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Abstract—Aiming at the problem that the Quantum-
behaved Pigeon-inspired Optimization Algorithm is easy to fall
into the local optimum and is lack of fine search ability, a new
algorithm based on particle-best mutation is proposed. Firstly,
aiming at the map and compass operator characteristics of
solve rough search, Cauthy mutation based on particle-best
was adopted for the pigeons when they have not evolved at this
stage, so as to enhance the global search ability. Then, aiming
at the landmark operator characteristics of solve fine search,
Gaussian mutation after updating by landmark operator was
adopted for the pigeons when they have not evolved at this
stage, so as to enhance the local search ability. Finally, model
of pigeons’ number factor which likes map and compass factor
was built to keep the pigeons in the landmark operator at a
certain amount, so as to get the optimal solution. The function
test results show that the search speed and accuracy of the
improved algorithm are better than other popular algorithms.

Keywords—swarm intelligence, pigeon-inspired optimization,
Cauchy mautation, Gaussian mutation, particle-best, number
factor

1. INTRODUCTION

In July 2017, the State Council issued a new generation
of artificial intelligence development planning notice, the
group intelligence theory as one of the eight basic theories,
the key technology of group intelligence as one of the eight
key common technologies. In the theory of swarm
intelligence, the key points are to break through the theory
and methods of organization, emergence and learning of
swarm intelligence, and to establish an extensible and
computable swarm intelligence incentive algorithm and
model. The swarm intelligence algorithm achieves the
purpose of optimization by simulating various group
behaviors of social animals and utilizing information
interaction and cooperation among individuals in the
swarm[1][2], such as ant colony algorithm, particle swarm
optimization, and mixed leapfrog algorithm, artificial bee
colony algorithm, firefly algorithm, pigeon-inspired
optimization algorithm(P10), whale optimization
algorithm[3][4]. Among the many intelligent optimization
algorithms, the PIO has received much attention since it was
proposed by H. B. Duan in 2014[5]. The basic idea comes
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from the independent homing behavior of the pigeons. The
PIO algorithm is simple and easy to implement. It has been
successfully applied in many fields such as UAV formation,
control parameter optimization, image processing, medical
imaging, biological detection, filtering[6]~[8].

H. H. Li[9] proposed a QPIO algorithm, which is inspired
by quantum mechanics on the basis of the convergence
behavior of a single pigeon, which makes the pigeons have
quantum behavior. Its remarkable features are fewer control
parameters, simple setup and strong search ability, has a
good global search ability. H. R[10] proposed that the map
and compass factor undergo nonlinear changes in the
iterative process, and introduce the cross-concept of genetic
algorithm in PIO algorithm. H. B. Duan[11] proposed a
predator escape mechanism to improve the overall
performance of the pigeons in order to optimize the basic
pigeons. In view of the problem that PIO is easy to fall into
local optimum, S. J. Zhang[12] and H. B. Duan[13] used
Gaussian pigeon-inspired optimization (CPIO) and Cauthy
mutation pigeon inspired optimization (CMPIO) respectively.
The pigeons are disturbed, which effectively reduces the
probability that the optimization result falls into local
optimum.

The above research effectively promotes the development
of PIO algorithm, which makes the algorithm have the
advantages of fast convergence and high search efficiency.
However, the problem of easy premature convergence and
insufficient search ability is still unresolved. Aiming at this
shortcoming, this paper proposes a Particle-best Mutation
Pigeon Inspired Optimization (PMPIO) algorithm. On the
basis of maintaining the search ability of the quantum pigeon
group optimization algorithm, the algorithm uses different
perturbation strategies for the different characteristics of the
pigeons in different search stages. At the same time, in the
process of evolution of the pigeons, the number of pigeons is
kept at a reasonable scale, so that it can enhance the local
search ability as much as possible while maintaining rapid
convergence.
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II. PIO ALGORITHM AND QPIO ALGORITHM

A. PIO algorithm

The PIO algorithm uses two different operator models by
simulating the different stages of the pigeon's search for the
target, using different navigation tools: map and compass
operator, landmark operator. In this model, virtual pigeons
are used to simulate the navigation process.

