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An adaptive mutant multi-objective pigeon-inspired optimization for
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Abstract: Unmanned aerial vehicle (UAV) is an indispensable tool for search missions, which can help find targets in
critical and complex environments. The search problem of UAVs is a rather intricate multiobjective optimization problem
with multiple constraints under complicated conflict environment. Most search algorithms could not meet the requirements
of high efficiency and low consumption in combat environment. The target search approach employed in this paper is a
decoupling receding horizon approach based on the agent routing and optical sensor tasking. To optimize the parameters of
the target search approach, an adaptive mutant multiobjective pigeon-inspired optimization (AMMOPIO) algorithm is pro-
posed for agent routing and optical sensor tasking optimization of target search problem. The utilization of adaptive flight
mechanism could obtain the distribution of pigeons with applicable diversity and convergence. The mutation mechanism is
used to simplify the model of pigeon-inspired optimization (P1O) to improve the search efficiency. The experimental results
validate the feasibility and effectiveness of the proposed AMMOPIO algorithm in target search problem.
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1 Introduction

The modern search theory was initially proposed to
develop efficient search methods to find enemy marine
vessels by Koopman!'!, Stone!?! and others. Unmanned
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aerial vehicles (UAVs) are an indispensable tool for
search and rescue of critical, time sensitive missions
as they have the advantages of zero casualties, high-
speed overload, good stealth performance, short opera-
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tion time, and low life-cycle cost!*™!. Search theory has
been applied to many fields with great success, encom-
passing applications such as search and rescue missions,
exploration, mining, medicine, and surveillancel®!.

Early search theory focused on the allocation of
search effort to areas within the search region while
finding optimal search paths on these areas is intuitive-
ly with unconstrained searcher motion. If it is not that
case, the search problem of finding the optimal path-
s would become more complicate for searchers. At
present, some studies of the search problem as an op-
timal control problem are conducted in continuous time
and space!®, which are generally applied to a very
restricted set of initial target distribution. There are
many different approaches to solve this problem. Zhang
et.all’! presented a probabilistic path planning method
for target search to reduce the expected-time cost in
uncertain environments. Tang et.al’®! addressed an im-
proved grouping strategy based on constriction factors
particle swarm optimization for multiple targets search
in unknown environments. Chen and Chang™' proposed
an agent-based simulation for multi-UAVs coordina-
tive sensing. Sun and Duan!'”! presented a restricted-
direction target search approach based on coupled rout-
ing and optical sensor tasking optimization. To simplify
the optimization problem, Qiu and Duan® addressed a
decoupling receding horizon search approach to agent
routing and optical sensor tasking, which was employed
in this paper.

In the search problem, a single UAV aims to search
for several targets in a bounded planar region. The a-
gent is equipped with a gimbaled optical sensor that can
be steered around to view a limited area of the search

region!!%],

The optical sensor will collect information
about the environment in the form of automatic target
recognition (ATR) data and determine whether the tar-
get is located at the specific region or not. The problem
mentioned above can be turned into an multi-objective
optimization problem (MOP) by selecting the approxi-
mate controlling means and mathematical model.

In order to solve MOPs, multi-objective evolution-
ary algorithms (MOEAs) has been becoming one of
the major research topics during recent years. Among
the evolutionary algorithms (EAs), pigeon-inspired op-
timization (PIO) is a novel swarm intelligence algorith-
m based on the behavior of homing pigeons, invented

11]

by Duan and Qiaol Due to the high convergence

speed and ease of implementation, PIO algorithm has

been applied in many fields such as neural network!!?!,
path planning'?!, and so on. However, PIO is easy to
be trapped into local optimum and uneven distribution
while dealing with complex multi-objective problem-
s. Therefore, this paper presents an improved multi-
objective pigeon-inspired optimization algorithm based
on the adaptive flight mechanism and mutation mecha-
nism. These two mechanisms are designed to reinitial-
ize the pigeons to improve the search capability of the
algorithm and prevent pigeons from falling into local
optimum and premature convergence.

The remainder of this paper is organized as follows.
Section 2 describes the problem formulation, covering
the model description, the design of the multi-objective
optimization cost function, and the search approach.
Section 3 illustrates the improved MOPIO algorithm.
Simulation validation, together with comparison against
the traditional approach, is presented in Section 4. Sec-
tion 5 provides conclusions and some possible paths for
future work.

2 Search problem

A single UAV is considered to be tasked with ex-
ploring an area of interest in order to search multiple tar-
gets in a bounded planar region. The UAV is equipped
with a gimbaled optical sensor, which can be steered
around to view a limited area of the search region.

