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a  b  s  t  r  a  c  t

A  key  issue  in  UAVs  (Unmanned  Air  Vehicles)  and  UAV-mounted  sensor  control  is the  target  search
problem:  finding  targets  in  minimum  time.  In this  paper,  we  proposed  a  restricted-direction  target  search
approach based  on  coupled  routing  and optical  sensor  tasking  optimization.  In  this  method,  we  consider
a single  UAV,  which  is  equipped  with  two  optical  sensors  to view  a limited  large  region  of  the  dynamic
eywords:
estricted-direction target search
nmanned Air Vehicle (UAV)
ptical sensor

environment.  The  UAV  moves  in  the  dynamic  environment,  searches  for targets  of interest,  and  is capable
of avoiding  obstacles  and  threats  immediately.  The  paths  are  obtained  considering  actual  maneuverability
limitations  of  the  UAV  and  are  evaluated  according  to  optimization  of  the  optical  sensor  tasks  for  the
duration  of  the  path.  Series  of comparative  experimental  results  demonstrate  that  this  algorithm  makes
effective  use  of  the  coupled  method  of  optimization  and  performs  significantly  better  than  previously
proposed  approaches.
. Introduction

Search theory, as we know it today, began with work by Koop-
an  [1],  Stone [2] and others. The work was initially motivated by

he desire to develop efficient search methods to find enemy marine
essels. Agencies such as the US Coast Guard have applied search
heory to search and rescue missions with great success, measured
n saved lives [3].  Other search applications include exploration and
urveillance [4].

Early search theory focused on the allocation of search effort to
reas within the search region, as finding optimal search paths on
hese areas is intuitive or searcher motion is unconstrained. If this
s not the case, we are presented with a more difficult problem of
nding optimal paths for the searchers. There are some studies of
he search problem as an optimal control problem in continuous
ime and space [5],  but these generally apply to a very restric-
ive set of initial target distributions. A more practical approach
s to discretize the search space and formulate the search problem
n a graph. Then the search path describes a sequence of regions

o search along with an amount of time that should be spent in
ach region. Although this discretization simplifies the problem
o some extent, it is still computationally very difficult. Trummel
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and Weisinger [6] showed that the single-agent search problem
is NP-Hard even for a stationary target. Eagle, Yee and Stewart
formulated the moving target problem as a nonlinear integer pro-
gram and proposed branch and bound algorithms to solve it. This
provided a significant computational reduction over a total enu-
meration, but the problem still has exponential complexity [7,8].
DasGupta et al. [9] presented an approximate solution for the sta-
tionary target search based on an aggregation of the search space
using a graph partition. Chen and Chang [10] proposed an agent-
based simulation for multi-UAVs coordinative sensing. Collins et al.
[4] proposed a graph-based approximation algorithm for coopera-
tive routing problems and achieved great success.

This paper addresses the search problem in which a single UAV is
searching for one or more targets in a bounded geographic environ-
ment, with the objective of locating targets of interest in minimum
time and avoiding obstacles and threats. The UAV  is equipped with
two  gimbaled optical sensors that can be steered to view a lim-
ited region of the environment it is visiting, known as field of view
(FOV). As the FOV moves on the ground and takes measurement,
it will gather information about the environment in the form of
automatic target recognition (ATR) data and determine whether
the target is located in a specific region or not. Besides, the UAV
is assumed to have some maneuverability limitations, which con-
strain the maximum turning radius.
Another important aspect of the search problem is control of
the optical sensor. As the sensors mounted onboard UAVs have
become more sophisticated and dynamically controllable, enabling
the sensing neighborhood to be steered about the UAV platform, the

dx.doi.org/10.1016/j.ijleo.2011.11.018
http://www.sciencedirect.com/science/journal/00304026
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Fig. 1. Diagram of a field of view (FOV) and field of regard of the optical sensor.

AV target search/ID problem has expanded from a 2-DOF or 3-DOF
ptimization problem for the UAV position, to a 4-DOF, 5-DOF, or
-DOF optimization problem for the UAV and sensor position [4].

We present in this paper a restricted-direction target search
pproach that jointly optimizes routes and optical sensor orien-
ations. We  consider a single UAV, which is equipped with two
ptical sensors to view a limited region of the environment it is
isiting, moving in geographic environment, searching for targets
f interest and avoiding obstacles and threats. Our method com-
utes paths considering actual maneuverability limitations of the
AV. This approach is coupled in that it evaluates paths based on
ptimization of the optical sensor tasks for the duration of the path.

. Problem formulation

Consider a single UAV is searching for one or more targets in a
ounded planar region � ⊆ R

2. The UAV is equipped with two gim-
aled optical sensors that can be steered around to view a limited
rea of the search region.