(1) Map and compass operator
The position and speed of the i-th pigeon are recorded as

Xi = [Xi, %z, xip] Vi = [Vin, Vi, -+, vip]
where i = 1,2,...,N. N is the group size; D is the search
space dimension. Each pigeon updates its position X; and
speed V;according to Equation (1) and (2).

Xi() = Xi(t = 1) + Vi) (1

Vi) = Vi(t — De™™* + rand (Xgpes (¢ — 1) — X;(t — 1))
2

where R is the map and compass factor. As the iteration
proceeds, the flight speed of the pigeon can be reduced; rand
is a random number, rand €[0,1]; 7 is the current number of
iterations; Xgs.(?) 18 the current optimal global position for
the search. Is the result of comparison with other pigeons.
When the number of iterations reaches the preset number of
iterations N, the map and compass operators are stopped,
and the landmark operator is executed to continue execution.

(2) Landmark operator

In the landmark operator, the total number of pigeons
will be halved after each iteration. The method of updating
the quantity is shown in Equation (3).

Np(t—1)

Ny (0) = "2&

3)

X. is the center position of the remaining pigeons and is
used as a landmark, ie as a reference direction for flight. The
update method is shown in Equation (4) and (5).

Xc(t) T Yfitness(X;(t) @

Xi(t+1)=PP(t+1) +w(t+1) X |mpes(t +1) — X;(t)| X In
Xi(t+1) =PP(t+1) —w(t+1) X [Mpes(t +1) = X; ()| X In

where u(t + 1) is a random number with uniform values
in the range of 0~1.

III. QPIO ALGORITHM BASED ON PARTICLE-BEST MUTATION

A. Disturbance

Although the quantum pigeon group optimization
algorithm is perturbed, the individual searches only in the
vicinity of gyey in the global search. For the more complex

X@®)=X;,t—-1) +randX.(t) - X;(t—=1)) (5)

After the N, iteration, the global optimal position P, is
obtained.

B. QPIO algorithm

The Quantum Pigeon Group Optimization Algorithm
(QPIO) is a new global optimization algorithm based on the
PIO algorithm combined with the motion law of particles in
one-dimensional ¢ potential well in quantum mechanics [9].

Mpest(t) is the average of the pigeons at the #-th iteration,
indicating the average best position in the population,
defined as Equation (6).

_ 135N p
mbest(t + 1) - Np Zi:l P; (t) (6)
where P{(?) is the optimal position currently searched for

each pigeon.

Create a new subgroup P;P,(t + 1)

PRy (t+1) = f(t+ 1) x Pi(t) + (1 — f(t + 1)) X Py (t)
(7)

where P,(f) is the optimal position currently searched for
the whole pigeon, and f(t + 1) is a random number with
uniform value in the range of 0~1.

Set w(t) be the expansion-contraction factor, which is
used to control the convergence speed of the algorithm. The
value is the linear function of the number of iterations of the
algorithm.

t

w(t) = Wmax — (Wmax = Omin) X @ ®)
where t.c 1S the total number of iterations,
Wmax» Wmin 1S @ NON-negative constant.
The way to update individual pigeons is
1
, ft+1) =05
u(t+1) fle+1) %)
L f(t+1)<05

u(t+1) ’

search space, the group is still easy to fall into the local
optimum. That is to say, when the group gathers in a small
range, it will lead to the lack of group diversity, which is
prone to local convergence in solving the multi-peak
optimization problem or “stagnation” in a long period of time.
The specific analysis is described.

Equation (9) can be rewritten as Equation (10).

Xi(t+1) = PP (t + 1) + w(t + 1) X [Mpese(t + 1) — X;(£)| X In —— (10)

Bringing Equation (7) into Equation (10),

X(t+1D) = ft+1) (PO - B®) + B0
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u(t+1)

w(t+ 1) X |mpege(t+ 1) — X;(£)]| X In

(11

u(t+1)

Equation (11) shows that in the search process, if the
group moves in a small space, the current position of the
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pigeon X;, the individual optimal position P; of the pigeon
and the global optimal position F; are very close. So that the
value of the (P;(t) — F,(t)) term in Equation (11) is very
small, even 0. In this way, the effect of the item on the
position update of the pigeon is small, which further leads to
the lack of group diversity, which weakens the search ability
of the group in a large range and falls into local optimum.
Therefore, in order to maintain the diversity of the pigeon
population throughout the search process, it is necessary to
mutate the pigeons.

