIO was 3.33% higher 
than that of MPIO and 5.88% higher than that of 
NSGA-II. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4  Simulation results of NSGA-II: (a) obstacle avoidance process of UAV flocking; (b) velocity curves of UAVs;  
(c) yaw angle curves of UAVs 
Circles represent the obstacles, triangles represent the UAVs, and curves represent the flight paths of multiple UAVs 
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Fig. 3  Simulation results of MPIO: (a) obstacle avoidance process of UAV flocking; (b) velocity curves of UAVs; (c) yaw 
angle curves of UAVs 
Circles represent the obstacles, triangles represent the UAVs, and curves represent the flight paths of multiple UAVs 
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Fig. 2  Simulation results of MSLPIO: (a) obstacle avoidance process of UAV flocking; (b) velocity curves of UAVs;  
(c) yaw angle curves of UAVs 
Circles represent the obstacles, triangles represent the UAVs, and curves represent the flight paths of multiple UAVs 
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Through the above comparative analysis, alt-

hough the UAV flocking optimized by MPIO and 
NSGA-II can pass through the obstacle areas, the 
consistency is poor, the speed cannot converge 
eventually, and it is difficult to meet the stability re-
quirements. Finally, the validity and superiority of 
MSLPIO can be proved, and it has better convergence. 
Through the control parameter optimized by MSLPIO, 
multiple UAVs can smoothly pass through complex 
obstacles. 
 
 
5  Conclusions 
 

In this study, we improved MPIO using a social 
learning mechanism and successfully applied it to 
multi-UAV obstacle avoidance. The main conclusions 
are as follows: (1) The flocking control strategy does 
not need prior information about the environment, 
and the control framework is highly portable; (2) The 
convergence and consistency of MSLPIO are better 
than those of the comparable algorithms, and the UAV 
flocking can quickly converge to the expected level 
after crossing the obstacle areas. 
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