This section formulates the search problem as a discrete-time
ptimization in which the UAV and the optical sensor orientations
re controlled in a way to maximize the probability of locating the
argets in minimum time.

.1. Restricted-direction UAV dynamics and sensor model

Denote the position of the UAV by p(k), where p(k) ∈ � is the
AV’s position at time k, and k is a discrete time variable belong-

ng to the nonnegative integers. We  consider the actual kinematic
odel for the UAV, which can move only in a constrained region
ith a limited velocity owing to maneuverability limitations of its

wn, which constrain the maximum turning radius and the max-
mum turning angle. For each candidate path, we define a sensor
ask q(k) ∈ � that specifies the starepoint where the UAV will point
ts optical sensor at time k. The field of view associated with a par-
icular sensor task will generally depend not only on the orientation
f the sensor, but also on the UAV’s position and the characteristic
f the sensor.

The instantaneous sensing region of the sensor on the ground,
nown as the field of view (FOV), is modeled as a circle “footprint”,
s shown in Fig. 1. The complete region on the ground that could
e viewed by the camera as it is swept through its entire range of
otion (while the UAV was stationary) is called the field of regard

FOR) of the optical sensor (see Fig. 1). The FOV will move around
n the ground as a result of the motion the UAV platform and the

teerable gimbaled mechanism that houses the sensor, determin-
ng whether the target is found or not. There are mechanical and
ractical limits on how far the sensor can be steered. The angular
egion between these limits is the camera’s range of motion. Our
 (2012) 2226– 2229 2227

final goal is to control the UAV and the optical sensor so that they
move in a way  that maximizes the probability of finding the targets
in minimum time.

Suppose the UAV at position p(k) aims its optical sensor at the
point q(k) at some instant at time k. A target located in the region
FOV(q(k)) will have a probability of being precisely detected by the
sensor, which is generally referred to as the probability of detection
of the optical sensor, and denote it by PD. Furthermore, we assume
that the probability of detecting a target that lies outside of the
sensor’s FOV is zero. The general detection function is defined as
below:

D(q(k), x(k)) =
{

PD, x(k) ∈ FOV(q(k))
0, otherwise

(1)

2.2. State estimation of targets

In order to optimize how the agents and sensors should move, a
method is needed to estimate the probability distribution function
(PDF) of X(k) as it evolves over time. At each time step, the state
estimator computes the best location X̄(k) = (x̄(k), ȳ(k)) with the
highest target probability, but. In this paper, we assume that targets
appear in the region around the best location X̄(k) = (x̄(k), ȳ(k)),
with the probability of

f ((x, y), k) = 1√
2�ıxıy

e−((x−x̄(k))2/2�ı2
x )+((y−ȳ(k))2/2�ı2

y )) (2)

where (x, y) is a point around X̄(k) and f((x, y),k) represents the
probability that the target appears at point (x, y) at time k.

Considering nonlinear target dynamics and environmental con-
straints such as obstacles and threats, this class of estimators is
chosen, which includes grid-based probabilistic maps as well as
particle filters. The estimator dynamics can be expressed in general
form as{

x(k + 1) = fx(x(k), w(k), q(k))
w(k + 1) = fw(x(k), w(k), q(k))

(3)

where fx and fw represent the dynamic of the target state and the
weight respectively.

2.3. Search reward

Thus far we  have considered instantaneous probabilities of
detection D(q(k), x(k)), but the quantity we wish to minimize is
the time until the target is detected. This requires formulating a
search reward function r(k) in terms of a cumulative probability of
detection. Let T* denote a hypothetical time at which the target is
found by the search agent, and the search reward as the probability
that the target is found at time k is defined as follows

r(k):=P(T∗ = k) (4)

Thus, the search reward can also be expressed in further detail

r(k):=P(T∗ = 0) = 0 (5)

r(k):=P(T∗ = k) = P(T∗ ≥ k)P(T∗ = k|T∗ ≥ k) (6)

Since the events of finding the target at different times are mutually
exclusive, we can express P(T* ≥ k), the probability that the target
has not been found before time k, as
P(T∗ ≥ k) = 1 −
k−1∑
k=0

P(T∗ = k) = 1 −
k−1∑
k=0

r(k) (7)
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Consequently, the search reward can be rewritten as

(k):=
(

1 −
k−1∑
k=0

r(k)

)
P(T∗ = k|T∗ ≥ k) (8)

here P(T∗ = k|T∗ ≥ k) is the conditional probability that the target
ill be found at time k given that it was not found previously.

