
  

 

Abstract— In this paper, a model free sliding mode controller 

is designed for a power line inspection robot system that only the 

I/O information is available. The compact form dynamic 

linearization (CFDL) technique is firstly applied to approximate 

the original nonlinear system via an unknown pseudo-partial 

derivative (PPD) Jacobean matrix. Then an observer is designed 

to obtain an update law of PPD matrix. Meanwhile, a sliding 

mode control framework with index reaching law is studied to 

ensure the error’s asymptotically convergence. Besides, the 

robust stability of the closed-loop system and the selection of 

controller’s parameters are discussed using the Lyapunov 

theorem. Furthermore, a pigeon-inspired optimization (PIO) 

algorithm is used to automatically tune these parameters. 

Eventually, the simulation is carried out to demonstrate the 

effectiveness of the proposed control scheme. 

I. INTRODUCTION 

With the development of robotics, robots are considered to 
be part of the best practices in power system operations and 
maintenance [1]. In our previous work [2], a self-balance robot 
with two suspension arms was designed for power line 
inspection (PLI). When the robot negotiates obstacles, only 
one arm hangs on the line, wind load and transmission line’s 
vertical vibration may bring great challenge to its balance. In 
order to make the robot possess better reliability and mobility. 
Balance control is the first problem to be solved.  

To address the dynamic balance control of the PLI robot, 
the robotic system subjected to disturbances was considered in 
[2]. After that, a gain scheduled dynamic surface control based 
on disturbance observer was proposed in [3]. It effectively 
solved the problem of “explosion of complexity” and had 
strong robustness to fast time-varying disturbances. These 
control algorithms mentioned above take care of the robot’s 
balance control to a great degree, but they are designed on the 
premise that the balance adjustment process of the robot is 
reasonably described [4]. However, the controlled system’s 
dynamics are difficult to model precisely in practice [5]. 
Though a relatively accurate mathematical model is 
established, its characteristics of nonlinearity, time-varying, 
and uncertainties increase the difficulty of controller design. 
Despite the difficulty of realizing well control performance. 
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These problems are also inevitable for the other model-based 
control methods. To solve these problem, model free control 
methods such as PID control, model free adaptive control 
(MFAC) are necessary [6, 7]. 

The MFAC was originally proposed in [7]. It provides a 
controller design process applicable to a class of nonlinear 
systems, whose dynamics are poorly modeled. In  recent 
years, a number of theoretical improvements of MFAC for 
different types of systems have been presented [6-9]. In this 
paper, motivated by MFAC, a model free sliding mode control 
(MFSMC) integrated with the PIO is proposed.  

The parameters of the designed controller have significant 
influence on the control effect [10]. However, the fine tuning 
of controller parameters is a tedious and time-consuming task 
that always requires experimenters have rich knowledge of 
control theory and controlled objects. Employing optimization 
algorithms to tune parameters has received more and more 
attention[11]. The PIO is an efficient stochastic global 
optimization technique inspired by pigeon homing behavior. It 
was originally introduced in [12]. In this paper, it will be 
employed to choose proper controller parameters and initial 
values of PPD for MFSMC.  

The rest of the paper is organized as follows, Section II 
describes the mathematical model of the PLI robot’s balance 
adjustment process. Section III gives controller design process 
of MFSMC. The implementation of PIO is introduced in 
Section IV. Section V shows the simulation results. Finally, 
the conclusion is presented in Section VI. 

II. DYNAMIC MODEL FOR THE PLI ROBOT’S BALANCE 

ADJUSTMENT PROCESS 

The configuration of the  robot is shown in Fig. 1 [2]. The 
mass of counter-weight box accounts for a large proportion of 
robot’s total mass. The term 

1m  is the mass of the robot body, 

2m  is the mass of the counter-weight box, l  is the length of 

actuator bar, H  is the height of the T-shaped base, 
1h  is the 

distance between the cable and the robot body’s center of mass 
(COM) (given at the point A), 

20h  is the distance from the 

counter-weight box’s COM (given at the point B) to the 

1 1 1Y O Z  plane at 1 0  , 1  is the tilt angle between the robot 

body and the 1X  axis, 2  is the angle between the initial and 

active positions of the actuator bar. The values of some 
parameters are shown in Table 1. 

