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Abstract    
Multiple Uninhabited Aerial Vehicles (multi-UAVs) coordinated trajectory replanning is one of the most complicated 

global optimum problems in multi-UAVs coordinated control. Based on the construction of the basic model of multi-UAVs
coordinated trajectory replanning, which includes problem description, threat modeling, constraint conditions, coordinated 
function and coordination mechanism, a novel Max-Min adaptive Ant Colony Optimization (ACO) approach is presented in 
detail. In view of the characteristics of multi-UAVs coordinated trajectory replanning in dynamic and uncertain environments, 
the minimum and maximum pheromone trails in ACO are set to enhance the searching capability, and the point pheromone is 
adopted to achieve the collision avoidance between UAVs at the trajectory planner layer. Considering the simultaneous arrival
and the air-space collision avoidance, an Estimated Time of Arrival (ETA) is decided first. Then the trajectory and flight velocity 
of each UAV are determined. Simulation experiments are performed under the complicated combating environment containing 
some static threats and popup threats. The results demonstrate the feasibility and the effectiveness of the proposed approach. 
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1  Introduction 

Uninhabited Aerial Vehicle (UAV) is an inevitable 
trend of the modern aerial weapon equipments which 
develop in the direction of unmanned attendance and 
intelligence[1]. Research on UAV directly affects battle 
effectiveness of the air force. Trajectory planning is to 
generate a space path between an initial location and a 
desired destination that has an optimal or near-optimal 
performance under specific constraint conditions, which 
is an imperative task in the design of UAV. There are 
several considerations for an ideal trajectory planner, 
including optimality, completeness and computational 
complexity, which is also the most important require-
ment since trajectory planning has to occur quickly due 
to fast vehicle dynamics[2]. The current combating en-
vironments are not static but are constantly changing 
with many uncertain factors. In the air battlefield, there 
are not only a number of static threats which have been 
known a priori, but also others “pop up”, or some threats 

that become known only when one UAV maneuvers into 
their proximity. Furthermore, even those static threats 
whose locations have been detected ahead of time, their 
threat grade or threat scope may change frequently, 
which also makes them uncertain. Considering these 
uncertain factors, the pre-planned trajectories often do 
not adapt to the changing air battlefield. In order to in-
crease the survival chance of multiple Uninhabited Ae-
rial Vehicles (multi-UAVs), the trajectory replanning is 
essential while encountering the popup threats[3–6]. 
Suppose maximizing the probability that the mission in 
dynamic and uncertain environments will succeed, it is 
desirable to assign multi-UAVs to conduct all the mis-
sions together[7], and thus the problem of multi-UAVs 
coordinated trajectory replanning is put forward. 

Multi-UAVs coordinated trajectory replanning is to 
generate new trajectories from their current sites to the 
desired destinations after popup threats are detected. The 
new trajectories should have the optimal or near-optimal 
coordinated performance under specific constraints, 
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which not only requires multi-UAVs to fly through 
enemy region safely but also demands multi-UAVs to 
reach their targets simultaneously or at a certain interval 
time, as well as to avoid various collisions[8]. 

Ant Colony Optimization (ACO) was firstly put 
forward by Colorni et al. in 1991[9], which was originally 
presented under the inspiration of the collective behavior 
study results on real ant system[10]. The inspiring source 
of ACO is the foraging behavior of real ants which en-
ables them to find the shortest paths between nest and 
food sources[11]. The promising ant colony algorithm is a 
relatively new optimization technique, and also a 
model-based approach for solving many complicated 
combinatorial optimization problems[12]. It has been 
applied extensively to many NP-hard problems such as 
the Traveling Salesman Problem (TSP), the Job-shop 
Scheduling Problem (JSP), the Vehicle Routing Problem 
(VRP), the Graph Coloring Problem (GCP), the Quad-
ratic Assignment Problem (QAP), and so on[13,14]. As for 
the UAV coordinated control field, this approach has 
also been applied to such problems as the target as-
signment[15], the path planning[16–19], formation control, 
and so on. However, the basic ACO model is easy to fall 
into local best, and the convergence speed is rather slow 
in solving complex problem. 

In this paper, a novel coordinated trajectory re-
planning approach for multi-UAVs is proposed, which is 
based on the Max-Min adaptive ACO. The main char-
acteristics of our proposed algorithm is that ants of each 
sub-population take both their own route information 
and that of other sub-populations as the colligate deci-
sion information. The coordination of multi-UAVs is 
considered mainly from two aspects:  

(1) Simultaneous arrival, which requires deter-
mining an Estimated Time of Arrival (ETA) at the spe-
cific destinations[20]. Each UAV selects candidate tra-
jectory, and adjusts the flight velocity corresponding to 
the ETA. Of course, the multi-UAVs trajectories and 
velocities will change coordinately when some popup 
threats occur. 

