
SCIENCE CHINA 
Technological Sciences 

© Science China Press and Springer-Verlag Berlin Heidelberg 2012  tech.scichina.com  www.springerlink.com 

                           
*Corresponding author (email: hbduan@buaa.edu.cn) 

Progress of Projects Supported by NSFC October 2012  Vol.55  No.10: 2712–2719 

 doi: 10.1007/s11431-012-4890-x  

Path planning of unmanned aerial vehicle based on improved 
gravitational search algorithm 

LI Pei1 & DUAN HaiBin1, 2* 

1 Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University,  
Beijing 100191, China;  

2 State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China 

Received October 29, 2011; accepted February 28, 2012; published online May 12, 2012 

 

Path planning of Uninhabited Aerial Vehicle (UAV) is a complicated global optimum problem. In the paper, an improved 
Gravitational Search Algorithm (GSA) was proposed to solve the path planning problem. Gravitational Search Algorithm 
(GSA) is a newly presented under the inspiration of the Newtonian gravity, and it is easy to fall local best. On the basis of in-
troducing the idea of memory and social information of Particle Swarm Optimization (PSO), a novel moving strategy in the 
searching space was designed, which can improve the quality of the optimal solution. Subsequently, a weighted value was as-
signed to inertia mass of every agent in each iteration process to accelerate the convergence speed of the search. Particle posi-
tion was updated according to the selection rules of survival of the fittest. In this way, the population is always moving in the 
direction of the optimal solution. The feasibility and effectiveness of our improved GSA approach was verified by comparative 
experimental results with PSO, basic GSA and two other GSA models. 
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1  Introduction 

Path planning of Uninhabited Aerial Vehicle (UAV) is a 
complicated global optimum problem, which is about seek-
ing a superior flight route according to the mission objec-
tives. Path planning is a key component of UAV mission 
planning system, which is to search out an optimal or 
near-optimal flight path between an initial location and the 
desired destination under specific constraint conditions 
[1–3]. Many factors are taken into consideration in model-
ing, such as terrain, data, threat information, fuel consump-
tion and time constraint. Series of algorithms have been 

proposed to solve this complicated optimization problem, 
including feasible direction method, the A* algorithm and 
genetic algorithm (GA). The research on UAV path plan-
ning at home and abroad advances towards intelligence, 
real-time and realizability, but it is still in an original state. 

Gravitational Search Algorithm (GSA) was originally 
presented as a new optimization algorithm by Esmat 
Rashedi in 2009, which is under the inspiration of the New-
tonian gravity [4]. It is a heuristic algorithm similar to Par-
ticle swarm optimization (PSO) and the swarm intelligence 
instructed optimization research is produced by cooperation 
and competition among swarms in colony [5]. It has been 
proved to possess a better performance in a serial of opti-
mization problems, compared with PSO algorithm and GA 
[6]. However, the algorithms have been proposed bring eas-
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ily premature convergence and are lack of effective acceler-
ation mechanism.  

To solve the problems above, an improved GSA is pro-
posed to generate the feasible flight route. Firstly, we intro-
duced the idea of memory and social information of PSO 
into GSA to get a superior performance. Secondly, a 
weighted value was assigned to inertia mass of every agent 
in each iteration process to accelerate the convergence 
speed of the search. Thirdly, the optimized solution saving 
strategy was used during the operation of selecting with 
reference to differential evolution (DE) algorithm [7]. The 
comparative experiments with PSO, basic GSA and two 
other GSA models are conducted, and the results show that 
our proposed method manifests better performance than the 
other models. 

2  UAV path planning problem 

We take the location that UAV flies into the enemy’s de-
fensive areas as a starting point and the tactical target’s lo-
cation of attack as the target point. Then we can obtain a 
network diagram connected the starting point and the target 
point by meshing the mission area. Thus the essence of the 
UAV path planning turns into a path-optimization problem. 
We assume that the UAV maintains constant flight altitude 
and speed when on a mission and the enemy’s defensive 
areas are flat, in this way the path planning problem is sim-
plified into a two-dimensional problem [8–10]. 

2.1  Environmental modeling for UCAV path planning 

Modeling of the threat sources is a key part in UAV optimal 
path planning. In our model, define the starting point and  

the target point respectively as S and T, as is shown in Fig-
ure 1. There are some threatening areas in the mission re-
gion, such as radars, missiles, and anti-aircraft artillery, 
which all are presented in the form of a circle, inside of 
which will be vulnerable to the threat with a certain proba-
bility proportional to the distance away from the threat cen-
ter, while out of which will not be attacked. The flight task 
is to generate an optimal path between S and T considering 
all these threatening areas. 

