
FPGA-Based Hardware Modeling
on Pigeon-Inspired Optimization

Algorithm

Yu Zhao, Chun Zhao(B), and Yue Liu

Beijing Information Science and Technology University,
School of Computer Science, Institution of Smart Manufacturing & Complex System,

BISTU, Beijing 100101, China
zhaochun@bistu.edu.cn

Abstract. By learning behavioral characteristics and biological phe-
nomena in nature, such as birds, ants, and fireflies, intelligent opti-
mization algorithms (IOA) is proposed. IOA shows feasibility in solving
complex optimization problems in reality. Pigeon-inspired optimization
(PIO) algorithm, which belongs to intelligent optimization algorithms,
is proposed by the pigeons homing navigation behavior inspired. PIO is
superior to other algorithms in dealing with many optimization prob-
lems. However, the performance of PIO processing large-scale complex
optimization problems is poor and the execution time is long. Population-
based optimization algorithms (such as PIO) can be optimized by par-
allel processing, which enables PIO to be implemented in hardware for
improving execution times. This paper proposes a hardware modeling
method of PIO based on FPGA. The method focuses on the paral-
lelism of multi-individuals and multi-dimensions in pigeon population.
For further acceleration, this work uses parallel bubble sort algorithm
and multiply-and-accumulator (MAC) pipeline design. The simulation
result shows that the implementation of PIO based on FPGA can effec-
tively improve the computing capability of PIO and deal with complex
practical problems.

Keywords: Intelligent optimization algorithm · Pigeon-inspired
optimization · FPGA

1 Introduction

Intelligent optimization algorithm (IOA), also known as meta-heuristic algo-
rithm, is suitable for parallel processing, with strong versatility, good robust-
ness. IOA gets good results in a wide range of scientific and practical problems.
In recent years, IOA attracts a lot of research interest worldwide. Li et al. pro-
pose a simulation design optimization method of IOA based on MATLAB, which

Supported by the National Key R&D Program of China (No. 2018YFB1701600).
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
W. Fan et al. (Eds.): AsiaSim 2022, CCIS 1712, pp. 407–423, 2022.
https://doi.org/10.1007/978-981-19-9198-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9198-1_31&domain=pdf
https://doi.org/10.1007/978-981-19-9198-1_31


408 Y. Zhao et al.

effectively shorten the simulation design cycle and improve the accuracy of the
design to a certain extent [1]. Li et al. propose an extended Kalman filter (EKF)
algorithm based on particle swarm optimization (PSO), which can get smaller
filtering deviation for aircraft trajectory tracking [2].

Inspired by the homing behavior of pigeons, Duan and Qiao propose pigeon-
inspired optimization (PIO) in 2014 [3]. PIO shows good performance and
receives extensive research. Typically, Duan and Qiu propose a multi-objective
PIO method, which is suitable for solving multi-objective optimization problems
and successfully applies to parameter design of brushless direct current motor [4].
Alazzam et al. propose a discrete pigeon-inspired optimizer to solve the multi-
ple traveling salesmen Problem [5]. Zhang and Duan propose a modified PIO
model adopting Gaussian strategy and verify the feasibility and effectiveness in
solving orbital spacecraft formation reconfiguration problems [6]. Moreover, PIO
is also used to solve other problems, such as parameter design of the controller
for small unmanned helicopters [7], fuzzy energy management strategy for par-
allel hybrid electric vehicle [8], Underwater Wireless Sensor Networks [9], the
target detection task for Unmanned Aerial Vehicles (UAVs) at low altitude [10],
feature selection by improving binary pigeon-inspired optimization [11], active
disturbance rejection attitude controller for quadrotors [12] etc.