(2) Collision avoidance, which requires that the 
trajectories of multi-UAVs should have no overlaps or 
crosses between each other.  

The experimental results are also presented to ver-
ify that our approach is feasible and effective for solving 
the multi-UAVs coordinated trajectory replanning 
problems. 

The remainder of this paper is organized as follows: 
Section 2 introduces the basic model of multi-UAVs 
coordinated trajectory replanning, which is divided into 
several sub-sections, including problem description, 
threat modeling, constraint conditions, coordinated 
function and coordination mechanism. Subsequently, the 
principle of our proposed Max-Min adaptive ACO al-
gorithm and its application to multi-UAVs coordinated 
trajectory replanning are presented in Section 3. Then, in 
Section 4, several simulation experiments are conducted 
under various complicated combating environments. 
Our concluding remarks and future work are summa-
rized in the last section. 

2  Model of multi-UAVs coordinated trajec-
tory replanning 

2.1  Description of multi-UAVs coordinated trajec-
tory replanning 
Multi-UAVs coordinated trajectory planning is to 

generate a safe and short trajectory for each UAV. In 
addition, the trajectory should satisfy the requirements 
concerning multi-UAVs’ coordinateness. Therefore, in 
the issue of multi-UAVs coordination, the planned tra-
jectories may be not optimal for any individual vehicle, 
but they are required to be optimal or near optimal for 
the whole team[21]. 

Suppose that a formation of multi-UAVs is required 
to fly through the enemy territory and to attack the same 
or different known target locations. There are a number 
of threats in the flight environment, some of them are 
known a priori, whereas others popup or become known 
only when a UAV maneuvers into its proximity. We 
assume that each UAV is equipped with sensing capa-
bility so that they can detect the popup threats in their 
surroundings. We also assume that the multi-UAVs are 
equipped with a communication network, so they can 
inform other UAVs of the popup threats’ information 
that they just detected. As shown in Fig. 1, the UAVs 
formation is commanded to attack an enemy objective. 
UAVs fly along their preplanned trajectories with re-
spective flight velocity, and they are required to arrive at 
the same time given via planning. When one popup 
threat appears just on one UAV’s flight route and poses a 
threat to it, the current trajectory is not feasible but even 
dangerous. At this moment, the UAV has to find other 
new trajectory. Meanwhile, in order to ensure that the 
multi-UAVs formation launch an attack simultaneously 
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and avoid collision, it is also necessary for other UAVs 
in the formation to adjust their respective trajectories, 
and thus, the coordinated trajectory replanning for the 
whole formation is inevitable. Moreover, along with the 
change of multi-UAVs’ trajectory, the ETA is also con-
firmed again accordingly, as well as the flight velocity of 
each UAV.  

 

Replanned trajectory

Popup 
threat

Radar

UAV-2
Missile

Radar

Original planned trajectory

UAV-1

 

Fig. 1  Description of multi-UAVs coordinated trajectory replan-
ning. 
 
2.2  Threat sources modeling 

Modeling of threat sources is the key task in 
multi-UAVs optimal trajectory replanning. In order to 
simplify the multi-UAVs trajectory replanning problem, 
the air battlefield can be divided into two-dimensional 
mesh, thus forming a two-dimensional network diagram 
connecting the starting point and goal point[15] (shown in 
Fig. 2). In this way, the problem of UAV optimal tra-
jectory planning can be regarded as the general path 
optimization problem in essence. 

In Fig. 2, suppose the flight mission for UAV is 
from node B to node A. There are some threatening areas 
in the battlefield. A coordinate system can be established 
with OX as the x axis and OY as the y axis, which covers 
the whole task region including the starting points, tar-
gets and all threatening regions that may pose threat to 
the UAV. Then, we divide OX into m sub-sections, and 
divide OY into n sub-sections equally. Thus, there are 
m+1 vertical lines and n+1 horizontal lines. Where the 
m+1 vertical lines can be labeled with L1, L2, …, Lm+1. 
The m+1 vertical lines and the n+1 horizontal lines 
cross-constitute (m+1) × (n+1) nodes. We name these 
nodes as L1(x1,y1), L2(x2,y1),…, Lm+1(xm+1,y1), … , 
L1(x1,yn+1), … , Lm+1(xm+1,yn+1), where Li(xi, yj) denotes 
the cross point of the i-th vertical line and the j-th hori-
zontal line. In this way, the path from the starting point 
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Fig. 2  Typical UAV battle field model. 