This section formulates the target search problem as
a discrete-time optimization and the approach that con-
trols the UAV and the optical sensor to find the targets
as soon as possible.

2.1 UAV dynamics and sensor model

Denote the controlled variables of a UAV at time k&
by the velocity v(k) and the heading angle 6(k),where
k is a discrete time variable belonging to the nonnega-
tive integers. Without loss of generality, we assume that
the UAV keeps the fixed flight height while perform-
ing a search task. Thus, the kinematic equation of the
search agent can be expressed as the following discrete
time point-mass kinematics model:

p(k+1,1) =p(k,1) +v(k)-sin0(k). (1)

plk+1,2) =p(k,2) +v(k)-cos (k). (2)

where p(k + 1,1) denotes the horizontal axis in ab-
solute coordinate system of the next current position,
p(k + 1,2) denotes the vertical axis in absolute coordi-



nate system of the next current position. Due to the ma-
neuverability limitations of the UAV, the velocity has
a limited range [Umin, Umax] and the A between two
consecutive moments is subject to the minimum turn-
ing radius R,,;,. Velocity v(k) together with the turn-
ing radius R,,;, describes the mobility and determines
the flight trajectory of the UAV.

During the search process, the region that a sensor
can view at a certain moment is called the field of view
(FOV), and the subset of the search region viewable by
the sensor as it is swept through its entire range of mo-
tion is called the sensor’ s field of regard (FOR)!%),
For each candidate path, the position of UAV can be
defined as p(k) = [z(k), y(k)], where p(k) is the way-
point at time k. As shown in the Fig. 1, FOR is con-
sidered as the rectangle that takes the current waypoint
p(k) as center. FOV is set as a square, whose center can
move along the centerline of the rectangle. The cen-
ter of FOV is stated as the sensor task ¢(k) that speci-
fies the stare point where the agent will point its optical
sensor at time k. Thus, the search problem has been
transferred into the problem to obtain the next waypoint
p(k + 1) and the sensor task g(k).

[

x/km

Fig. 1 Diagram of the sensor model

2.2 Search map

The graph-based model method is employed to de-
pict the environment information in allusion to search-
ing process. The search region is divided into M x N
cells. The coordinate of each two-dimension discrete
cell is denoted as (z,y), x € {1,2,...M}, y €
{1,2, ..., N'}. For the convenience of the following ex-
position, the cells are numbered by the following equa-
tioninaseaquenceas m € {1.2. . M x N}:

m=x+ (y — 1) x M. 3)

Denote the information structure of each cell as
I,.(k), including the target occupancy probability
pm (k) that describes the probability that the search tar-
gets exist in the myy, cell at time k and the environment
certainty ., (k) that describes the certainty of the my,
cell for the UAV. I,,, (k) can be stated as follow:

L (k) = [pm (k) Xm (K)]. )

where p,, (k) € [0,1] and x,,(k) € [0,1]. If the tar-
get exists in the myy, cell, p,,,(k) = 1; On the contrary,
pm (k) = 0 while there is no target in the my, cell. Sim-
ilarly, if the UAV fully understands the environment in-
formation, x,,(k) = 1; On the contrary, x,,(k) = 0
while the UAV knows nothing about the information in
the cell.

Consider there exist n targets in the search region
whose initial positions are unknown. It is reasonable to
assume that the position of the target is uniformly dis-
tributed. Thus, we can obtain the following equations:

Z. 1
Pn(0) = 3 )
X (0) = 0.

where m € {1,2,.... M x N}andi € {1,2,...,n}.

During the dynamic search, the search map at time

k + 1 is updated dynamically based on the state of the
agent and the detection results of the sensor at time con-
stantly. The updating principle of the p!, (k+1) is stated
as follows:

Casel: the i, target is detected

{pffn(k +1) = p(k), meFOV
Py (k+1) =0, m ¢ FOV.
Case2: the 7,, target is not detected
{pin(kH) =0, merov.
Pk +1) = p,(k), m ¢ FOV.

The updating principle of the x’, (k + 1) is stated
as follow:
X (k+1) =1, m € FOV
{an(k +1) = x'.(k), m ¢ FOV.
2.3 Cost function
The search problem of the UAV is a rather intricate

®)

multi-objective optimization problem. It is crucial to s-
elect the multi-objective cost functions associated with
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each candidate path. The introduction of the set of cost
functions are shown below:

F describes the probability of finding target on the
candidate path under the action of the control v(k) and
0(k).

F5 describes the entire environment certainty for a-
gent which could be increased by probing the region
unknown away from the cells with x,, (k) = 1.