However, there are complex scenarios, large scale and complex comput-
ing problems in the real world, such as multi-task assignment, mixed resource
scheduling, complex control parameters. In application scenarios dealing with
large-scale and complex problems, the IOA, including PIO, execution efficiency
decreases. As the calculation complexity increases, the execution time of the PIO
increases rapidly, which degrades the performance of PIO. Due to the inherent
parallelism of the PIO, PIO can be designed on parallel acceleration platforms to
solve the above problems. Currently, studies on parallel design of IOA are mainly
divided into the following three patterns: multi-core (open multi-processing), dis-
tributed (MapReduce), and heterogeneous computing-based parallel platforms
(graphics processing unit-GPU, FPGA, Application Specific Integrated Circuit-
ASIC). The first two methods take a general-purpose computer as the hardware
carrier and divide tasks into several parts for parallel execution, but still serial
in nature. Heterogeneous computing refers to the use of hardware with different
architectures to speed up the task of computing. GPU as a parallel acceleration
platform is widely used, but GPU has the disadvantages of high power consump-
tion and insufficient flexibility. Using AISC to accelerates IOA algorithm is also
feasible, but ASIC is expensive and Not reconfigurable. FPGA is a reconfigurable
chip with flexibility and low energy consumption. Parallel design technology can
effectively accelerate IOA on FPGA platform. therefore, this paper presents a
PIO hardware modeling method based on FPGA, including parallelization anal-
ysis, state machine design, and IP core scheduling.

The rest of the paper is structured as follows. Section 2 reviews the typical
hardware modeling and implementation of IOA. Section 3 introduces the pro-
posed method. Result and analysis are carried out in Sect. 4. Section 5 concludes
this paper.



FPGA-based Hardware Modeling on PIO 409

2 Related Work

Intelligent optimization algorithms encounter challenges in the face of complex
calculations. In order to solve the above problems, researchers design various
acceleration methods on various platforms. There are some studies on paral-
lel design based on classic algorithms such as genetic algorithm (GA), particle
swarm optimization (PSO) and ant colony algorithm (ACO), while few research
on PIO. Zou et al. accelerate GA and PSO algorithm by using FPGA, open
multi-processing and Compute Unified Device Architecture (CUDA) [13]. Zhou
et al. execute PSO in parallel on GPU by using the general-purpose computing
ability of GPU and based on the software platform of CUDA from NVIDIA [14].
Menezes et al. propose a parallel design for ACO GPU-based. in which distinct
parallelization strategies are compared and analyzed [15]. Juang et al. propose a
parallel design of ACO and apply to a fuzzy controller [16]. Moreover, Djenouri
et al. improve bees swarm optimization algorithm by using GPU parallelism
[17]. Jiang et al. accelerate Whale Optimization Algorithm (WOA) by using
OpenCL-based FPGA parallel design [18]. Sadeeq et al. implement the firefly
optimization algorithm based on FPGA [19].

3 Hardware Modeling of PIO Based on FPGA

This section introduces the hardware modeling of PIO, first introduces briefly
PIO, then conducts modeling analysis from the perspective of acceleration, and
finally the detailed design method is given.

3.1 Pigeon-Inspired Optimization Algorithm

The PIO is proposed by mimicking the special navigation behavior of pigeons in
the homing process. In PIO, two operators are designed to mimic the mechanism
which pigeons use different navigation tools at different stages of finding a target.

Map and Compass Operator
Pigeons can sense the earth’s magnetic field using magnetic objects and form a
mental map. Pigeons use the sun’s altitude as a compass to steer flight, and as
pigeons approach target, pigeons rely less on the sun and magnetic field.

Landmark Operator
The landmark operator is used to mimics the influence of landmarks on pigeons
in navigation tools. The closer the pigeons get to destination, the more the
pigeons rely on landmarks. Pigeons familiar with landmarks fly straight to des-
tination. And pigeons unfamiliar with the landmark follow pigeons familiar with
the landmark.

Suppose the search space is n-dimensional, the i-th pigeon can be represented
by an n-dimensional vector, Xi = (xi,1, xi,2, ..., xi,n). The velocity of the pigeon,
which represents the change in position of the pigeons, can be represented by
another n-dimensional vector, Vi = (vi,1, vi,2, ..., vi,n). The global best position



410 Y. Zhao et al.

obtained by comparing the positions of all pigeons after each iteration is Xg =
(xg,1, xg,2, ..., xg,n). Then, each pigeon updates velocity and position according
to the following two equations:

Vi(t) = Vi(t− 1)e−Rt + rand(Xg −Xi(t− 1)) (1)

Xi(t) = Xi(t− 1) + Vi(t) (2)

where t is the current number of iterations; R is the map and compass factor, with
a range of [0, 1), which is used to control the impact of the latest velocity on the
current velocity; rand is a random number, uniformly distributed in [0, 1); Eq. (1)
is used to update velocity of the pigeon according to latest velocity of the pigeon
and the distance of current position of the pigeon from the global best position.
Then the pigeon updates position with new velocity of the pigeon according to
Eq. (2). As the number of iterations reaches the requirement, stop the work of
map and compass operator and continue to work in landmark operator.