 
B to the target point A can be described as follows[15,19]: 

{ }
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k k ki i j i i j i i jB L x y L x y L x y A= " , 

where ik = 1, 2,…, m+1, jk = 1, 2,…, n+1. 
After the construction of the two-dimensional mesh 

covering the whole task region, the following work is to 
calculate the threat cost of each edge. As for those edges 
in the threatened ranges of enemy’s radar and 
anti-aircraft weapons, the threat cost to be minimized in 
the trajectory planning is the received radar energy from 
the radar sites[22], which is: 

,threat 2 20
1

1 d
(( ) ( ) )

t
ij

NL

ij
k k k

2J l
x x y y=

=
− + −∑∫ ,

    
  (1) 

where Lij denotes the edge length linking the i-th and the 
j-th nodes in the generated mesh, (xk, yk) is the coordi-
nate of the k-th threat source; Nt is the number of threats 
including radars, missiles and anti-aircraft guns that can 
pose threat to the edge (i, j). However, this equation is 
hard to calculate, so a computationally more efficient 
and acceptably accurate approximation to the exact so-
lution is to calculate the threat cost at several locations 
along an edge and take the length of the edge into ac-
count. In this paper, the threat cost was calculated at five 
points along each edge[15,19], as shown in Fig. 3. 
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Fig. 3  Threat cost at five points along an edge. 
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The threat cost associated with the edge (i, j) is 
given by the following equation[1,4,15,17–19,21,23]: 

,threat 4 4 4 4 4
1 0.1, 0.3, 0.5, 0.7, 0.9,

1 1 1 1 1( )
tN

ij ij k
k k k k k

J L w
d d d d d=

= + + + +∑
k

, 

(2) 

where d0.1,k is the distance from the 1/10 point on the 
edge (i, j) to the k-th threat, wk denotes a threat weighting 
coefficient, which is used to evaluate the threat grade of 
each threat source. 

Moreover, it can simply consider the fuel cost Jfuel 
equals to the path length L, and thus, the fuel cost asso-
ciated with each edge Jij,fuel is equal to Lij. The total cost 
for traveling along the edge (i, j) comes from a weighted 
sum of the threat and fuel costs[1,4,15,17–19,21,23]: 

        (0 ≤ f ≤ 1).   (3) ,threat ,fuel(1 )ij ij ijJ f J f J= ⋅ + − ⋅

The choice of f between 0 and 1 gives the designer 
certain flexibility to dispose relationships between the 
threat exposition degree and the fuel consumption. 
When f is closer to 0, a shorter path is needed in order to 
reduce the fuel consumption, with less attention paid to 
the radar’s exposed threat. On the contrary, when f is 
closer to 1, it requires avoiding the threat as far as pos-
sible on the cost of sacrificing the trajectory length. For 
this work, a value of 0.75 was found to produce paths 
that were balanced in terms of threat avoidance and path 
length. 

 
2.3  Constraints conditions of multi-UAVs coordi-

nated trajectory replanning 
Comparing with the trajectory planning of a single 

UAV, the difference of multi-UAVs coordinated path 
planning also lies in the constraint conditions that ought 
to be taken into account. Besides the physical properties 
and mission demands of a individual vehicle, the coor-
dination and cooperation among various UAVs bring 
several extra co-constraints, including timing constraint 
that UAVs should reach objectives simultaneously, col-
lision avoidance, and so on. Our work mainly involves 
the following three constraints: 

(1) Minimum flight turning radius constraint: Con-
sidering the maneuverability of UAV, the turning radius 
in the generated trajectory must be larger than the 
minimum turning radius of each UAV, which means the 
planned trajectory should avoid larger turning. In this 
paper, we set the constraint on the choice of waypoint 

(node) as shown in Fig. 4. 
 

 
Fig. 4  Constraint on the node selection. 

 
In Fig. 4, the center node in the square is the current 

site of the UAV, (b) is the last waypoint just before cur-
rent one. Considering that UAV cannot take too big 
turning, next waypoint can only be selected from those 
points labeled with (a). 

(2) Timing coordination constraint: Under this kind 
of coordination constraint, the goal is to decide the co-
ordinated arrival time for multi-UAVs. The trajectory 
generated for multi-UAVs should ensure the 
multi-UAVs arriving at their respective targets simulta-
neously (as shown in Fig. 5). The multi-UAVs must 
minimize their exposure to threats under the constraint 
of simultaneous arrival. Therefore, we should compre-
hensively consider both the length of trajectory and 
UAVs’ flight velocity to assign the team-optimal ETA 
for the multi-UAVs formation. 
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Fig. 5  Feasible region of arrival time. 

