
  

  

Abstract—In this paper, a hybrid model of Entropy Weight 
Method (EWM) and Gaussian Pigeon-Inspired Optimization 
(GPIO) is proposed to solve the problem of rectangular 
waveguide design. There are four parameters involved in the 
design: length, width, relative permittivity and electrical 
conductivity. Our goal is to optimize the combination of these 
parameters so that the waveguide achieves the best overall 
performance. EWM is employed in the building of the 
performance judging function. An improved Pigeon-Inspired 
Optimization adopting Gaussian searching strategy is utilized 
for minimizing the function’s value. Comparative experiments 
with basic PIO and Particle Swarm Optimization (PSO) are 
conducted, and the results verify that better design can be 
obtained with our proposed Gaussian Entropy Weight 
Pigeon-Inspired Optimization (GEWPIO) algorithm because of 
its utilization of information theory and non-linear searching 
strategy. 

Keywords—Gaussian Pigeon-Inspired Optimization (GPIO), 
Entropy Weight Method (EWM), Rectangular waveguide 
design. 

I. INTRODUCTION 

Microwave is a form of electromagnetic radiation with 
frequencies ranging from 300 MHz (100 cm) to 300 GHz (0.1 
cm), and in today’s society microwave is widely used in many 
aspects: spacecraft communication, navigation, radar and 
heating application. Metal pipe waveguides are often used to 
guide microwave, and rectangular waveguides are one of the 
most common types [1]. 

It has always been an important task to design the optimal 
rectangular waveguide, and a lot of relevant work has been 
conducted. Schmiedel and Arndt proposed a design method 
based on field expansion of eigenmodes [2]. M. K. Chin’s 
approach is based on an approximate solution of the wave 
propagation [3]. However, one of the main defects that 
traditional mathematical optimization methods face is that 
their effectiveness decreases as the computation’s complexity 
grows [4].  

The concept of entropy was originally a thermodynamic 
construct, and was firstly introduced into information theory 
by C.E. Shannon [5]. Entropy can measure not only the 
disorder degree of a group of molecules, but also the amount 
of effective information provided by a set of data, which lays 
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the foundation for the entropy weight method. In order to 
fairly judge the performance of a certain waveguide design, 
we build an objective function taking different evaluating 
indexes into consideration and utilize EWM to decide the 
coefficients of each index. 

Over the past decades, researchers have put forward many 
swarm intelligence algorithms, such as Particle Swarm 
Optimization (PSO) [6], Ant Colony Optimization (ACO) 
[7], and Artificial Bee Colony (ABC) Optimization [8] to 
solve complex problems. Pigeon-Inspired Optimization (PIO) 
is a novel swarm intelligence algorithm firstly proposed by 
Duan in 2014 [9], and fast convergence speed is its most 
outstanding advantage. However, PIO can easily trap into a 
local optimal solution because of the inherent weakness of its 
uniform distribution random searching system. To overcome 
this weakness, an improved PIO algorithm adopting Gaussian 
strategy is proposed and employed in minimizing the 
objective function’s value. In this paper, we propose an 
intelligent approach combining Entropy Weight Method 
(EWM) and Gaussian Pigeon-Inspired Optimization (GPIO) 
to solve the waveguide design problem. 

The remaining part of this paper is organized as follows. In 
section 2, the rectangular waveguide design problem is 
formulated, where some important parameters and the 
evaluating indexes are also discussed. In section 3, the main 
idea of EWM and its detailed implementation steps are 
introduced. Section 4 describes the basic PIO and our 
modified version respectively, and section 5 contains the 
results and analysis of a series of comparative experiments. In 
the last part, our concluding remarks are provided. 

II. PROBLEM FORMULATION 

The shape of a rectangular waveguide is as shown in Fig.1. 
The length of its cross-section is denoted by a , and the width 
is denoted by b . The walls are made of metal with electrical 
conductivity σ  and magnetic permeability μ , and material 
with relative permittivity rε  fills the inside of the waveguide. 