F’; describes the time cost or fuel cost between two
continuous waypoints.

F, reflects the behavior of avoiding the threating re-
gions composed of natural threats, missiles threats, and
no-fly zone. The value of this function represents the
cost to be paid by the drone crossing the threat zone.

Fy is designed to estimate whether the trajectory of
UAV is within the limited search region.

The better results of search task require larger val-
ue of cost functions F}, F5, F5 and lower value of cost
functions F}, F5. Therefore, to unify the optimization,
we adopt the inverse value of cost functions Fi, F5 and
Fs.

2.4 Receding horizon control search approach

The RHC search approach with the advantage of
online processing constraints on control input and out-
put could describe the control problem as a constrained

optimization problem of finite time!!4l,

The primary
steps of the RHC search controller are as follows:

Step 1 Initialize the agent waypoint pqy at time k,
optimize five cost functions based on the search map
information and obtain a set of the optimal control vari-
ables v(k) and 0(k) in N steps;

Step 2 Choose the first item of control variables as
the agent RHC inputs and abandon the others;

Step 3 Reach the next waypoint p; at next time
(k + 1) by the control inputs;

Step 4 Obtain the search result by sensor at way-
point p; and update the search map information struc-
ture I, (k) ;

Step 5 Update the current time and the agent way-
point as initial value, return to Step 1.

The whole process of RHC search approach is illus-
trated in Fig. 2.

k=k+1
L Waypoints
p(k)
Cost
Function Eq. (1) .
Waypoints
F (), 7, (K] [v(6),000)] plk+1)
Eq. (6)-(8)

Fig. 2 Process of RHC search approach

3 Search problem

Pigeon-inspired optimization is a population-based
bio-inspired swarm intelligence optimization algorithm
based on the special navigation behavior of the hom-
ing pigeons. In this algorithm, two operators (map and
compass operator, landmark operator) are employed to
guide the pigeons to find the destination. When pigeons
start their journey, they may rely more on compass-like
tools. While in the middle of their journey, they could
switch to using landmarks when they need to reassess
their route and make corrections!!!!. Due to the imper-
fection of the basic multi-objective pigeon-inspired op-
timization algorithm/'®!, two mechanisms are employed
to strengthen the capability of global exploration and
local exploitation.

3.1 Main algorithm

The basic PIO algorithm adopts two independent
useful cycles to mimic the characteristics of the homing
pigeons. To improve the efficiency of the optimization
process, the two cycles are integrated to one main cycle
using two adaptive flight parameters k; and k. The ve-
locity V; and position X; of each pigeon at time ¢ + 1
are updated according to the following equations:

‘/1(1; + 1) = e_Rt . ‘/7,('[;) + kl : (ngest,i(t) - Xl(t))
+k2 . (Xcenter(t) - Xz(t)) (9)

Xi(t+1) = Xi(t) + Vi(t + 1). (10)

where R is map and compass factor, ¢ is the time of
iteration, ¢ is the number of pigeons in the swarm and
i€ {1,2,--- N}, Xgpest,i represents the best posi-
tion in the flight path of the pigeon. X .cpter is the center
of the pigeon’ s position used as the reference direction
during the last period of flight. The adaptive flight pa-
rameters and center position X center are obtained by the
followine mechanisms.
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3.2 Adaptive flight mechanism

In the flight process of pigeons, the balance of the
V (), Xgbest» and Xeneer is crucial to the tradeoff be-
tween the exploration and exploitation for the evolu-
tionary properties, such as convergence, diversity, and
optimal solution. There exist some challenges on the
optimization of the flight parameters. Thus, the adap-
tive flight mechanism is proposed in this paper to bal-
ance the global exploration with local exploitation by
utilizing the diversity information and population SP in-
formation!!”!. The calculation of the population SP in-
formation of the i,;, pigeon at (¢ + 1) iteration is shown
below:

N

> (d(t+1) = di(t +1))?

SP(t+1) =4\ = N7 (1)

where d; (t+ 1) is the minimum Manhattan distance be-

tween the position of the 7;;, pigeon and other pigeons,
d(t + 1) represents the average value of the d;(t + 1)
for all pigeons. During the optimization process, the pi-
geons are with nonlinear characteristics intricately 1!,

Thus, a special nonlinear function is proposed to de-

scribe this process:
L(t41) = e/ (SPE+L)+1)—1 (12)
where I'(t + 1) is the adaptive nonlinear function of the
flight process. The initial values of adaptive flight pa-
rameters are random numbers created according to the
uniform distribution. Considering the value of I'(t+ 1),
the adaptive flight parameters are updated as follows:
Casel: SP(t+ 1) = SP(t)
kot + 1) = ka(2).
Case2: SP(t+ 1) > SP(t)
Ei(t+1)=ki(t) - (T(t+1)+1)
ka(t+1) = ko(t) - T(¢ + 1).
Case3: SP(t+1) < SP(t)
ki(t+1) =k (t) - (t+ 1)

The variation of the population SP information re-

13)

(14)

5)

flects the distribution of the pigeon flock. That is to say,
the increasing value of SP means the inhomogeneity of
the pigeon flock, and the decreasing value of SP means
the suitable distribution of the pieceon flock.