 
Suppose that N UAVs participate in the flying mis-

sion. Each vehicle flies along its route with the velocity 
constraints v∈[Vmin, Vmax]. For the j-th trajectory planned 
for the i-th UAV, of which the length is labeled as Li,j, we 
determine the range of its ETA as[5,8,20]: 

, ,
,

max min

[ ,i j i j
i j

L L
T

V V
∈ ]  .                            (4) 

We assume the i-th UAV has generated num candi-
date trajectories, and thus, its estimated time for arrival 
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is a union Si determined as: 

,1 ,1 ,2 ,2 , ,

max min max min max min

[ , ] [ , ] [ ,i i i i i num i num
i

L L L L L L
V V V V V V

=S ∪ ∪"∪ ] . (5) 

As for the UAVs formation with N vehicles, the ar-
rival time must be contained in the time intersection as 
follows: 

S

1 2 N=S S S S∩ ∩"∩ .                        (6) 

If S is not a void, assume such a time Ta∈S, and 
each UAV must have at least one trajectory satisfying the 
arrival time Ta , and thus Ta can just be regarded as the 
ETA. By this method, it is available for multi-UAVs to 
satisfy the requirement of simultaneous arrival. 

(3) Air collision avoidance constraint: Another co-
ordination requirement concerned in multi-UAVs coor-
dinated trajectory replanning is to reduce the risk of 
collision, which is so-called air-space coordination. 
Because our work is based on the 2-D space with the 
assumption that all individual UAVs fly at the same 
altitude, a proper approach to ensure that no collision 
will occur is to eliminate any overlap between two 
UAVs’ trajectories[21]. It is clear that if the proportion of 
overlaps in the entire trajectory is bigger, the probability 
of collision is greater. Therefore, multi-UAVs’ coordi-
nated trajectory should ensure non-overlap as far as 
possible to implement air-space coordination. 

 
2.4  Coordination function 

In multi-UAVs coordinated trajectory replanning, 
the essential idea is that if each vehicle knows the coor-
dination variable and responds appropriately, the coor-
dinated behavior can be achieved. For the timing coor-
dination constraint of simultaneous arrival introduced in 
the preceding section, the key coordination variable is 
the arrival time. That is to say, the key work of the 
multi-UAVs coordination is to select a proper factor 
from the time intersection S determined in Eq. (6) as the 
value of the coordination variable. To do this, it is nec-
essary to construct the coordination function Jco to de-
termine the coordination variable[8,20]. 

co, , , 1 , 2 ,( )i j i j i j i jJ T f J f T= ⋅ + ⋅ ,               (7) 

where f1 and f2 are two constants, which may be the same 
or different for various UAVs. The variable Ji,j denotes 
the cost of the j-th trajectory planned by the i-th UAV, 
which is determined by the equation Ji,j= 

f ·Ji,j,threat+(1−f) ·Ji,j,fuel (0≤ f ≤1), which is definite for a 
specific trajectory. Thus, the arrival time Ti,j is the only 
independent variable determining Jco,i,j. The entire cost 
of the multi-UAVs is: 

co co, , ,
1 1

(
N Num

i j i j
i j

J J
= =

= ∑∑ )T  .                  (8) 

Fig. 6 shows the relationship between Jco,i,j and Ti,j 
for each trajectory[1]. As shown in Fig. 6, in order to 
minimize the entire coordination function, the coordi-
nated arrival time Ta often selects the minimum of the 
feasible region, that is Ta = min S. 
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Fig. 6  Determination of the coordination variable. 

 
2.5  Coordination mechanism of multi-UAVs trajec-

tory replanning 
The framework of the trajectory planning for a 

single UAV consists of three main layers: the coordina-
tion decider, the trajectory planner, and the trajectory 
smoother. The trajectory planner quickly calculates a 
series of safe enough straight-line trajectories. Commu-
nication between the trajectory planner and the coordi-
nation decider can help to generate candidate trajectories 
avoiding overlaps with those of other UAVs. These 
candidate trajectories are used by the coordination de-
cider to determine coordination information such as the 
coordinated time. Because the straight-line trajectories 
produced by the trajectory planner are not dynamically 
feasible for the UAV to fly, the trajectory smoother is 
employed to generate flyable trajectories and send 
commands to the UAV autopilot. The function of the 
dynamic trajectory smoother is to smooth junctions in 
the trajectory with a sequence of radial arcs that the UAV 
can fly along. It is essential for timing-critical missions 
that the length of the original straight-line trajectory 
must be preserved in the smoothing process. Fig. 7 dis-
plays this mechanism. 
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Fig. 7  Trajectory planning mechanism for a single UAV. 
 