 
Figure 1.   Schematic illustration of rectangular waveguide 

Gaussian Entropy Weight Pigeon-Inspired Optimization for 
Rectangular Waveguide Design 

Yuwei Hu, and Haibin Duan, Senior Member, IEEE 

 1951
978-1-4673-8318-9/16/$31.00©2016 IEEE

Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference                   August 12-14, 2016   Nanjing, China



  

 
 

Figure 2.   Schematic illustration of TE and TM modes 

Microwave propagates through the waveguide by different 
modes [10], which can be classified into three categories: 
traverse electric mode (TE), traverse magnetic mode (TM), 
and traverse electromagnetic mode (TEM). A rectangular 
waveguide supports TM and TE modes but not TEM, as 
shown in Fig.2. According to the theory of electromagnetic 
fields, microwaves cannot propagate beyond a wavelength 
and this wavelength is called the cut-off wavelength. For a 
rectangular waveguide, the cut-off wavelength is given by: 
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In most realistic cases, single mode operation is preferred, 
which means that only the dominant mode propagates in the 
waveguide and all other modes are cut off. To achieve the 
single mode operation, the following equation should be 
satisfied: 

20
10

01

( )
( ) 2 max

( ) 2
c H

c H
c H

a
a

b
λ

λ λ
λ

=�
= > > � =�

            (2) 

In order to fairly judge the performance of the rectangular 
waveguide design, we introduce four evaluating indexes, 
which will be discussed respectively below. 

1. Attenuation Rate 
When microwaves propagate in lossy waveguides, the 

electric field intensity and magnetic field intensity attenuate 
along the waveguides. To simplify the analysis of wave 
attenuation, an approximate power-loss method [11] is 
adopted. In this method, the field expressions are derived 
assuming perfectly conducting walls, and it gives reasonably 
accurate result:     
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2. Power Capacity 
The waveguide’s power capacity is limited by the 

phenomenon of electrical breakdown, which is a reduction in 
the resistance of an electrical insulator when the voltage 
applied across it exceeds the breakdown voltage. The 
relationship between power capacity and breakdown electric 
intensity is given by: 
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3. Band Width 

Band width is defined as the difference between the highest 
frequency signal component and the lowest frequency signal 
component, and the capacity of a given communication 
channel is mainly determined by its band width. Band width 
can be calculated by the following equations:   
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4. Cost of Materials 
The cost of materials is of course another factor that should 

be taken into consideration in the design process, and it can be 
easily seen: 2( )C a b+ . 

III. ENTROPY WEIGHT METHOD 

In section 2, all of the four evaluating indexes are already 
discussed, and now we build the objective function: 

 
1 2 3 4( ) ( ) ( ) ( )F w f R w f P w f W w f C= + + +        (6) 

 
where 1w , 2w , 3w  and 4w  are weight coefficients, and their 
value will be determined by Entropy Weight Method. 
According to Shannon’s information theory, which was first 
proposed in his 1948 paper "A Mathematical Theory of 
Communication", the information entropy can explicitly be 
written as: 
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From this equation we can see that when the values of 
evaluated objects on a certain index are distributed unevenly, 
the corresponding entropy is small. Small entropy means that 
a larger amount of effective information is provided, so the 
corresponding coefficient should be bigger. On the contrary, 
the smaller the difference, the larger the entropy is, which 
means that only a small amount of information is provided 
and the corresponding coefficient should be smaller. The 
detailed procedure of using EWM to determine the 
coefficients is as follows: 

1.  Standardize original data matrix 
Consider a case when there are n evaluated objects and m 

evaluating indexes, the original data can be written as the 
following matrix: 
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To standardize the matrix, the result is ( ' )m n
ijx ×  where 'ijx   

is the standard value of the thj  evaluated object on the thi  
evaluating index, and it is calculated by: 
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 ( ) ( )' min max minij ij j j jx x x x x= − −              (8) 
 

In our case of the rectangular waveguide design, there are 
four evaluating indexes. We choose a set of combinations of 
parameters and calculate corresponding indexes’ value. The 
orthogonal strategy [12] is introduced to guarantee the 
diversity of the combinations, and the results after 
standardization are listed in Table 1. 

2. Calculate entropy 
According to (7), entropy values of the four evaluating 

indexes are calculated and the results are listed in Table 2. 

3. Calculate weights 
After the entropy of the thi  index is calculated, the 

definition of its entropy weight is: 
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where m is the number of indexes. Now that we get the 
coefficients of the indexes, (6) can be rewritten as:  

0.246 ( ) 0.328 ( ) 0.303 ( ) 0.124 ( )F f R f P f W f C= + + +       (10) 

The process of choosing the optimal waveguide design is 
equal to minimizing the objective function’s value, which will 
be addressed in next section. 

