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A quantum evolutionary computation (QEC) algorithm with particle swarm optimization (PSO) and two-

crossovers is proposed to overcome identified limitations. PSO is adopted to update the Q-bit automatically, and
two-crossovers are applied to improve the convergence quality in the basic QEC model. This hybrid strategy
can effectively employ both the ability to jump out of the local minima and the capacity of searching the global
optimum. The performance of proposed approach is compared with basic QEC on the standard unconstrained
scalable benchmark problem that numerous hard combinatorial optimization problems can be formulated. The
experimental results show that the proposed method outperforms the basic QEC quite significantly.
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Quantum computation has promised prodigious
powers in recent years. Its basic currency, the Q-bit,
exists in an ON or OFF verge, which is unknown un-
til it is read out. Therefore, operating on k Q-bits, a
potentially vast space of 2k values opens up for com-
putation which allows many computing problems to
be solved simultaneously, saving time. The funda-
mental operation on Q-bits is a rotation, with logic
gates used to combine the rotations. Particle swarm
optimization (PSO) is an evolutionary computation
technique inspired by observing the bird flocking or
fish school, which was firstly developed by Kennedy
and Eberhart[1] in 1995. The concept of the genetic
algorithm (GA) was put forward by Holland in the
1970s to study the self adaptation behavior of natu-
ral systems.[2] GA has a limited population size and
can be susceptible to the problems of premature con-
vergence and stagnation, which limit its wide applica-
tions in various fields. In contrast, Q-bit chromosomes
enjoy a rapidly growing population and strong ran-
domization. To overcome the shortcomings of GA, a
quantum evolutionary computation (QEC) algorithm
is proposed based on the concept and principles of
quantum computing. In QEC, Q-bit chromosomes,
which can represent a linear superposition of solu-
tions, are adopted to preserve the solution diversity
and overcome premature. At the same time, a quan-
tum rotation gate, which make full use of the infor-
mation of the current best individual, is employed to
update the individual and avoid stagnation.[3]

The basic QEC uses Q-bit gate rotation in muta-
tion and whole interference in crossover.[4] By using
a rotation operation, the information of the currently
best individual can be fully utilized to conduct the

next searching process, and the whole interference can
avoid prematurity. In this way, the global search ca-
pacity can be significantly improved, while the conver-
gence speed is slowed down. In order to further im-
prove the whole performance of QEC, a hybrid strat-
egy is proposed in this work.

In QEC, a qubit chromosome as a string of n qubits
can be defined as follows:[5]

q =
[

α1 α2 · · · αm

β1 β2 · · · βm,

]
(1)

where |αi|2 + |βi|2 = 1, i = 1, . . .,m, m is the number
of qubits and also the string length of the qubit indi-
vidual; |αi|2 gives the probability that the qubit will
be found in the state of “0”, and |βi|2 gives the proba-
bility that the qubit will be found in the “1” state. A
qubit chromosome is able to represent a linear super-
position of all possible solutions. It has a better di-
versity characteristic than a classical chromosome.[6]

The process to get a classical chromosome is to select
a random number between 0 and 1. If it is larger than
|αi|2, this bit in classical chomonsome is 1. Otherwise,
0 is chosen.

The standard mutation operation is totally ran-
dom without any directions, and the speed of conver-
gence is slowed down. However, in QEC, the qubit
representation can be regarded as a mutation opera-
tor. Directed by the current best individual, quantum
mutation is completed through the quantum rotation
gate U(θ), and [αi βi]T can updated with the following
equation, [

α′
i

β′
i

]
=

[
cos θi − sin θi

sin θi cos θi

] [
αi

βi

]
. (2)
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Figure 1 describes the polar plot of the rotation oper-
ation on a qubit[8]. It explains why the rotation gate
can increase the speed of convergence.
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Fig. 1. Polar plot of the rotation gate for qubit chromo-
some.

Table 1. Rotation angle.

xi besti f(x) > f(best)
θi

αiβi > 0 αiβi > 0 αiβi > 0 αiβi > 0

0 0 False 0 0 0 0
0 0 True 0 0 0 0
0 1 False 0 0 0 0
0 1 True −0.05π 0.05π ±0.05π 0
1 0 False −0.05π 0.05π ±0.05π 0
1 0 True 0.05π −0.05π 0 ±0.05π
1 1 False 0.05π −0.05π 0 ±0.05π
1 1 True 0.05π −0.05π 0 ±0.05π

Table 1 provides a convenient database for select-
ing the correct θi, which is determined by both the
quantum and classical chromosome, where xi is the
ith bit of the current classical chromosome, besti is
the ith bit of the current best classical chromosome,

f(x) is the adaptation function.[7]

This type of crossover operation is constructed us-
ing the interference characteristic of a qubit.[9] Table
2 shows the type of crossover operation.

Table 2. The whole interference crossover operation.