In evolutionary computation theory, Gaussian mutation
and Cauchy mutation are two commonly used mutation
operators.

If the Cauchy variation is used, then X is a random
variable X=C that satisfies the Cauchy distribution, and its
probability density function is shown in Equation (12).

=(

T

a

fe@) =~ (72 (12)
where a is the scale parameter. Its variation value is

shown in Equation (13).

a X tan[m(rand — 0.5)] (13)
If Gaussian variation is used, then X is a random variable

X=N(0,1) that satisfies the Gaussian distribution, and its

probability density function is as shown in Equation (14).

fu@) = =exp(- ) (14)

Its variation value is shown in Equation (15).

b X randn

(15)

Where b is the scale parameter.

The biggest difference between the pigeon herd
optimization algorithm and the previous swarm intelligence
optimization algorithm is that the search process is divided
into two stages and different operator models are used. The
first stage map and compass operator are mainly used to
guide the pigeons to the destination, which is a rough search.
The second stage landmark operator is mainly used to guide
the pigeons to the final destination, which belongs to the fine
search.

For the different search requirements of the two stages,
when selecting the perturbation algorithm, it needs to be
considered separately. Cauchy mutations have advantages in
jumping out of local optimum, while Gaussian mutations
perform better in local convergence [14]. Therefore, for the
PIO algorithm, the Cauchy variation can be introduced into
the map and the compass operator, and the Gaussian
variation can be introduced into the landmark operator.
When the first stage rough search falls into the local
optimum, the Cauchy variation is used to increase the
disturbance range and expand the global search range. When
the second-stage fine search falls into local optimum, the
Gaussian mutation is used to search in a small range, and the
local search range is enlarged to ensure convergence. This
can avoid premature convergence and fall into the local
optimal problem, and can ensure that the landmark operator
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finds the global optimal solution.

The mutation operation of the current improved
algorithm mostly mutates from the current position of the
pigeon. The range of variation is not too large in probability,
and belongs to local search [12][13]. However, for the map
and compass operators in the rough search phase, the
purpose of the search is to guide the pigeons to the best
advantage, but not to reach the optimal position. At this time,
if the variation is based on the current position of the pigeon,
it is very likely that all the pigeons are not in the optimal
position. In the minimum problem shown in Figure 1, the
global best solution lies in G, and P; is the historical best of
individual i. The pigeons currently at the three points 4, B
and C are some distance away from the best advantage G. If
the mutation search is performed near the current position, it
may still not be able to jump to the local optimum. Therefore,
all the pigeons in this case are gathered near the local best,
and never reach the global best. However, the most important
advantage of individual history P; is likely to have been in
the vicinity of global optimality. This information should be
fully utilized in the dynamic search process.

Fig. 1. Local optimal indication

Therefore, in the map and compass operators, if they fall
into local optimum, this paper proposes to complete the
mutation operation near the optimal position of each pigeon's
own search, instead of using the new concept of continuing
to search using the previous generation position. The timing
of performing the mutation operation is that when the global
optimal fitness value is less than Th1 in the continuous N,pax
sub-variation, the Cauchy mutation operation is performed
on the optimal position of the individual according to the
Cauchy distribution probability density function. The
position of the i-th pigeon is updated as shown in Equation
(16).

Xit+1)=Pt)+V(t+1) (106)

where V;(t + 1) = a X tan[n(rand — 0.5)]. That is, the

position update of the pigeon is determined by the sum of the

individual's optimal position of the pigeon and the Cauchy
variation.

This variant applies only to rough searches of maps and
compass operators, but not to landmark operators. Because
the remaining pigeons that execute the landmark operator are
already near the global optimal value, a fine search is needed
at this time. That is, the location should not have a large
change. Gaussian variation can satisfy the above conditions.
Therefore, in the landmark operator, if it falls into local
optimum, Gaussian mutation is used to obtain the global
optimal value. The timing of performing the mutation
operation is that when the global optimal fitness value is less
than 7%, in the continuous N ;. Sub-variation, the Gaussian
variation operation is performed on the individual position
according to the Gaussian distribution probability density
function. The position of the i-th pigeon is updated as shown
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in Equation (17).