At the beginning of the optimization, the solutions
obtained are far from the true Pareto Fronts (PF) with
uneven distribution. Based on the above equations, we
can see that the parameter k; becomes larger to increase
the diversity of the pigeon flock and enhances the ex-
ploration ability. During the second half of the opti-
mization, large number of the non-dominated solutions
close to the PF are obtained and distributed more even-
ly. Thus, the parameter ky gets larger to improve the
exploitation ability.

As the parameter k; increases, the searching pro-
cess of the optimization mainly depends on the X ,pcqt.
While the parameter ko rises, the center position
Xecenter plays a major role in the searching process.
This demonstrates that the optimization process of the
improved MOPIO algorithm corresponds to the naviga-
tion mechanism of the pigeon flocks, which illustrates
the rationality of the adaptive flight mechanism.

3.3 Mutation mechanism

The center position X cpie; Of the PIO algorithm is
calculated by following:

=

X (t) - fitness(X;(t))
Xcenter(t) ==t N . (16)
N - > fitness(X;(t))

=1

The fitness is the function to be optimized:

N(t — 1)

N(t) = ceil( 5

). (17)

fitness(X;(t)) =

Jmax(X(t)), Casel

1 (18)
—fmin(Xi(t)) pe Case2.

where Case 1 represents the maximization problem,

fitness(X;(t)) =

Case 2 represents the minimization problem.

Due to the single cost function, there exists the
single maximum or minimum value of the function.
However, in the multi-objective optimization problems,
there exist multiple cost functions. And a single solu-
tion which can find the maximum or minimum value for
all the objectives at the same time does not exist. Thus,
a mutation mechanism is developed to generate the cen-
ter position X oo in the multi-objective optimization
problems.

Firstly, restore the nondominated solutions in the
repository. Then, choose one solution X, in the
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repository randomly and employ the mutation mecha-
nism to improve the chosen solution based on the step
mutation operator in Eq. (19), Eq. (20) and Eq. (21).

Xcenter(tyj) - Xrep(j) + Ad - (Ub — lb) (19)

k
Ad = sum(a;k)). (20)
{a(k) =0, rand <1/m e
a(k) =1, rand > 1/m.

Where m is the mutation operator and k£ =
0,1,---,m.

The chosen solution is expanded in D dimensions
respectively. While the solution with certain dimension
j mutated could obtain the better function value, then
the j;, dimension of X cputer is updated. The pseudo-
code of mutation mechanism is introduced in following
steps:

Step 1 Initialize the flight parameters, population
size, repository size, map and compass operator, muta-
tion operator, and maximal iterations.

Step 2 Initialize the position X (0) and velocity
V'(0) of the pigeon flock.

Loop.

Step 3 Calculate the value of cost functions.

Step 4 Obtain the non-dominated solutions and s-
tore the non-dominated solutions in repository.

Step 5 Select one solution X, randomly in repos-
itory, use the mutation mechanism %Eq.(19).

Step 6 Calculate the population SP information of
the pigeons %Eq.(11).

Step 7 Calculate two flight parameters %Eq.(13-
15).

Step 8 Update the position and velocity %Eq.(9-
10).

End loop.

4 Simulation results

The receding horizon control search approach is u-
tilized to solve the search problem and the AMMOPI-
O algorithm is designed to optimize the parameters of
RHC search approach. The holistic search process is
depicted in Fig. 3.

Initialization
k=1
i=1

v

Optimize agent routing by AMMOPIO o

v

Update the agent waypoint

v

Sensor tasking optimization

v

Obtain the target search results

v

Update the search map

A 4

v

i=i+1

k=k+rhc_p

k>kmax or
find all targets?

Y v

Obtain waypoints and sensor task

Fig. 3 Process of target search

In the simulation, suppose there is a single UAV a-
gent searching for three stationary targets whose posi-
tions are unknow in the bounded planar region. The
UAV is expected to search the targets as many as pos-
sible in the shortest time with multiple goals, consist-
ing of improving the certainty of environment, reducing
fuel cost, avoiding the threats, and staying in the task
search region.