Firstly, we connect point S and point T, and divide seg-
ment ST into D equal portions. At each segment point, draw 
the vertical line of ST, defined as L1, L2, , Lk,  , LD-1. 
Take a discrete point at each vertical segment Lk, engender-
ing a collection of discrete points C={S, L1(x(1), y(1)), 
L2(x(2), y(2)), , Lk(x(k), y(k)), , LD(x(D-1), y(D-1)), T}. 
By connecting the points in sequence we can get a flight 
path. In this way, the path planning problem is turning into 
optimizing the coordinates series to obtain a better fitness 
value of the objective function. 

Coordinate conversion: We can let line ST be the x axis 
and take the coordinate conversion on each discrete point (x, 
y) according to eq. (2), where θ is the angle that the original 
x axis contrarotates to parallel segment ST and is presented 
by eq. (1), while (x′, y′) represents the coordinates in the 
original coordinate system and AB is the vector represents 
segment ST. 
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Figure 1  Typical UCAV battle field model. 
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2.2  Performance evaluation function of route optimi-
zation 

The performance indicators of the UAV route mainly in-
clude the threat cost and the fuel consumption, and the cal-
culating formulas of which are presented as follows [9]: 

  
0

min 1 d ,
L

t fJ kw k w s      (3) 

where J is the total cost for traveling along the trajectory, L 
is the total length of the generated path, and wt and wf are 
variables which denote the threat cost and fuel cost of each 
line segment on the route respectively, wt is close related 
with the current path point and wf can be considered equal 
to the length of path. While k is a adjustment coefficient 
between 0 and 1, which gives the designer certain flexibility 
to dispose relations between the threat exposition degree 
and the fuel consumption. When k is more approaching 1, a 
shorter path is needed to be planned, and less attention is 
paid to exposure to threats. Otherwise, when k is more ap-
proaching 0, it requires avoiding the threat as far as possible 
on the cost of more fuel consumption. 

2.3  Cost of the threats 

The cost factor of the i-th segment can be expressed as: 

    , ,1 ,   0 1 ,i t i f iw kw k w k      (4) 

where wt,i and wf,i denote the same with wt and wf , and k is 
the adjustment coefficient in eq. (3). 

Assume that there is no inter-relationship between each 
threat. To simplify the calculations, a computationally more 
efficient and acceptably accurate approximation to the exact 
solution is adopted. In this paper, the threat cost of each 
edge connecting two discrete points was calculated at five 
points along it instead of calculating at all the points along it, 
as is shown in Figure 2. If the i-th edge is within the effect 
range, the threat cost is given by the expression 
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where Nt is the number of threatening areas, Lij is the 
sub-path length connected the i-th and the j-th discrete 
points, d0.1,i,k is the distance from the 1/10 point of Lij to the 
k-th threat center, and tk is the threat level of k-th threat. 

3  Principle of basic GSA 

Gravitation is the tendency of masses to accelerate toward 
each other. It is one of the four fundamental interactions in 
nature. Every particle in the universe attracts every other 
particle, as is shown in Figure 3. The gravitational force 
between two particles is directly proportional to their mass-
es and inversely proportional to the square of the distance 
between them R according to Newton’s Law of Gravitation 
(Substantial experiments show that superior result will be 
seen in GSA if R2 was replaced with R [4, 6]): 

 1 2
2

,
M M

F G
R

  (6) 

where F is the magnitude of the gravitational force, G is 
gravitational constant, M1 and M2 are the mass of the first 
and the second particle respectively, and R is the distance 
between two particles. 

According to newton’s law of motion, when a force, F, is 
applied to a particle, its acceleration, a, depends only on the 
force and its mass, M, which can be expressed by 

 ,
F

a
M

  (7) 

where a is the acceleration of the particle under the action 
of force, F, and M represents the inertia mass of the particle. 

 
Figure 2  Calculation of the threats cost. 
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Figure 3  The law of gravity. 

To describe the GSA, consider a system with N particles 
in a D-dimension search space:  

  1 2,  , , .NX x x x   

And position of the i-th particle is defined as follows: 

  1 2, , , , , for  1,2, , ,d D
i i i i iX x x x x i N   ，  

where xi
d is position of the i-th mass in the d-th dimension 

and D is dimension of the search space. 
The gravitational force that the j-th particle applied on 

the i-th particle at a specific time “t” can be defined as 
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where Maj is the active gravitational mass related to agent j, 
Mpi is the passive gravitational mass related to agent i, G(t) 
is gravitational constant at time t, ε is a small constant, and 
Rij(t) is the Euclidian distance between two agents i and j at 
time t. 