 
TABLE I.   VALUE OF INDEXES AFTER STANDARDIZATION 
 

a  b   rε  σ  R   P    W   C   
0.16 0.04 1 6.17 0.9496 1.0000 0.0000 0.00 
0.16 0.08 5 3.82 0.7481 0.4450 0.0000 0.25 
0.16 0.12 10 1.57 1.0000 0.2600 1.0000 0.50 
0.20 0.04 5 1.57 0.7985 0.3572 0.1250 0.25 
0.20 0.08 10 6.17 0.1343 0.1236 0.1250 0.50 
0.20 0.12 1 3.82 0.1266 0.0458 0.4375 0.75 
0.24 0.04 10 3.82 0.3307 0.2199 0.2500 0.50 
0.24 0.08 1 1.57 0.0430 0.0000 0.2500 0.75 
0.24 0.12 5 6.17 0.0000 0.0000 0.2500 1.00 

 
TABLE II.   ENTROPY VALUES 

 

( )H R   ( )H P   ( )H W   ( )H C  
0.8085 0.7443 0.7642 0.9034 

 
TABLE III.   WEIGHTS OF INDEXES 

 

1w  2w  3w  4w  
0.2456 0.3280 0.3025 0.1239 

 
 

IV. PIGEON-INSPIRED OPTIMIZATION 

A  Basic PIO 

PIO algorithm is a novel swarm intelligence optimizer 
invented by Duan, and it solves problems by imitating 
pigeons’ homing behavior. A lot of biological research has 
revealed that it is with the help of magnetic field, the sun, and 
landmarks, that pigeons can easily find their home [13]. 
Pigeons can sense the geomagnetic field to shape the map in 
their brains [14], and they adjust the direction according to the 
altitude of the sun. As they fly close to their destination, they 
rely less on the sun and magnetic field, and landmarks play a 
more important role.  

Inspired by these facts, two operators are introduced in the 
PIO algorithm: the map and compass operator and the 
landmark operator, of which the former is designed according 
to the contribution of the magnetic field and the sun, and the 
latter is based on the utilization of landmarks. The process of 
optimization can be seen as the pigeons’ homing behavior, 
and the position of each pigeon is a possible solution, which 
corresponds to the value of the objective function. 

 
� Map and compass operator 

First, each pigeon iX  with initial velocity iV  is randomly 
initialized within the solution space, and they are denoted as 

[ ]1 2, , ,i i i imX X X X= � , [ ]1 2, , ,i i i imV V V V= � , where i  is the thi  
pigeon, and m  is the dimension of solution space. The new 
position iX  and velocity iV  of pigeon i  at the tht  iteration 
can be calculated by: 
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where R  is the map and compass factor introduced to slow 
down the initially randomized search speed of pigeons; gX is 
the global optimal solution; rand is a random number 
uniformly distributed between 0 and 1. 

 
Figure 3    Map and compass operator in the PIO algorithm 
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Figure 4    Landmark operator in the PIO algorithm 

 
� Landmark operator 

In each generation of landmark operator, the number of 
pigeons will be halved, which means that pigeons which are 
far away from the destination will follow those close to the 
destination, and the number of pigeons at the tht  generation is 
calculated by: 
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It is supposed that each pigeon will fly straight to the 
destination, which in Duan’s model [15] refers to the center of 
all the pigeons in the tht  iteration, so the position of pigeon i  
at the tht  iteration is updated by the following equation: 
 

 ( )( ) ( 1) ( ) ( 1)i i c iX t X t rand X t X t= − + ⋅ − −       (13) 
 
where ( )cX t  denotes the center position at the tht  iteration, 
and it is defined as: 
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B. Gaussian PIO 
PIO has a certain possibility of trapping into a local optima, 

and this weakness limits its further application in many 
situations. To overcome this defect, we formulate a modified 
PIO model with a Gaussian item added.  

In the map and compass operator of basic PIO, the random 
number obeys uniform distribution. Gaussian distribution is 
another kind of distribution extensively used in natural 
science [16], and it can depict many non-linear phenomena 
better than uniform distribution. Noticing that the searching 
equation in the map and compass operator satisfies the latent 
premise of Gaussian distribution, we propose the improved 
velocity updating equation as follows   
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where 1R  is a random number generated by standard Gaussian 
distribution, 2R follows uniform distribution, and p is a 
flexible parameter used to balance the Gaussian distribution 
and uniform distribution.  