X;(t+1) = X;(t) + rand X (X.(t) = X;()) + G5) (17)
where, G is a Gaussian variation term whose A-th
dimension is shown in Equation (18).

Gs, = b X randn (18)

That is, the position update of the pigeon is determined
by the sum of the pigeon landmark operator update result and
the Gaussian variance value.

B. Pigeon swarm evolution

The core idea of the introduction of landmark operators
into the optimization of pigeons is to enhance the local
optimization ability of pigeons and quickly obtain the
optimal solution. The premise is that the pigeons quickly
move closer to the optimal solution while maintaining a
certain population. However, in the landmark operator of the
standard pigeon group optimization algorithm, the number of
pigeons will be reduced by half after each iteration, that is,
exponentially decreasing. The loss of the pigeon population
is too large. Regardless of the initial number of pigeons, they
will quickly drop to 2 or 1 (the result of rounding up is 2, the
result of rounding is 1), and it remains unchanged at 2 or 1.
Therefore, the diversity of the algorithm is lost, which

greatly affects the optimization performance of the algorithm.

Therefore, this paper uses the number of pigeons similar to
the map and compass factor to adjust the number of pigeons
in the landmark operator, shown in Equation (19).

N, (t) =PigeonNumlnitx e ®*t

(19)

where PigeonNumlnit is the initial number of pigeons.

At the beginning of the landmark operator, a large
number of pigeons are far away from the destination. At this
time, the best contribution to the group is small, and it needs
a lot of abandonment. Therefore, the number of pigeons is
reduced faster. In the later stage of the landmark operator, the
remaining pigeons gradually gather near the destination, and
it is necessary to increase the influence on the central
position while maintaining a certain population size.
Therefore, the number of pigeons is reduced at a slower rate.
This also helps the convergence of the algorithm.

The computational cost of various types of intelligent
optimization algorithms is mainly due to the complexity of
the objective function itself and the number of evaluations
[15]. The improved algorithm does not significantly increase
the amount of computation of the objective function.

IV. NUMERICAL EXPERIMENTS

A. Benchmark  functions and  other

comparison

algorithms

for

In order to test the performance of the algorithm, this
paper uses the standard test functions of Reference [9]:
Shubert function, Rosenbrock function, Rastrigin function
and Schaffer function.

Simulation experiments were carried out on three
algorithms: QPIO [9], CMPIO [13] and PMPIO. This paper
sets the initial population of pigeons PigeonNuminit=50,
map and compass factor, number of pigeons factor R=0.2,
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number of map and compass operator iterations (ie map and
compass operator termination conditions) N.;=50, number of
landmark operator iterations ( That is, the landmark operator
termination condition) N,=10, the Cauchy mutation
condition N, m=3, the Gaussian variation condition
Neomax=2, the map and compass operator variation threshold
Thi=0.1, and the landmark operator variation threshold
Th,=0.001.

B. Experimental results and analysis

The Monte Carlo simulations were performed on these
four test functions respectively. The statistical results of each
algorithm for different function optimization are shown in
Table I~IV.

According to the experimental results, it can be found
that although the three PIO algorithms tested can obtain the
optimal solution, the number of iterations and the refined
search ability required by each algorithm in obtaining the
optimal solution are significantly different. Due to the
addition of Cauchy disturbances in the map and compass
operators, the PMPIO algorithm significantly speeds up the
search for the vicinity of the optimal solution; due to the
addition of Gaussian perturbations to the landmark operators,
the pigeons are able to perform detailed searches near the
optimal values. At the same time, the number of pigeons is
used to maintain a certain size of the population, so that the
optimal value is better than the other two algorithms.

V. CONCLUSION

This paper proposes a quantum pigeon group
optimization algorithm based on individual optimal variation.
The difference between the algorithm and the traditional P1IO
algorithm is that, on the one hand, different mutation
perturbation methods are used for the different task
characteristics of the map and the compass operator and the
landmark operator, so that the pigeons can quickly and
roughly search for the vicinity of the global optimal value.
Fine search; on the other hand, using the number of pigeons
similar to the map and compass factor, adjust the number of
pigeons in the landmark operator to ensure the diversity of
the pigeons in the fine search, so that the optimal value can
be searched.