. Restricted-direction coupled routing and optical sensor
asking optimization algorithm

Our proposed method is a restricted-direction target search
pproach in that we take into consideration the UAV’s maneuver-
bility limitations and environmental threats, which constrains the
ovement of the UAV. That means at each time step, the UAV must

void threats and obstacles and can only choose paths in a limited
egion of a sector.

As the agent travels along a path P, it executes a series of spec-
fied sensor tasks, denoted by S(P, k):=(q(k), q(k + 1),  . . . , q(k +
P)). The route points p(k) and sensor tasks q(k) may  be chosen arbi-
rarily or computed by an optimization algorithm, which allows for
he following two possible methods of implementation. The tradi-
ional decoupled routing and sensor tasking optimization evaluates
aths based on all search reward that lies within an agent’s field of
egard along the entire path. It requires much less computation,
ut when the speed of the agent is too fast for the sensors to view
verything inside the agents’ FORs, or urban scenarios with line-of-
ight blockages, the performance of the approach will badly suffer
4].  In other words, the actual search reward collected in S(P) is
ower than in FOR(P) owning to some actual limitations like video
racking software processing speed and servos speed controlling
ensor gimbals.

To improve the searching performance and maximize the prob-
bility of finding the target, the coupled routing and optical sensor
asking optimization algorithm solves the routing and sensor task-
ng problems jointly. At each time step k, we expand the current

aypoint p(k) and obtain the next l-step waypoints. For each can-
idate path P, an optimal sensor schedule S*(P) is selected. The score
f S*(P) and the cost of path P is used to compare each candidate path
, and the selected path will be the one with the best score for an
mplementable schedule. Thus, in the coupled algorithm, candidate
AV paths are evaluated using a more accurate reward model.

The steps of the restricted-direction target search approach
ased on coupled routing and optical sensor tasking optimization
re presented in Fig. 2.

. Simulation results

Suppose a single UAV is searching a 100 km by 100 km square
egion � for two static targets and a mobile one. The field of view
f the optical sensor is modeled as a circle 1 km by diameter and
he field of regard is a circle 3 km by diameter. Enemy threats and
errain obstacles are spread across the searching region �, including
adar detection regions (Rf), mountains (M), bad weather regions
Bw) and no-fly zones (Fd) (see Fig. 3).

The UAV has a turning angle of 1.05 rad and can only move in a
imited sector at each time step. The UAV flies a distance of 2 km
efore the next waypoint is computed and takes three measure-
ents along the path. A simple particle filter is used to estimate

he dynamic state of the targets.
Fig. 3 shows the searching path and the target movement tra-

ectory. Solid dots represent the location where the targets are

etected and found, while soft ones mark targets’ initial location
ccording to any prior knowledge. The simulation result shows
hat the UAV managed to detect and find two of the three tar-
ets while successfully avoiding threats and terrain obstacles. The
Fig. 2. The flow chart of the whole searching procedure.

third target is missed partly because the UAV has a flight limitation
and has to abandon the region after a certain times of search. In
addition, inaccuracy of the optical sensor involving detection prob-
ability and false detection can also lead to the target being missed
(see Figs. 4 and 5).

Denote the number of detected and found targets, the total
length of the searching path and the searching times for each target
0 20 40 60 80 100
0

Fig. 3. A snapshot of the searching path and target movement trajectory.
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Fig. 5. A snapshot of the sensor tasks along the path.

Table 1
Algorithms performance comparison.

Method N L (km) S1/S2/S3

Coupled routing and optical 2 192.8055 8/5/30

c
p

5

m
a

sensor tasking optimization
Decoupled routing and optical

sensor tasking optimization
1 238.1766 8/30/30

ontributed to the fact that in the coupled algorithm, candidate UAV
aths are evaluated using a more accurate reward model.

. Conclusions
The target search problem is a key issue in UAVs and UAV-
ounted sensor control, which involves control of the UAV to

void obstacles and threats and manipulation of the optical
[
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sensor to locate targets of interest in minimum time. In this paper,
we proposed a restricted-direction target search approach based
on coupled routing and optical sensor tasking optimization. The
UAV moves in the dynamic environment, searches for targets of
interest, and is capable of avoiding obstacles and threats immedi-
ately. The paths are obtained considering actual maneuverability
limitations of the UAV and are evaluated according to optimiza-
tion of the optical sensor tasks for the duration of the path.
Series of comparative experimental results demonstrate that this
algorithm makes effective use of the coupled method of optimiza-
tion and performs significantly better than previously proposed
approaches.

Our future work will focus on how to apply the presented algo-
rithm to the actual search task of a UAV and try to improve its whole
performance.
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