TABLE 1. THE PARAMETERS OF THE ROBOT ILLUSTRATED IN FIG. 1 [3] 

1m (kg) 
2m (kg) 

1h (m) 
20h (m) l (m) H (m) 

63 27 0.18 0.42 0.5 0.5 
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(a) 3D model and frame illustration of the PLI robot 
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(b) Frame illustration in the 
1 1 1X O Z  plane 
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(c) Frame illustration in the 
1 1 1X OY  plane 

Figure 1.   Balance adjustment illustration of the PLI robot [2]   

Considering the balance adjustment procedure of the PLI 
robot illustrated in Fig. 1. With Lagrange formulation, the 
Lagrange equations of motion expressing the process was 
derived as follows:  
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where g  is the gravitational acceleration, 1u  and 2u  are the 

torques associated with variables 1  and 2 , respectively. Let 

 
T

1 2 3 4x x x xX  
T

1 1 2 2        be the state 

variable vector. Using the first-order Euler discrete method, 
the discretized model of the robot can be obtained as:  
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where 
sT  is the sampling time.  

Remark 1. The mathematical model (3) established in this 
section is used only to provide online I/O information, it does 
not participate in the design of controller.  
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Figure 2.  Control block of the PLI robot  

Under the constraint that only the system’s I/O data are 
available. A double closed-loop control is proposed. Therein, 
the PLI robot with inner loop controller is considered as a 
generalized controlled plant. The MFSMC scheme combined 
with PIO is designed to make the plant track desired trajectory 
precisely. The control block is shown as in Fig. 2. Detailed 
design procedures are given in the following sections.  

III. DESIGN OF MFSMC AND STABILITY ANALYSIS 

A. The CFDL Expression of the Robotic System 

A discrete two input two output nonlinear system 
corresponding to the  controlled plant can be described as:  

          1 , , , , ,k f k k dy k k du   Y Y Y U U 

where  
T

1 2u uU  and  
T

1 2y yY  are the system’s 

input and output vectors. The terms dy  and du  are unknown 

order of input and output. The term  f  denotes unknown 

nonlinear function vector.  

Before we use the CFDL technique to linearize nonlinear 
system (4), the following assumptions are imposed [8]:  
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Assumption 1. The controlled system is generalized 
Lipshitz.  

Assumption 2. The partial derivatives of nonlinear 
functions with respect to control inputs are continuous.  

Remark 2. These assumptions are reasonable and widely 
used in the related literature (detailed explanation could be 
founded in [8] and references therein). 

Under these assumptions, system (4) can be approximated 
by the following CFDL equation:  

         1 1k k k k k      Y Y Y U 

where   0k U , and  k  is the PPD Jacobean matrix, 

whose composition is shown as:  
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In (6),  k  is assumed to be bounded and whose norm 

satisfies  k B . Since it is unknown and related to the 

system’s I/O information, as well as the iteration time k . 

Then in the next subsection, an update law for  k  is 

designed based on an established observer. 

B. The Estimation of PPD Jacobean Matrix 

For system (5), an observer with the following structure is 
firstly constructed [13].  

          ˆ ˆ ˆ1k k k k c k   Y Y U Y 

where  ˆ kY  denotes the estimated output vector, 

     ˆk k k Y Y Y  is the error vector between the 

estimated output and the actual output,  ˆ k  is the 

estimation of  k , c  is a design parameter. 

Combining (5) and (7), we can obtain that  

           ˆ1 1 1k k k k c k       Y Y U Y 

Now let      ˆk k k     be the estimation error of 

 k  and substitute (5) into (8), (8) can be rewritten as:   

          1 1k k k c k    Y U Y 

In this paper, the update law for PPD matrix is designed as:  
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where   is a design parameter.  

Here, similar to [8], a reset rule is introduced into the 

estimation of PPD matrix  k  to make parameter update 

law have a better ability in tracking time-varying parameter. It 

is that if  ˆ 1k   satisfies the following relationship: 

   ˆ ˆ1    1Mk or k       

where 
M  and   are positive constants. Then  

   ˆ ˆ1 1k    

where  ˆ 1  is the initial value of  k . From (11) and (12), 

it can be observed that the introduction of (12) makes the 

control scheme highly dependent on the initial value  ˆ 1 . 

Then in next section the employment of PIO for choosing 
parameter properly is important for the control scheme. 

Theorem 1. Considering the system (4), under the given 
assumptions, the adaptive observer is designed by (7), the PPD 

matrix is estimated by (10-12). The estimation errors   and 

Y  in the system are asymptotically converge to the origin by 
choosing proper design parameter. 