In the next step, the pigeon breeding optimization
algorithm will be further studied in terms of boundary
processing and the processing of the center position of the
remaining pigeons, which will speed up the search and study
the optimization problems under discrete conditions and
apply them to solve practical problems.

ACKNOWLEDGMENT

This work was supported by Air Force Engineering
University President Fund (XZJK2018003).

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on July 12,2020 at 02:44:31 UTC from IEEE Xplore. Restrictions apply.



(1]
[2]

[3]

[4]
[3]

(6]
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TABLE I. STATISTICAL RESULTS OF EACH ALGORITHM IN THE OPTIMIZATION OF SHUBERT FUNCTION

Algorithm  Optimal value Worst value Mean value Standard deviation
QPIO -1.867308e+02  -1.795573e+02  -1.864226e+02  8.082380e-01
CMPIO -1.867309¢+02  -1.851608e+02  -1.866043e+02  2.680723¢-01
PMPIO -1.867309¢+02  -1.864336e+02  -1.867119¢+02  4.479467¢-02

TABLE II. STATISTICAL RESULTS OF EACH ALGORITHM IN THE OPTIMIZATION OF ROSENBROCK FUNCTION

dimension Algorithm Optimal value Worst value Mean value Standard deviation

QPIO 1.536770e-13 6.327500e-03 2.975508¢-04 1.089167¢-03

10 CMPIO 3.532382¢-09 5.312296e-04 2.725337¢-05 6.098332¢-04
PMPIO 2.135578¢-08 8.079711e-05 7.612065¢-06 1.402009¢-05

QPIO 4.927919¢-12 2.364817¢-02 6.098172¢-04 2.937569¢-03

20 CMPIO 2.875068¢-08 6.342611e-03 3.404107¢-04 9.535897¢-03
PMPIO 6.971481e-08 9.898792¢-04 6.950810e-05 1.363482¢-04

QPIO 7.384892¢-14 3.043208e-02 6.609397¢-04 3.429567¢-03

30 CMPIO 7.534186e-07 4.263443e-03 4.573720e-04 8.435884e-03
PMPIO 2.378869¢-08 4.375013¢-04 7.480064¢-05 9.323265e-05

TABLE III. STATISTICAL RESULTS OF EACH ALGORITHM IN THE OPTIMIZATION OF RASTRIGIN FUNCTION

dimension Algorithm Optimal value Worst value Mean value Standard deviation
QPIO 0.000000e+00 3.656290e-08 1.080452¢-08 4.364021e-08

10 CMPIO 3.599036¢-10 9.158256¢-08 1.596909¢-09 1.838259¢-09
PMPIO 0.000000e+00 1.243450e-14 2.131628¢-16 1.389330e-15
QPIO 9.947598¢-14 1.809783¢-08 1.745212¢-08 4.056805¢-08

20 CMPIO 1.159227¢-12 3.270251e-07 3.619590e-08 5.235973e-07
PMPIO 0.000000e+00 1.900702¢-13 2.629008¢-15 1.994512¢-14
QPIO 1.048051e-13 1.287680e-07 2.712775e-09 1.329087¢-08

30 CMPIO 1.729265¢-12 5.977787e-07 4.668195¢-08 7.632764¢-07
PMPIO 0.000000e+00 3.298695¢-12 4.892087¢-14 3.417617e-13

TABLE IV. STATISTICAL RESULTS OF EACH ALGORITHM IN THE OPTIMIZATION OF SCHAFFER FUNCTION

Algorithm  Optimal value ~ Worst value Mean value Standard deviation
QPIO 0.000000e+00  1.558070e-03  3.223010e-06  1.636524¢-05
CMPIO 4.216066e-14  1.726083¢-04  4.305834e-11  2.111004e-10
PMPIO 0.000000e+00  3.458345e-14  7.238654e-16  3.856044e-15
China Tech Sci,2017,60(10),1577-1584.
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