Fig. 8 describes the coordination mechanism of 
multi-UAVs trajectory replanning[8]. The framework is 
distributed, enabling each UAV to perform its own tra-
jectory planning sub-systems. The algorithm imple-
mented on each UAV in the coordination decider is 
identical. Multi-UAVs communicate the coordination 
information in the forms of coordination function and 
coordination variable in the coordination decider layer. 
Using the coordination information, multi-UAVs calcu-
late the coordinated arrival time for the UAVs formation, 
which is just the ETA. After that, the coordination de-
cider calculates the flying velocity for each UAV ac-
cording to the generated trajectory and the ETA. Al-
though only three UAVs are shown in Fig. 8, the dis-
tributed structure of the framework applies to larger 
numbers of multi-UAVs obviously. 

 

 
Fig. 8  Coordination mechanism of multi-UAVs trajectory re-
planning.  

Furthermore, modern UAVs are equipped with the 
ability to detect their surroundings, so that they can 
sense the popup threats occurring in the mission region. 
The cause of trajectory replanning lies in following as-
pects: (1) the popup threat is detected just on the flight 
route ahead, and the vehicle has to change its route for 
security; (2) the UAV is not threatened by the popup 
threat, but in view of coordination, it also receives the 
command of replanning; (3) the mission changes. In this 
paper, the third cause is not involved. When the replan-
ning is inevitable, information about the popup threats 
including the locations and threat grades will soon be 
shared by the multi-UAVs. Then, every UAV slows 
down or speeds up and flies to a neighboring safe node, 
which serves as the starting point of the following re-
planning. During the span, the new replanned trajectory 
is generated for multi-UAVs, and so is the new ETA. In 
the replanning procedure, on the basis of original edge 
cost of the 2-D mesh, the first step is to update the 
original threat cost of those edges threatened by popup 
threats, and recalculate their cost function value. Then 
multi-UAVs start to implement the coordinated trajec-
tory replanning from the new starting points to their 
arranged targets. In this procedure as shown in Fig. 9, a 
set of new trajectories ought to be reproduced, and UAVs 
also should recalculate the ETA and re-adjust respective 
flight velocity. The procedure of trajectory replanning 
will perhaps be carried on more than once due to un-
certain change of the complicate combating environ-
ment. 

 
Fig. 9  Procedure of multi-UAVs trajectory replanning. 
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3  Max-Min adaptive ACO applied to multi- 
UAVs coordinated trajectory replanning 

3.1 Principle model of ACO with improved strategies 
The parallel mechanism of ACO mainly contains 

two basic processes: adaption and cooperation. In adap-
tion process, the candidate solutions continue to readjust 
their structures on the basis of information accumulating. 
While in the cooperation stage, the candidate solutions 
exchange information to produce better solutions. ACO 
algorithm was inspired by the observation on ant colony 
foraging behavior[9], and on that ants can often find the 
shortest path between food source and their nest. The 
principle of this phenomenon is that ants deposit a 
chemical substance (called pheromone) on the ground, 
thus, they mark a path by the pheromone trail. In this 
process, a kind of positive feedback mechanism is 
adopted. An ant encountering a previously laid trail can 
detect the concentration of pheromone trail[10–13]. It de-
cides with high probability to follow a shortest path, and 
reinforce the trail with its own pheromone. The larger 
amount of the pheromone is on a particular path, the 
higher probability that an ant selects that path and the 
path’s pheromone trial will become denser. At last, the 
ant colony collectively marks the shortest path, which 
has the largest pheromone amount. Such simple indirect 
communication way among ants embodies actually a 
collective learning mechanism. Fig. 10 shows the prin-
ciple that ants exploit pheromone to establish the short-
est path from a nest to a food source and back. 
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Fig. 10  Diagram of ant colony algorithm principle. 

 

The ACO model was first applied to the TSP, which 
is to find the shortest closed loop that traverses all cities 
included exactly once. While the UAV path planning is 
to find the optimal or suboptimal safe flight trajectory, 
along which UAV is able to accomplish the prearranged 
task and avoid the hostile threats. There are some 
common points between TSP and UAV trajectory plan-

ning, and ACO is a feasible way in solving UAV tra-
jectory planning problem under complicated combat 
field environment.  

For the i-th vehicle in the formation of N UAVs, let 
m ants be in its starting point, the ants will choose the 
next nodes in the grid network according to the transition 
rule. An ant left pheromone which can be felt by the next 
ant as a signal to affect its action, and the pheromone 
which the following one left will enhance the original 
pheromone. Thus, the more ants a mesh edge is passed 
by, the higher possibility that the edge can be selected by 
other ants. This process can guarantee nearly all ants 
walk along the shortest UAV path in the end. 