In the landmark operator, pigeons depend on landmarks for flight. After
each iteration, the number of pigeons decrease by half by Eq. 3. Pigeons far
from destination are unfamiliar with the landmarks and can not discern the
path, such pigeons are discarded. Xc is the center position of the remaining
pigeons, which be used as a landmark and reference for flying. The equation in
the landmark operator is given as follow:

Np(t) =
Np(t− 1)

2
(3)

Xc(t) =
∑Np(t)

n=1 Xi(t)fitness(Xi(t))

Np

∑Np(t)
n=1 fitness(Xi(t))

(4)

Xi(t) = Xi(t− 1) + rand(Xc(t)−Xi(t− 1)) (5)

where Np is the size of the population; fitness is an evaluation function calculat-
ing the fitness of each pigeon. Equation (4) is used to calculate the center value
of pigeons. Then the pigeon flies toward a new position according to Eq. (5). As
the number of iterations of the landmark operator reaches the requirement, the
landmark operator stops working and the algorithm is finished.

3.2 Hardware Modeling Analysis of PIO

In order to improve the execution efficiency of the algorithm, finding the acceler-
ation in hardware modeling is necessary. Four kinds of acceleration are proposed
as follows.



FPGA-based Hardware Modeling on PIO 411

Multi-individual Parallelism
The intelligent optimization algorithm based on population have good paral-
lelism because the individual in each iteration is independent from each other.
Specifically, velocity updates, position updates, and individual evaluations of
PIO can all be processed in parallel.

Multi-dimensional Parallelism
Inside each operation of PIO, the dimensions are independent of each other.
Thus, multi-dimensional parallel operations can be implemented. Assuming a
solution space of 10 dimensions, the speed of multidimensional operations can
theoretically be increased by nearly 10 times.

Pipeline Design of Multiply-and-Accumulator (MAC) Circuit
To calculate the center value of the pigeons by Eq. (4), MAC operation is
required. This work can carry out pipeline design of MAC (see Fig. 1) to accel-
erate PIO. Pipeline design enables adder and multiplier to be fully utilized in
limited time.

Fig. 1. Pipeline design of MAC circuit.

Sort Algorithm Parallelism
In the landmark operator, sorting is required before calculate the center value
of better pigeons. This work exploits parallelism to implement bubble sort algo-
rithm. Parallel bubble sort allows parallel comparison and swapping of indepen-
dent data [20]. The Odd-even transposition technique is well suited for this case.
Let

A =< a1, a2, a3, ..., ai, aj , ..., an > (6)

is a list of n elements. Any pair of adjacent elements is called an element pair,
such as ai, aj . If the ai is odd, the element pair is an odd pair, and if the ai is
even, the element pair is an even pair.

The descending order of 10 numbers is taken as an example to illustrate
parallel bubble sort. A basic operator (see Fig. 2) including a phase of odd pair
and a phase of even pair which work sequentially is defined. But each phase is
compared and swapped in parallel. The parallel bubble sort algorithm is given
below (see Algorithm. 1).



412 Y. Zhao et al.

Fig. 2. Base operation of parallel bubble sort.

3.3 Parallel Design of PIO Based on FPGA

A new FPGA can be treated as a blank processor. Except specific logical
resources and other auxiliary computing resources, the hardware circuit can be
automatically generated after the HDL code is downloaded to the FPGA chip.

In this work, the pigeon population is stored in the top-level module’s signal.
And the PIO parameters are declared as follows: solution space dimension D =
10, the population size Np = 10, map and compass factor R = 0.2, the number
of iteration iter1 = 15 and iter2 = 15 for two operators.

The program flow design of PIO based on FPGA is shown in Fig. 3. And the
data flow is shown in Fig. 4.

Control Unit Design in FPGA
Since there is no controller in FPGA, designing the control unit (CU) is necessary.
CU is responsible for state switching within the algorithm, such as timing control,
communication, reading and writing memory, etc. There is also a CU inside each
module to improve the parallelism of the algorithm. In the top-level module
design, multiple Arithmetic logical unit (ALU) modules are used to carry out
multi-individual parallelism through CU.