 
Figure 5    Flow chart of Gaussian PIO 

V. EXPERIMENTAL RESULTS 
In order to confirm the effectiveness of the proposed 

GEWPIO algorithm for rectangular waveguide design, we 
conduct a series of experiments and compare the results with 
that of basic PIO and Particle Swarm Optimization (PSO). As 
already discussed, there are four parameters involved in the 
design: length, width, relative permittivity and electrical 
conductivity, and our goal is to optimize the combination of 
these parameters so that the waveguide achieves the best 
overall performance, which equals that the objective function 
achieves the minimum value. 

We set 0.3mλ = , and the search space of a   and b   is 
decided by (2); the search space of rε  is between 1 and 10. 
To simplify the problem, only four kinds of metal commonly 
used are taken into consideration, and their electrical 
conductivity value is listed in Table 4.  
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TABLE IV    CONDUCTIVITY VALUE OF FOUR KINDS OF META.L 

Tin Copper Aluminum Silver 
70.71 10×   71.57 10×   73.82 10×   76.17 10×   

 
TABLE V    COMPARATIVE RESULTS OF PSO, PIO AND GEWPIO 

 Algorithms a   b   rε  fitness 
 
Tin 

GEWPIO 0.1222   0.0609   6.0189 0.7762
PIO 0.1293   0.0647 5.3800 0.7929
PSO 0.1255  0.0627 5.7177 0.8034

 
Copper 

GEWPIO 0.1433   0.0717   4.3804 0.6735
PIO 0.1361   0.0680   4.8593 0.6810
PSO 0.1310   0.0651 5.2195 0.7036

 
Aluminum 
 

GEWPIO 0.1195   0.0597 6.3067 0.5836
PIO 0.1137   0.0569 6.9557 0.6024 
PSO 0.1148   0.0567 6.7735 0.6112 

 
Silver 

GEWPIO 0.1103 0.0551  7.4038 0.5494 
PIO 0.1084   0.0542 7.6639 0.5523 
PSO 0.1095   0.0541 7.4120 0.5680 

 

 
        Figure 6    Fitness value for GEWPIO, PIO, and PSO in four cases 

For PSO, we set the number of particles 50N = , maximum 
iteration times 100T = , inertia weight is 0.4, two evolution 
parameters 1 2 2C C= = ; for PIO and GEWPIO, 1 80T = , 

2 100T = , 50N = , 0.2R = , 0.4p = . The results are listed in 
Table 5, and the comparison of fitness value is shown in 
Fig.6. 

It is obvious that the best results are from the GEWPIO 
algorithm in all of the four cases. We observe that the length 
is always nearly twice the width. In fact, rectangular 
waveguides with this configuration are called standard 
waveguides and are widely used in real practice. To further 
compare the GEWPIO with the other two algorithms, the 
evolution curves of the function’s fitness value in 100 
iteration times for PSO, PIO and GEWPIO are shown in 
Fig.7. 

From Fig.7, we can see clearly that GEWPIO has a faster 
convergence speed compared with PIO and PSO, which 
means that it can search with higher efficiency.  
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(a)  Case of tin 
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(b)  Case of copper 
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(c)  Case of aluminum 
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(d)  Case of silver 

Figure 7.   Comparative evolution curves of the fitness value for GEWPIO, 
PIO and PSO in four cases 
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VI. CONCLUSIONS 
In this paper, we combine the Entropy Weight Method and 

Gaussian PIO to accomplish the task of rectangular 
waveguide design. EWM is used in the building of the 
objective function to decide the evaluating indexes’ 
coefficients, and GPIO is employed to minimize the 
function’s value. We conduct a series of experiments, and 
the results compared with that of basic PIO and Particle 
Swarm Optimization verify the effectiveness of the proposed 
Gaussian Entropy Weight Pigeon-Inspired Optimization 
(GEWPIO) algorithm for rectangular waveguide design. 
Moreover, the results confirm that in our hybrid GEWPIO 
model, the utilization of information theory guarantees that 
the objective function is established reasonably, and the 
adopted non-linear Gaussian strategy improves the searching 
efficiency of basic PIO.  
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