The key factors in ACO affecting the ants’ behav-
iors are the pheromone τ and the heuristic desirability η. 
In our work, we described the heuristic desirability from 
node s to node u as: 

,target

1
su

su uJ d
η =

⋅
 ,                         (9) 

where, Jsu is the total cost of the edge (s, u), and du, target 
represents the distance from node u to the target, which 
is used to lead ants located at node s tend to choose those 
nodes that are nearer to the target. 

The amount of pheromone trail τ that leads ants 
choose next node consists of two parts in our work: one 
is the traditional edge pheromone τe, the other is the 
point pheromone τp defined for the collision avoidance 
consideration. Ant colonies not only leave their phero-
mone on the edges they passed, but also deposit the 
pheromone on those nodes in their paths. Ants serving 
for the i-th UAV will tend to choose those edges richer in 
its own edge pheromone τie and avoid the nodes with 
bigger point pheromone of other UAVs. Thus, total 
pheromone considered by the i-th UAV’s ants from node 
s to u is determined by: 

                          , ,
,

1e
i su i su p

j u
j i

Nτ τ
τ

≠

−
= ⋅

∑
.                          (10) 

We define the transition probability from node s to 
node u for the k-th ant as[9]: 

,

,,
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,
e

where allowedk denotes the feasible domain of the k-th 
ant. α and β are the parameters that control the relative 
importance of trail versus visibility.  

After the ants in the algorithm construct their paths, 
the edge pheromone trail values of every edge (s, u) and 
the point pheromone of every point u are updated ac-
cording to the following equations: 

, ,( 1) (1 ) ( )e e
i su i su i sut tτ ρ τ τ+ = − ⋅ + Δ ,      (12) 

, ,( 1) (1 ) ( ) ,
p p

i u i u i ut t pτ ρ τ τ+ = − ⋅ + Δ ,         (13) 

where ρ⊂ (0, 1) is the local pheromone decay parameter, 
which represents the evaporation rate of trail between 
time t and t+1. 

,
1

n
e
i su i su k

k
τ τ

=

Δ = Δ∑ , ,
e

, ,
p

 ,                      (14) 

,
1

n
p

i u i u k
k

τ τ
=

Δ = Δ∑ ,                         (15) 

where and , ,
e
i su kτΔ , ,

p
i u kτΔ  are the quantities of phero-

mone trail laid on edge (s, u) and the node u by the k-th 
ant of the i-th UAV between time t and t+1. In the 
popular ant-cycle model, they can be given by: 

,, ,
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⎩

,    (17) 

where Q is a constant, and Ji,k denotes the path cost of the 
k-th ant. 

 
3.2  Max-Min adaptive ACO 

In order to enhance performance of ant system, al-
leviate the problems concerning early stagnation and 
expedite the rapidity of convergence, the following 
strategies are introduced into the ACO algorithm. 

(1) For the m ants serving for the i-th UAV, there are 
total m paths constructed in each iteration. The average 

cost of these paths is ,ave ,
1

1( ) ( )
m

i
k

J t J t
m =

= ∑

(2) Independent of the choice between the itera-
tion-best and the global-best ant for the pheromone trail 
update, search stagnation may occur. Such a stagnation 
situation should be avoided. One way for achieving this 
is to influence the probability for choosing the next so-
lution component, which depends directly on the 
pheromone trails and the heuristic information. The 
heuristic information is typically problem-dependent 
and static throughout the application of the algorithm. 
But by limiting the influence of the pheromone trails one 
can easily avoid the relative differences between the 
pheromone trails during the employment of the algo-
rithm. To achieve this goal, ACO imposes and explicitly 
limits τmax and τmin on the minimum and maximum 
pheromone trails such that for all pheromone trails[24]. 
After updating pheromone in the end of iteration, fol-
lowing operation will be applied to the pheromone on 
both edges and points[24]: 

old
min min

new old old
min max

old
max max

, ( )

( ) ( ), ( )

, ( )

t

t t t

t

τ τ τ

τ τ τ τ τ

τ τ τ

⎧ <
⎪

= ≤⎨
⎪ >⎩

≤ .       (18) 

 
3.3  Application of Max-Min adaptive ACO to 

multi-UAVs coordinated trajectory replanning 
The flowchart in Fig. 11 describes the detailed 

procedure of applying the proposed Max-Min adaptive 
ACO to a single UAV in the practical issue of 
multi-UAVs coordinated trajectory replanning. Ants of 
the i-th UAV have constructed their paths and finished 
updating both the edge and point pheromone trails. Then, 
the new updated pheromone is passed to the next itera-
tion. Meanwhile, the point pheromone is transmitted to 
other UAVs. The multi-UAVs’ air-space coordination 
which is mainly to deal with the collision avoidance just 
depends on the point pheromone. Therefore, through the 
communication of each UAV’s point pheromone, the 
air-space coordination can be settled in the trajectory 
planner layer. 