Arithmetic Logical Unit (ALU) Design in FPGA
There is no fixed computing architecture and ALU in FPGA. Considering the
mathematical formula of PIO, designing ALU is necessary. Since there is no
decimal point calculation in FPGA, the design of ALU in this work chooses
floating point operation in accordance with IEEE754 international standard.
ALU can be used in parallel if there are sufficient logical resources in the FPGA.

Ten ALU modules are designed in this work, which are evaluation module,
sorting module, updating best fitness module, exponent module, random module,
updating velocity module in compass operator, updating position module in
compass operator, MAC module, center value module, and updating position
module in landmark operator. To make the description clearer, some control
signals, such as reset signal and enable signal, are hidden and each module is
described as follows:



FPGA-based Hardware Modeling on PIO 413

Algorithm 1. Parallel bubble sort algorithm (descending sort)
Input: A(an unsorted array of length n)
Output: A(an sorted array of length n)

i ← 0
while i < n

2
do

j ← 0
while j < n − 1 do /* Do in parallel */

if A[j] < A[j + 1] then
temp ← A[j]
A[j] ← A[j + 1]
A[j + 1] ← temp

end if
j ← j + 2

end while
j ← 1
while j < n − 1 do /* Do in parallel */

if A[j] < A[j + 1] then
temp ← A[j]
A[j] ← A[j + 1]
A[j + 1] ← temp

end if
j ← j + 2

end while
i = i+ 1

end while

Evaluation Module
In this work, using a general benchmark function [21] as fitness function to carry
out hardware modeling of PIO based on FPGA, and the benchmark function is:

fitness(Xi) =
n∑

i=1

[xi + 0.5]2 (7)

where Xi is the i-th pigeon, xi is i-th dimension of the pigeon. By comparative
experiments, PIO gets good performance while xi is [0, 15]. Hardware modeling of
evaluation module is shown in Fig. 5. The module operates according to Eq. (7).
The module uses multi-dimensional parallelism and receives a position and then
outputs a fitness value.



414 Y. Zhao et al.

Fig. 3. Program flow design of PIO.

Fig. 4. Data flow design of PIO.



FPGA-based Hardware Modeling on PIO 415

Fig. 5. Hardware modeling of evaluation.

Sorting Module
The sorting module sorts the pigeons according to fitness by using the above
parallel bubble sorting algorithm, and the hardware modeling of sorting is shown
in Fig. 6. The swapped module in the figure is used to compare and swap two
pigeons. Considering module reuse, the sorting module uses only five swapped
modules. More swapped modules are shown in the figure for ease of description.

Fig. 6. Hardware modeling of Sorting.

Updating Best Fitness Module
After the sorting is finished, by comparing two fitness values, the Xg may be
updated. Hardware modeling of updating best fitness module is shown in Fig. 7.

Fig. 7. Hardware modeling of updating best fitness



416 Y. Zhao et al.

Exponent Module
Approximation value of ex can be got by the kth-order Taylor polynomial (see
Eq. (8)). The accuracy of ex module changes as k changes (see Fig. 8). By contrast
experiment, let k = 5 can get sufficient precision. Hardware modeling of exponent
module is shown in Fig. 9.

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
(8)

Random Module
This work design random number generator by linear Feedback Shift Registers
(LFSR) [22]. A 8-bit random binary sequences can be got by 8-bit LFSR (see
Fig. 10). To get the random number, uniformly distributed in [0, 1), the “8-bit
random binary sequences” is defined as a 9-bit fixed point number. The fixed
point number consists of 1-bit sign digits, 3-bit integer digits and 5-bit fractional
digits. The value of 1-bit sign digits is 0. Obviously, the ranges of fixed point
number is [0, 8). And then the random number uniformly distributed in [0, 1)
can be got by divide the fixed point number by eight.

Fig. 8. Precision of exponent module,which x in range [0, 15].



FPGA-based Hardware Modeling on PIO 417

Fig. 9. Hardware modeling of exponent.

Fig. 10. 8-bit LFSR design.

Updating Velocity Module in Compass Operator
The updating velocity module in compass operator is used to update the velocity
of pigeon by Eq. (1). Hardware modeling of updating velocity module in compass
operator is shown in Fig. 11, which uses multi-dimensional parallelism.

Updating Position Module in Compass operator
The updating position module in compass operator is used to update the position
of pigeon by Eq. (2). Hardware modeling of updating position module in compass
operator is shown in Fig. 12, which uses multi-dimensional parallelism.