Proof. It is assumed once again that the PPD matrix  k  

is varying slowly at a short time interval, that is 

   1 0k k    . Then we have  

       ˆ ˆ1 1k k k k         

Substituting (9) and (10) into (13), we can obtain that 
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To make the estimation errors   and Y  converge to 
zero, a positive definite Lypunov function is chosen as : 

        T 2

ei i i iV k k k y k    

where 1, 2i  ,   and   are positive constants. Then 

according to (14), the differential equation of (15) can be 
obtained as: 
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Substituting (8) into (16), we have  

539



  

 

         

       

   

T T T

2 2

1

2 1

1 1

ei

i i

i i

i

V k

k I k k k

k k c y k

c y k

 





 

     
 

      

   
 

RR U U

U

 





Let    i i k k U  , then (17) can be rewritten as:  
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Based on the theory of the average value inequality, 
equation (18) can be rewritten as  
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where   is a positive constant. From (19), we can get that in 

order to make  1eiV k   negative definite, the 

corresponding design parameters should be chosen to satisfy 
the following condition: 
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It can be proved that the estimation errors   and Y  in the 
system is asymptotically stable by choosing proper design 
parameters c  and  . 

C. Design of MFSMC  

Before we move on to the next stage, let's define the 
following two error variables: 

     i di ie k y k y k  

     ˆ
oi di ie k y k y k  

where  ,  1,2ie k i   is the system tracking error,  oie k  is 

the observer error,  diy k  is the desired output for  iy k .  

The controller characterized by a discrete-time integral 
sliding model framework is designed [14]. The sliding mode 
surface is chosen as : 
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where T

1 2[   ]s sS , 
T

1 2[   ]o oe e
O

E , 
T

1 2[   ]  ,  the 

terms Pk  and Ik  are the proportion gain and integer gain of 

sliding mode surface, respectively. An index reaching law 
presented in [15] is chosen as the reaching law:  

       sgni s s i is k T k s k s k      

where  0 1s sT k  , and  0sT  . The use of (24) guarantees 

good performance in reaching to the sliding mode surface, and 
makes the calculation of control law become simple and 
intuitive. In order to make (24) meet the reaching condition of 
sliding mode [15].  

To obtain the control law, the difference equation of (23) is 
deduced to show the control variable:  
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where T

1 2[   ]d dy y
d

Y . Because (25) must be equal to (24), 

we can get the following control input:  

 
 

 

     

    
 

2

ˆ1
ˆ

ˆ
P

P I s

k k c k
k

k k k k
k

k k T


   
 

   
 

  

d

O

Y Y Y

U E S






Theorem 2. For the nonlinear robotic system (4), the use 
of index reaching law (24) and control law (26) can ensure 
sliding mode surface (23) coverage to a bounded area with a 

thickness of  
1

2 s s sk T T


 . Besides, the closed-loop 

system’s tracking error (23) and observer tracking error (22) 

are all bounded by  
1

2 2s s sT k T


 . 

Proof. According to (24) and the reaching condition of 
sliding mode, we have  

        1 sgn 0i i i s s i ss k s k s k k T s k T        

          1 sgn 2i i i s s i ss k s k s k k T s k T       

From (28), it can be observed that the system takes equal 
amplitude crossing movement on both sides of the switching 
surface to form a boundary layer with a thickness of 

 
1

2 s s sk T T


 , i.e.    
1

lim 2i s s s
k

s k k T T



  . By 
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appropriately choosing   and sk ,  is k can be made 

arbitrarily small.  

According to (25), we can obtain that  
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Then the observer tacking error is bounded and  
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From (19), (21) and (22), it can be obtained that the error 

     i oi ie k e k y k   satisfies: 
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IV. THE PARAMETER OPTIMIZATION OF MFSMC USING PIO 

According to [12], the PIO algorithm thinks that the 
pigeons’ homing behaviour is mainly rely on two tools: the 
map and compass operator, the landmark operator. 

 Map and compass operator: all pigeons use 
magnetoreception to sense the earth magnetic field, and adjust 
their direction in accordance with the altitude of sun. The PIO 

regards each pigeon’s position  1 2,  , ,  i i i iDp p pP  as a 

potential solution to a problem in D-dimensional search space. 
Besides, every pigeon also has a corresponding velocity that is 

expressed as  1 2,  , ,  i i i iDv v vV . At each iteration k , the 

position  i kP  with the best fitness is chosen as the global 

best position 
gbestP  to update the velocity. The mathematical 

expression of this process can be given as:  

      
     

1 1

1

rt

i i gbest i

i i i

k k e rand k

k k k

     


  

V V P P

P P V


where r  is the map and compass factor, rand  generates 

random number.  