1 A(1) E(2) D(3) C(4) B(5) A(6) E(7)

2 B(1) A(2) E(3) D(4) C(5) B(6) A(7)
3 C(1) B(2) A(3) E(4) D(5) C(6) B(7)
4 D(1) C(2) B(3) A(4) E(5) D(6) C(7)
5 E(1) D(2) C(3) B(4) A(5) E(6) D(7)

The whole interference crossover operation can
make full use of the information in the chromosome,[10]

improve the unilateralism of classical crossover and
avoid premature convergence and stagnation prob-
lems.

In a quantum mutation operation, the rotation an-
gle is a fixed number, independent of whether the in-
dividual is better or worse.[11] When the whole in-
terference crossover operation tries to produce a new
solution to avoid premature convergence, this is unde-
sirable for maintaining current good solutions, and the
convergence speed of QEC is decreased. To improve
the convergence speed and avoid premature conver-
gence, we propose a hybrid QEC. The result is ex-
traordinary both in theory and experiments.

In our proposed hybrid QEC, we use PSO to op-
timize the angle of the rotation gate in quantum mu-
tation operation and adopt two-crossover operations.
The philosophy behind the original PSO is to learn
from individual’s own experience (personal best solu-
tion) and the best individual experience (global best
solution) in the whole swarm. Rotation angle is de-
termined by the following expression:

θ =
θmax · |η1 · rand1 · (Pid − Xid) + η2 · rand2 · (Pgd − Xid)|

(η1 + η2) · (Xmax − Xmin)
, (3)

where η1 is the cognition learning factor and η2 is the
social learning factor, usually η1 = η2 = 2. In some
cases, η1 equals to η2 and ranges from [0, 4]; rand1 and
rand2 are the random numbers uniformly distributed
in [0,1]. In this expression, we take the difference be-
tween the current solution and the best solution into
consideration. This expression ensures that the rota-
tion angle is between θmax and 0. The angle is smaller
if the current solution is better. In this operation, the
current fitness and the best fitness are involved. In
this way, the choice of angle is more reasonable. The
process of the evolution is optimized, and the conver-
gence speed is also improved.

The first crossover operation is the classical single
point crossover. A roulette selection operation is used
to choose two different quantum chromosomes from
the parent generations. The child generation is then
produced by crossover. After this process, two better
individuals can be chosen for the next generation by

evaluating their fitness. This operation is mainly to
improve the convergence speed and preserve the in-
structive information. Typically, we choose 0.6 to 0.9
as the crossover probabilities in this process.

The fitness of the whole population can be evalu-
ated by choosing the best one as the mutation direc-
tor. In this operation, we evaluate the current quan-
tum chromosome and use the rules shown in Table
1 to choose the direction of rotation angle. The an-
gle value can be determined by the PSO, mentioned
previously. We choose 0.01 to 0.2 as the mutation
probabilities. Although it is not traditional mutation
and the individual can also converge by this opera-
tion, the mutation probability cannot be very high,
in each generation, only one best individual can be
chosen. Meanwhile, a quantum chromosome is also
used, and the selection is random. Usually, we are
not sure if the “best solution” we choose is actually
the global best result. Furthermore, too much prob-
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ability is not good for evolution. Another crossover
operation, the whole interference crossover operation,
is adopted to prevent premature convergence. It can
bring new individuals to help the population jump out
of premature convergence. We also choose 0.01 to 0.2
as the crossover probability. Because it is used solely
to avoid premature convergence, we cannot use it in
high frequency.
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Fig. 2. Final chromosomes position of the basic QEC
(marked with asterisk).
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Fig. 3. The corresponding maximum and average evolu-
tion curves of the basic QEC.
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Fig. 4. Final chromosomes position of the improved QEC
based on PSO and two-crossovers (marked with asterisk).

In order to investigate the feasibility and effective-
ness of the proposed hybrid QEC with PSO and two-
crossovers, a series of experiments are conducted on
the following Benchmark problem:

Maxf(x) = x + 10 sin(5x) + 7 cos(4x). (4)

The original chromosomes are produced with strong
randomization, and n = 10, N = 5, L = 22, Pcc = 0.9,
Pic = 0.2, Pm = 0.2, Ncmax = 100. Figure 2 shows
the final chromosomes position of the basic QEC with
fixed rotation angle. It is apparent that it is easy to

fall into premature convergence. The corresponding
maximum and average evolution curves of the basic
QEC are presented in Fig. 3.

Figure 4 shows the final chromosomes position of
the improved QEC based on PSO and two-crossovers,
and Fig. 5 shows the corresponding maximum and av-
erage evolution curves of the proposed QEC.

It is obvious that our proposed QEC model can
find better solutions than the basic QECs in solv-
ing combinatorial optimization problems, and the im-
proved QEC model can avoid premature convergence,
which usually occurs in the basic QEC model.
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Fig. 5. The corresponding maximum and average evo-
lution curves of the improved QEC based on PSO and
two-crossovers.

In summary, our proposed QEC with PSO and
two-crossovers has much better performance, with
strong ability to find the optimal solution and quick
convergence speed. Our future work is to investigate
how to implement our method by a real quantum ma-
chine.
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