MAC Module
To calculate Xc by Eq. (4), MAC circuit is required. Hardware modeling of MAC
is shown in Fig. 13. Through the control of the finite state machine, the module
uses pipeline design.

Center Value Module
In the landmark operator, pigeons of low fitness value are discarded by Eq. (3),
and then the center value of remaining pigeons are calculated. To get the cen-
ter value (Xc), a center value module using multi-dimensional parallelism is
designed(see Fig. 14).



418 Y. Zhao et al.

Fig. 11. Hardware modeling of updating velocity.

Fig. 12. Hardware modeling of updating position in the compass operator.



FPGA-based Hardware Modeling on PIO 419

Fig. 13. Hardware modeling of MAC

Fig. 14. Hardware modeling of center value

Updating Position module in landmark operator
The updating position module in landmark operator is used to update the posi-
tion of pigeon by Eq. (5). Hardware modeling of updating position module in
landmark operator is shown in Fig. 15, which uses multi-dimensional parallelism.

Fig. 15. Hardware modeling of updating position in the landmark operator



420 Y. Zhao et al.

4 Results and Analysis

Equation (7) is the sum of squares formula, and xi in range [0, 15]. Obviously,
fitness get minimum value 2.5 while xi = 0, i = 1, 2, 3, ..., 10.

This work codes VHDL in ISE14.7 and gets the simulation waveform (see
Fig. 16). The best fitness of the pigeon population can be obtained after ini-
tialization is 562.14. After the compass and map operator, the best fitness of
pigeon population is reduced to 452.41. After the landmark operator, the best
fitness value reduces rapidly to 2.54, approximately reaching the true best value
2.5. In addition, clocks cost of each module is shown in Table 1. For compari-
son, Table 2 shows the cost of clocks required for each numerical operation. The
numbers involved in the numerical operation are all IEEE754 single-precision
floating-point format.

The exponent of e module takes a lot of clocks because the exponent of e
module requires massive multiplication, division, and addition by Eq. (8), which
causes the updating velocity module in compass operator also takes a lot of
clocks. The MAC module finishes a multiplication and addition only need 16
clock. The center value module requires ten times multiplication and addition,
so the center value module also needs a lot of clocks. By comparison, parallel
bubble sort is 6.95 times faster than serial bubble sort, and the more the number
of sorts, the more obvious the acceleration effect.

Fig. 16. Simulation waveform



FPGA-based Hardware Modeling on PIO 421

Table 1. Clock cost of each module.

Module name Clocks

Evaluation module 93
Sorting module 148
Updating best fitness module 4
Exponent module 259
Random module 43
Updating velocity module in compass operator 370
Updating position module in compass operator 34
MAC module 16
Center value module 242
Updating position module in landmark operator 88

Table 2. Clock cost of each numeric operation.

Operation Clocks

Add 12
Subtraction 12
Multiplication 8
Division 28

5 Conclusion

This paper presents a method of hardware modeling of PIO based on FPGA, and
improve the compute performance by parallel design. Firstly, modeling analysis
is carried out from the perspective of acceleration, and then the program flow
design and data flow design are presented. In addition, the research is a reference
for hardware modeling of other intelligent optimization algorithms.

In this work, state machine control is used in the whole process of hardware
modeling, including timing control, communication, reading and writing mem-
ory, etc. The ALU module uses multi-dimensional parallelism to accelerate PIO.
Through CU, multiple ALUs can be used in parallel to accelerate PIO.

In the future, parallel design of PIO can map to a specific FPGA chip to
validate PIO performance by comparing with other implementation methods. In
addition, PIO based on FPGA can be applied to practical engineering problems.

Acknowledgment. This work is supported by the National Key R&D Program of
China (No. 2018YFB1701600).