Landmark operator: when pigeons fly close to their 
destination, they will rely more on the landmarks to arrive at 
the destination. In this stage, pigeons’ number will be reduced 
by halt in each iteration. The pigeons with a better fitness will 
be kept, and the other half with poor fitness will be discarded. 

The remaining pigeons’ center position  center kP  is 

considered as the landmark for the reference flight direction, 
according to the following equation to modify the position. 
Eventually, we can obtain the optimal value. 

         

        
1 1

/

1 1

Np Np

center i i i

i i

i i center i

k k fitness k fitness k

k k rand k k

 





     

 P P P P

P P P P



where    1 / 2Np k Np k  . 

V. SIMULATION RESULTS 

In this section, simulations are carried out to verify the 
effectiveness of the MFSMC algorithm based on PIO (it is 
referred to MFSMC-PIO in the following text) to the PLI 
robot system. Simultaneously, the simulation compared with 
PID and MFSMC without PIO is conducted. 

Firstly, PIO is used to obtain reasonable controller 
parameter. Its main parameters are given as: iterations for the 

map and compass operator 
max1 50iN  , iterations for the 

landmark operator 
max 2 40iN  , pigeon swarm size 30pN  , 

map and compass factor 0.3r  , and dimension 11D  . The 

objective of the controller parameter optimization is to 
guarantee the system’s tracking error is small enough and 
ensure the smoothness of the control input. Then the following 
fitness function are defined. 

      
2

2 2 2

1 1

N

oi i i

k i

J e k u k y k
 

   

One group optimal results for the controller parameters is 
listed in Table 2. Besides, the sampling time is set as 

0.01sT  . The gain for PID controller are chosen as 

1 2 300p pK K  , 1 1.3iK  , 1 3000dK  , 2 0.4iK  , 

2 4000dK  .   

 TABLE 2. THE PARAMETER SETTING FOR MFSMC 

Parameter Min Max Initial value Optimal result 

 1ij  0 20 
[15  4.2;   
5  4.8] 

[10.5 2.2; 
 1.8 10] 

Pk  0 50 4.3 0.05 

Ik  0 10 2.1 0.6 

  0 1 0.8 0.2 


 

0 1 1.0 0.3 

sk
 

0 100 48 52 


 

0 10 3.3 1 

c
 

0 2 1.6 0.875 

 
The comparison simulation results of PID, MFSMC and 

MFSMC-PIO are shown in Figs.4-6, where Fig. 4 and Fig. 5 
imply position tracking of system outputs. It can be observed 
that the system outputs are asymptotically balanced at the 
desired position under the control of PID, MFSMC and 
MFSMC_PIO. However, it should be noted that the system’s 
tracking response with PID controller has an oscillation at the 
beginning. The MFSMC provides poor rapidity and stability 
for tracking response. Although they finally are able to track 
accurately. When the parameters are adjusted by PIO, the 
system’s tracking performance has been improved in terms of 
rapidity and stability. Fig. 6 shows the estimation of PPD 
Jacobean matrix. From the last two figures, we can get that the 
PPD matrix for the CFDL model (5) is not unique. Its initial 
value has a great influence on the control effect.  
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Figure 3.   Trajectory of system output 1y  (angle 1 ) 
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Figure 4.  Trajectory of system output 2y  (angle 2 ) 
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Figure 5.  Trajectory of estimated PPD matrix ̂   

Clearly, the performance of the closed-loop system is 
significantly improved. The proposed MFSMC-PIO is able to 
achieve the following goals: (1) It realizes accurate tracking 
mission under the circumstance of only the system I/O 
information is known. (2) It enhances both the immediacy of 
rapidity and stability.  

VI. CONCLUSIONS 

 In this paper, a model free sliding mode controller is 
designed to address the balance adjustment of a power line 
inspection robot. Under the circumstance of only the I/O 

information are available. The original nonlinear system is 
approximated by the CFDL technique via an unknown PPD 
Jacobean matrix. Then an observer is designed to obtain the 
update law of PPD matrix. In addition, the employed SMC 
with index reaching law greatly simplifies the controller 
design and enhances the robustness. Meanwhile, it is proved 
that all the error signals in the closed-loop system are bounded 
using Lyapunov theorem. In addition, the effectiveness of the 
presented MFSMC-PIO is demonstrated by simulation. 
Comparisons with PID and MFSMC imply that the proposed 
algorithm ensures a fast, accurate and stable tracking mission. 
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