G(t) is gravitational constant at time t 
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 (9) 

where G0 is the initial value of gravitational constant and we 
choose it as 100 in this work, and by adjusting α different 
gravitational constants will be got to control the search ac-
curacy, while T represent the maximum iteration number. 

Rij(t) is the Euclidian distance between two agents i and j 
at time t and it can be expressed as following: 

 
2
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To give a stochastic characteristic to our algorithm, we 
suppose that the total force acts on agent i in a dimension d 
be a randomly weighted sum of d-th component of the forc-
es exerted from other agents in the GSA: 
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where randj is a random number in the interval [0,1], and 
Fij

d is the force acting on agent i from agent j. 
Acceleration of agent i at time t can be expressed as fol-

lowing: 
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where Mi represents the inertia mass of agent i. 
Furthermore, the next velocity of an agent is considered 

as a fraction of its current velocity added to its acceleration. 
Therefore, its position and its velocity could be calculated 
as follows: 
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where randj is a uniform random variable in the interval [0, 
1]. 

Gravitational and inertia masses are simply calculated by 
the performance evaluation function. We update the gravi-
tational and inertial masses by the following equations: 
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where fiti(t) represent the fitness value of the agent i at time 
t. 

Worst(t) and best(t) are defined as follows (for a mini-
mization problem in UAV path planning): 
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4  Improved gravitational search algorithm 

4.1  Idea of memory and social information 

For both GSA and PSO, the optimization value are general-
ly obtained by agent movements in the global search space, 
however the movement strategies are different. In the 
searching procedure of GSA, the agent direction is calcu-
lated based on the overall force obtained by other agents, 
while GSA is memory-less and only the current position of 
the agents plays a role in the updating procedure. However, 
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PSO uses a kind of memory and social information among 
agents [4] (respectively due to the best position of an indi-
vidual and the best position agents have ever reached). And 
the searching strategy of PSO are expressed as: 
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      1 1 ,d d d
i i ix t x t v t     (19) 

where randj, randk are two random variables in the range [0, 
1], c1 and c2 are positive constants, w is the inertia weight, 
pbest is the best previous position of the i-th particle and gbest 
is the best previous position all the agents have ever 
reached. 

In this work, the basic GSA model is improved by 
adopting the idea of memory and social information of PSO. 
This scheme has a novel moving strategy in the searching 
space, obeying the law of gravity and receiving guide of 
memory and social information. The velocity updating 
equation can be defined as: 
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where randi, randj, randk are random variables in the range 
[0, 1], c1 and c2 are variables in the range [0, 1]. We can 
balance the effectiveness of “law of gravity” and effective-
ness of “memory and social information” through c1 and c2. 

4.2  Optimized solution saving strategy 

Selecting operation of the proposed method adopts the 
“survival of the fittest” strategy with reference to DE [11]. 
That is to say, to decide whether or not it should become a 
member of generation t+1, the trial vector newi

t is compared 
to the target vector currenti

t using the greedy criterion. If the 
trial vector has less or equal objective function value than 
the corresponding target vector, the trial vector will replace 
the target vector and enter the population of the next gener-
ation. Otherwise, the target vector will remain in the popu-
lation for the next generation. The selection procedure can 
be expressed by the following equation: 

 
   1 new , new current ,

path
current , others.

t
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4.3  Weight-based principle 

A heavy mass has a large effective attraction radius and 
hence a great intensity of attraction. Therefore, agents with 
a higher performance have a greater gravitational mass. As 
a result, the agents tend to move toward the best agent. 
Hence, agents with heavy inertia mass move slowly and 

search the space more locally. To have a faster convergence, 
we modified the principle of updating the inertial masses. 
With the weight-based principle, agents with heavy inertia 
mass become heavier, and those with small inertia mass 
become smaller. In this way, search ability of GSA has been 
enhanced.  

After updating the inertia mass of agents according to 
original GSA, weight value Ki will be added to every agent 
in each iterative process. Weight value Ki is defined as fol-
lows: 

 min min max max

min max

( ) ,i i

C M C M
K t M

M M


 


 (22) 

where Ki represents the weight value added to the inertia 
mass of the i-th agent, Cmax and Cmin are respectively maxi-
mum and minimum weight value, while Mmax and Mmin are 
respectively maximum and minimum inertia mass of each 
agent. 

4.4  Procedures of IGSA for path planning 

The implementation procedure of our proposed improved 
GSA approach to UAV path planning can be shown with 
Figure 4. 

The detailed procedure of our proposed improved GSA 
approach to UAV path planning can be described as fol-
lows. 