A series of feasible candidate routes have been de-
termined for each UAV by the coordinated ACO, but it 
remains to select which trajectory each UAV will fly. In 
our work, from each sub-population we selected four 
optimal candidate trajectories for each UAV, then, de-
termined the optimal coordination ETA by means of 
finding the coordination variable Ta that minimizes the 
total coordination cost. After gaining the team’s  

i k , when and 

only when the path cost of k-th ant in the t-th iteration 
satisfies Ji,k(t) ≤ Ji,min(t), can the k-th ant update both its 
edge and point pheromone by Eqs. (16) and (17). 
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coordinated ETA, the trajectories that multi-UAVs will 
fly are available, so are the flight velocities of the UAVs. 
The complete procedure of applying ACO to the 
multi-UAVs coordination issue is shown in Fig. 12. 

 

Begin

Initialize parameters, set Nc = 0

Set ants on starting point

Move to next node by 
Eqs. (9)~(11)

Calculate cost of paths

N

Y

Update pheromone by 
Eqs. (12)~(17)

Limit pheromone by 
Eq. (18)

Nc> Ncmax ?

Nc+1

N

Y
Output the optimal trajectory

UAV- i

Communicate

with other UAVs

Arrive at target?

pτi

 
Fig. 11  Flowchart of Max-Min adaptive ACO applied to one UAV 
of multi-UAVs. 

 

 
Fig. 12  Flowchart of multi-UAVs coordination using ACO. 

The programming steps of the Max-Min adaptive 
ACO algorithm in solving trajectory replanning can be 
described as follows: 

Step 1: Construct the 2-D mesh covering the mis-
sion region and calculate the cost of the edges. 

Step 2: Initialize the parameters of the algorithm, 
including α, β, ρ, Q, τmax, τmin, as well as the number of 
ants m and the number of iteration Ncmax. 

Step 3: Initialize the edge and point pheromones for 
every sub-population and place ants at the respective 
starting point. 

Step 4: For each UAV, ants choose the node ac-
cording to Eq. (6) until reach the target, and then some 
feasible trajectories are constructed at last. 

Step 5: Calculate the cost function value Ji,k of the 
k-th ant belonging to the i-th UAV, and update the point 
and edge pheromones according to Eqs. (12) ∼ (17). 

Step 6: Pass the pheromone on to next iteration 
calculation and communicate the point pheromone with 
other UAVs; then return to Step 4 until it satisfies the 
ending condition Nc > Ncmax. 

Step 7: Select several feasible candidate routes for 
each UAV, and determine the optimal coordinated ETA 
for the team. 

Step 8: According to the team ETA, select the tra-
jectory and the flight velocity for each UAV. 

When the popup threats are detected and the 
original trajectory is in danger, emergent response action 
of multi-UAVs will be taken according to the following 
steps: 

Step 1: Determine the information of the popup 
threats, including the location, threatened range and 
threat grade. 

Step 2: Calculate the threat cost of the edges which 
the popup threats pose to, and then update the cost 
function value of each edge in the 2-D mesh. 

Step 3: Each UAV diverts to a neighboring and safe 
enough node, which will be taken as the new starting 
point of trajectory replanning. 

Step 4: When multi-UAVs are moving as Step 3, 
the newly replanned trajectory is calculated according to 
the procedure shown in Fig. 11 and Fig. 12. 

4  Simulation experiments 

In order to investigate the feasibility and effec-
tiveness of the proposed Max-Min adaptive ACO ap-
proach to multi-UAVs coordinated trajectory replanning, 
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a series of simulation experiments were conducted. 
These simulation experiments were all implemented in 
Matlab (Version 7.0) programming environment on an 
Intel Core 2 PC running Windows Vista, no ACO or 
multi-UAVs tools were used in the following experi-
ments. 

In these simulation experiments, the mission region 
is 60 km long and 70 km wide with five known enemy 
threats. Information about these hazarded threats is 
given in Table 1. 

In the first experiment, two UAVs are assigned to 
reach the same target from neighboring nodes. In this 
scenario, only air-space coordination was considered in 
order to verify the collision avoidance performance of  
 

Table 1  Information about known threats 
No. Location (km) Threat radius (km) Threat grade 
1 (52,32) 10 2 
2 (36,26) 6 1.2 
3 (22,48) 8 1.6 
4 (26,56) 12 1.4 
5 (30,30) 9 2 
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Fig. 13  Trajectories of two UAVs. 