422 Y. Zhao et al.

References

1. Li, W., et al.: A simulation design and optimization method based on MATLAB
and intelligent optimization algorithm. In: Proceedings of 2020 China Simulation
Conference, pp. 396–402 (2020)

2. Li, L., et al.: Improved EKF aircraft trajectory tracking algorithm based on PSO.
In: Proceedings of the 33rd China Simulation Conference, pp. 64–69 (2021)

3. Duan, H., Qiao, P.: Pigeon-inspired optimization: a new swarm intelligence opti-
mizer for air robot path planning. Int. J. Intell. Comput. Cybern. 7(1), 24–37
(2014)

4. Qiu, H.X., Duan, H.B.: Multi-objective pigeon-inspired optimization for brushless
direct current motor parameter design. Sci. China Technol. Sci. 58(11), 1915–1923
(2015). https://doi.org/10.1007/s11431-015-5860-x

5. Alazzam, H., Alsmady, A., Mardini, W.: Solving multiple traveling salesmen prob-
lem using discrete pigeon inspired optimizer. In: 2020 11th International Conference
on Information and Communication Systems (ICICS). IEEE (2020)

6. Zhang, S., Duan, H.: Gaussian pigeon-inspired optimization approach to orbital
spacecraft formation reconfiguration. Chin. J. Aeronaut. 28(1), 200–205 (2015)

7. Zhang, D., Duan, H., Yang,Y.: Active disturbance rejection control for small
unmanned helicopters via Levy flight-based pigeon-inspired optimization. Aircraft
Engineering and Aerospace Technology (2017)

8. Pei, J.Z., YiXin, S., Zhang, D.H.: Fuzzy energy management strategy for parallel
HEV based on pigeon-inspired optimization algorithm. Sci. China Technol. Sci.
60(3), 425–433 (2017)

9. Yu, S., et al.: Node self-deployment algorithm based on pigeon swarm optimization
for underwater wireless sensor networks. Sensors 17(4), 674 (2017)

10. Li, C., Duan, H.: Target detection approach for UAVs via improved pigeon-inspired
optimization and edge potential function. Aerosp. Sci. Technol. 39, 352–360 (2014)

11. Pan, J.-S., et al.: Improved binary pigeon-inspired optimization and its application
for feature selection. Appl. Intell. 51(12), 8661–8679 (2021)

12. Yuan, Y., Duan, H.: Active disturbance rejection attitude control of unmanned
quadrotor via paired coevolution pigeon-inspired optimization. Aircraft Engineer-
ing and Aerospace Technology (2021)

13. Zou, X., et al.: Parallel design of intelligent optimization algorithm based on FPGA.
Int. J. Adv. Manuf. Technol. 94(9), 3399–3412 (2018)

14. Zhou, Y., Tan, Y.: GPU-based parallel particle swarm optimization. In: 2009 IEEE
Congress on Evolutionary Computation. IEEE (2009)

15. Menezes, B.A.M., et al.: Parallelization strategies for GPU-based ant colony opti-
mization solving the traveling salesman problem. In: 2019 IEEE Congress on Evo-
lutionary Computation (CEC). IEEE (2019)

16. Juang, C.-F., et al.: Ant colony optimization algorithm for fuzzy controller design
and its FPGA implementation. IEEE Trans. Ind. Electron. 55(3), 1453–1462 (2008)

17. Djenouri, Y., et al.: Exploiting GPU parallelism in improving bees swarm opti-
mization for mining big transactional databases. Inf. Sci. 496, 326–342 (2019)

18. Jiang, Q., et al.: Improving the performance of whale optimization algorithm
through OpenCL-based FPGA accelerator. In: Complexity 2020 (2020)

19. Sadeeq, H., Abdulazeez, A.M.: Hardware implementation of firefly optimization
algorithm using FPGAs. In: 2018 International Conference on Advanced Science
and Engineering (ICOASE). IEEE (2018)

https://doi.org/10.1007/s11431-015-5860-x


FPGA-based Hardware Modeling on PIO 423

20. Lipu, A.R., et al.: Exploiting parallelism for faster implementation of Bubble sort
algorithm using FPGA. In: 2016 2nd International Conference on Electrical, Com-
puter & Telecommunication Engineering (ICECTE). IEEE (2016)

21. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans.
Evol. Comput. 3(2), 82–102 (1999)

22. Babitha, P.K., Thushara, T., Dechakka, M.P.: FPGA based N-bit LFSR to generate
random sequence number. Int. J. Eng. Res. General Sci. 3(3), 6–10 (2015)


	FPGA-Based Hardware Modeling on Pigeon-Inspired Optimization Algorithm
	1 Introduction
	2 Related Work
	3 Hardware Modeling of PIO Based on FPGA
	3.1 Pigeon-Inspired Optimization Algorithm
	3.2 Hardware Modeling Analysis of PIO
	3.3 Parallel Design of PIO Based on FPGA

	4 Results and Analysis
	5 Conclusion
	References