The sampling time is set to be 20s, and 30 RHC
circles are conducted in one simulation. In one sinele
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circle, the AMMOPIO algorithm runs 100 times. The
parameters and constraints of the simulation are shown
in the table 1. The initial states are shown in table 2.
The control parameters of AMMOPIO are given in ta-
ble 3.

Table 1 Optimization parameters and constraints

Variables Description Value
F Five cost function
v(km/s) The UAV velocity [L;f;in ,0.2]
¢(rad) The heading angular velocity Admax
T Simulation time 600 s
ts Sampling time 20s
rhe_p Length of the prediction horizon 3
rhe.m Length of the control horizon 3
R Bounded planar region [0,60]
M The row number 60
N The column number 60
Rpin(km)  The minimum turning radius 3
Lyin(km)  The shortest direct flight distance 3
Table 2 Initial states
Variables  Description Value
p(km) The position of UAV [5,0]
¢(rad) The heading angle 0
Pi(km) The position of targets  {[40, 25], [30, 45], [20, 10]}

Table 3 Control parameters of AMMOPIO algorithm

Variables  Description Value
Tmax Maximum number of the iteration 100
N Number of the pigeon flock 100
R The map and compass operator 0.2
m The mutation operator 20

The performances of the AMMOPIO algorithm are
compared with the basic MOPIO algorithm and other
two state-of-the-art methods, including Multiobjective
Particle Swarm Optimization (MOPSO) and Multiob-
jective Brain Storm Optimization (MOBSO). The basic
MOPIO algorithms is composed of two cycles and the
center position X .cpter is randomly selected in the non-
dominated solutions without mutation mechanism. The
best results of four algorithms in 20 simulation cycles
are illustrated in Fig. 4-7.

In Fig. 4, three signal represents the threat region,
respectively, no-fly zones, bad weather region, and mis-
siles threat. T1-T3 denotes three stationary targets to be
found. The red short lines between the adiacent dots are

the paths of the UAV. The blue squares are FOV. The
average number of the targets 1,y found in 20 simula-
tion cycles is recorded in table 5 and the t,,, represents
the average running time of the simulations.

Fig. 4 Search results of AMMOPIO algorithm

Fig. 5 Search results of MOPIO algorithm

Fig. 6 Search results of MOPSO algorithm
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Fig. 7 Search results of MOBSO algorithm

Table 4 Statistic data of four algorithms

Algorithm Nave  tave

AMMOPIO 195 33.75
MOPIO 0.65 6.073
MOPSO 1.05 1172
MOBSO 1.06 5879

Observed that the agent in Fig. 4 found three sta-
tionary targets, while successfully avoiding the threats
and remaining in the search task region. On the con-
trary, the results in the Fig. 5-7 show that the agen-
t could only find two of the three targets with winding
flight path in the simulation. Compared with other three
algorithms, the AMMOPIO method gives a good per-
formance in less valid paths.

The statistic data in table 5 illustrates that the search
target optimization with AMMOPIO algorithm could
find more than double targets compared with the ba-
sic MOPIO algorithm although more time is needed.
The MOPSO and MOBSO approaches could only find
one target approximately in much more simulation time
in contrast to the AMMOPIO algorithm. The average
number of the targets could reflect the stability of the
algorithms. The statistic data shows the feasibility of
our proposed algorithm in the practical environment.

As we can see in the results above, our proposed
AMMOPIO algorithm could find most targets in the fi-
nite time. It could be estimated that it could find more
targets as there are more than three targets. Therefore, it
is clearly that the performance of AMMOPIO algorith-
m is superior to other three methods. Contrast to the al-
gorithm in [3], this paper employed the multi-objective
optimization algorithm to solve the target finding prob-
lem. That is to consider all requirements simultaneous-
1v rather than scaline down the value of requirements.

Even though there is a gap between the number of tar-
gets found and the number of targets existing, a prelim-
inary evaluation can be still given that the optimization
purposes of searching targets has a basic implementa-
tion.

5 Conclusion

This paper presented an AMMOPIO algorithm for
the optimization of target search problem. The adaptive
flight mechanism could improve the distribution of pi-
geons with applicable diversity and convergence. The
mutation mechanism is used to simplify the model of
PIO to improve the search efficiency. From the com-
parative results in simulation, it can be concluded that
our proposed AMMOPIO algorithm does perform supe-
riority in the number of targets found and the time tak-
en to find targets compared with other three approach-
es. We will also develop more theoretical research on
multi-objective optimizations to enhance the ability of
unmanned system in the process of performing mission-
S.
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