Step 1. Initialize the detailed information about the path 
planning task according to the environmental modeling. In 
order to simplify the calculation, conduct the coordinate 
transformation on discrete points related with the task ac-
cording to eqs. (1), (2). Divide segment ST into D equal 
portions, engendering a collection of discrete points, we 
take it as P={p1, p2, , pD}. 

Step 2. Radomly initialize N flight paths within the 
bound of the battlefield. 

Step 3. Calculate the cost of each path formed by relative 
parameters based on eqs. (3)–(5), and update the gravita-
tional constant G(t), minimum cost best(t) and maximum 
cost worst(t) according to eq. (9) and (17), then apply the 
weight-based principle to update the inertia mass of each 
agents. 

Step 4. Calculate the acceleration of the agents in differ-
ent directions based on eq. (11) and (12). 

Step 5. Calculate velocity of the agents based on the 
principle (eq. (20)) introduced the idea of memory and so-
cial information with reference to PSO. 

Step 6. Update the agents’ position and execute selection 
using the greedy criterion (eq. (21)) to enhance the evolu-
tion direction. 

Step 7. Repeat from Step 3 to Step 6 until the stopping 
criteria is reached. 

Step 8. Transform the path to the original coordinates 
system, and output the result. 
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Figure 4  The procedure of our proposed IGSA. 

5  Experimental results 

In order to investigate the feasibility and effectiveness of 
the improved Gravitational Search Algorithm to UAV path 
planning, a series of comparative experiments with other 
methods have been conducted under complicated combating 
environments. The experiments are conducted with win-
dows XP, and Matlab (ver 7.6). The detailed information 
about the path planning task, such as the coordinates of 
threat centers, threat radius and threat levels are set as fol-
lows. 

The initialization of the parameters of our improved 
Gravitational Search Algorithm: In all cases, population size 
is set to 50 (N=50). Dimension is 15 (D=15), Ncmax=200. 
For the velocity updating formula, we have c1=c2=0.5, and 
the maximum and minimum weight value Cmax=5, Cmin=1 
respectively. There are some threatening areas in the mis-
sion region, such as radars, missiles, and anti-aircraft artil-
lery. The comparative experimental results (contains path 
planning result and evolution curves of the original GSA, 
the improved GSA and PSO) are shown in Figures 5 and 6. 

It is noted that the “IGSA1” in Figure 5 represents the  
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Table 1  Task configuration of UAV 

Starting point Threat center Threat radius Threat level 

[10, 10] [45, 52] 13 2 

Target [17, 40] 13 10 

[55, 100] [28, 70] 10 1 

k [38, 26] 10 2 

0.5 [58, 80] 16 5 

 

 

 

Figure 5  The comparative evolution curves of PSO, GSA and the im-
proved GSA. 

 

Figure 6  Path planning results of PSO, GSA and the improved GSA. 

mation, while the “IGSA2” denotes the scheme with a 
weight-based principle and optimized solution saving strat-
egy assigned to the original GSA. 

It turns out our method can work better than the original 
GSA and PSO. As is shown in Figures 5 and 6, the path our 
scheme generated can bypassed the threat in the battlefield 
successfully, apparently showing that our method can find 
the feasible and optimal path for UAV more stable than 
basic GSA and PSO, and can effectively solve the path 

planning problem of UAV in complex combat field envi-
ronment. 

When the threaten radius reduced, we can recalculate the 
path according to the changed information. The simulation 
results can also be shown in Figure 6, which shows the fea-
sibility of our IGSA under different combat field environ-
ment. 

From the above experimental results, it is obvious that 
our improved gravitational search algorithm could jump out 
of the local optimum as well as speeding up the process of 
finding the optimal parameters. The experiments show that 
our proposed method is a more feasible and effective ap-
proach in solving UAV path planning problems, especially 
in complicated environments. 

6  Conclusion 

In this paper, a novel improved gravitational search algo-
rithm is proposed. The idea of memory and social infor-
mation of PSO is applied into GSA, and better performance 
can be attained in this way. Then, a weight-based GSA is 
proposed to improve the global searching ability by proper-
ly adjusting the inertia masses of agents. The optimized 
solution saving strategy was used during the operation of 
selecting with reference to differential evolution algorithm. 
The detailed procedure of the proposed approach for UAV 
path planning is also given in detail. The comparative ex-
perimental results show that our proposed method is more 
feasible and effective than other methods in UAV path 
planning.  

Our future work will focus on the exact application of 
our proposed method in UAV path planning, re-planning 
and flight controller design [12]. Multiple robots and multi-
ple UAVs coordinated control is also another hot issue in 
this field. 
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