 

 
Fig. 14  Evolution curves of two UAVs trajectories’ costs using 
the Max-Min  adaptive ACO. 

the Max-Min adaptive ACO model. Trajectories opti-
mized in these experiments are presented in Fig. 13, and 
it is clear that there is no overlap between the two 
neighboring trajectories, thus the collision avoidance is 
achieved. Fig. 14 shows the evolution of the costs of two 
UAVs trajectories, which converge after a few iterations. 
The simulation results demonstrate that the ACO con-
sidering the point pheromone as air-space coordination 
factor is feasible to produce the trajectories satisfying 
collision avoidance. 

In the second experiment, an air combat formation, 
composed of three UAVs and located on different sites, 
is assigned to attack different targets simultaneously. 
Table 2 shows the mission starting points and attacking 
targets. 

 
Table 2  Mission starting points and attacking targets 

 UAV-1 UAV-2 UAV-3 

Starting point (km) (6,20) (24,20) (40,20) 

Target (km) (10,68) (40,60) (50,68) 

 
The flight velocity is between Vmax = 300 m·s−1 and 

Vmin = 200 m·s−1. The initial parameters are: α = 3, β = 2, 
ρ = 0.7, Q = 10, Ncma x = 20, m = 20, τmax = 10 and τmin = 
0.1. 

After iterated calculation, each UAV obtains four 
candidate trajectories. The determined arrival time ETA 
is shown in Fig. 15, in which, Ta = 173 s. According to 
this ETA, each UAV can select its optimized trajectory 
and proper flight velocity. The selected trajectory length 
and flight velocity are listed in Table 3. 

 

 
Fig. 15  Decision of ETA. 
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The original trajectories planed for three UAVs are 
shown in Fig. 16, while the evolution curves are shown 
in Fig. 17. 

As shown in Fig. 18, two popup threats appear 
suddenly, which are detected by marching multi-UAVs. 
Information about these popup threats is shared imme-
diately (Table 4). 

Then, each UAV diverts to a neighboring secure 
node, which is taken as the new starting point. Mean-
while, computers equipped in UAVs run the replanning 
program and generate new trajectories for the UAVs. 
 
Table 3  Arrival time, trajectory length and flight velocity planned 
for multi-UAVs 

 UAV-1 UAV-2 UAV-3 

ETA (s) 174 

Trajectory length (km) 51.31 47.80 52.14 

flight velocity (km·s−1) 295 275 300 

 

 
Fig. 16  Preplanned trajectories of three UAVs. 
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Fig. 17  Evolution curves of three UAVs using ACO. 

 

 
Fig. 18  Popup threats are detected by marching three UAVs. 
 

Table 4  Information about popup threats 
No. Location (km) Threat radius (km) Threat grade 
1 (12,40) 6 2.5 

2 (40,40) 6 2 

 
Comparison between the original trajectories and 

the new replanned trajectories is shown in Fig. 19. Fig. 
20 shows the practical trajectories which the UAVs fly 
along in the air battlefield. 

Figs. 21 to 23 show the results of another experi-
ment. Different from the above two experiments, in this 
experiment the two UAVs have a common target. Be-
cause the original preplanned trajectories are hardly 
menaced by the popup threats, the replanned trajectories 
change little compared with the original ones. 

The experimental results illustrate that the proposed 
Max-Min adaptive ACO algorithm can effectively solve 
multi-UAVs coordinated trajectory replanning problems 
and the convergence time is also rather short. 

 

 
Fig. 19  Comparison between the original trajectories and the new 
replanned trajectories.  
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Fig. 20  Practical trajectories of three UAVs. 

 

 
Fig. 21  Original trajectories of two VAUs with a common target. 

 

 
Fig. 22  Comparison between original and new trajectories. 

 

 
Fig. 23  Practical trajectories of two UAVs with common target. 
 

5  Conclusions and future work 

This paper focuses on a new Max-Min adaptive 
ACO method for the multi-UAVs coordinated trajectory 
replanning in dynamic and uncertain environments. This 
approach is based on multi-UAVs coordination mecha-
nism and trajectory replanning strategy. Coordination 
between multi-UAVs includes two aspects: air-space 
collision avoidance and simultaneous arrival. The point 
pheromone in this approach takes effect in multi-UAVs’ 
collision avoidance. The feasible team ETA helps the 
whole multi-UAVs formation to arrive all targets si-
multaneously. Simulation results verified the feasibility 
and effectiveness of the proposed ACO algorithm. 

Future work will focus on applying the proposed 
ACO algorithm to multi-UAVs formation control and 
optimal formation reconfiguration under complicated 
dynamic environments. 
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