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Trajectory optimization problem for hypersonic vehicles has long been recognized as a difficult problem. This paper brings control
constraints into the trajectory optimization to make the optimal trajectory meet the requirements of control performance. The
strong nonlinear characteristic of the ascent phase aerodynamics makes the trajectory optimization problem difficult to be
solved by the optimal control theory. A trajectory optimization algorithm based on the improved pigeon-inspired optimization
(PIO) algorithm is proposed to solve the complex trajectory optimization problem under multiple constraints. To overcome the
obstacle of premature convergence and deceptiveness, the evolutionary strategy of qubit in quantum evolutionary algorithm
(QEA) is introduced into the PIO to maintain population diversity and judge the optimal solution. To handle constraints, the
penalty function is used to construct the fitness function. The optimal ascent trajectory is obtained by utilizing the improved
PIO algorithm. Then, the trajectory inverse algorithm is used to verify the feasibility of the optimal trajectory to ensure that a
feasible optimal trajectory is obtained. The comparison results show that the proposed algorithm outperforms particle swarm
optimization (PSO) and standard PIO on trajectory optimization. Meanwhile, the simulation result shows that the performance
of the optimal ascent trajectory with control constraints is improved and the trajectory is feasible. Therefore, the method is
potentially feasible for solving the ascent trajectory optimization problem under control constraint for hypersonic vehicles.

1. Introduction

The hypersonic vehicle has received wide attention as it has
high speed and large flight range. As an essential part, trajec-
tory optimization for the hypersonic vehicle can help the
design of the vehicle shape and a flight plan. The ascent tra-
jectory optimization, due to its highly nonlinear dynamics
and strong constraints, becomes a hot and difficult issue.
Meanwhile, the reduction of fuel consumption in the ascent
phase can help the hypersonic vehicle to increase the cruising
distance.

A great deal of research has been done on the optimiza-
tion of the hypersonic vehicle’s trajectory, and a lot of new
optimization methods have been proposed [1–3]. Kumar
et al. presented a trajectory optimization of an aerodynami-
cally controlled hypersonic boost-glide class of flight vehicles
[4]. Xie et al. proposed a multiobjective gliding trajectory

optimization scheme for a hypersonic vehicle with compli-
cated constraints [5]. Chai et al. have done a lot of research
on trajectory optimization and optimal control problem [6–
8]; they considered the highly constrained trajectory optimi-
zation problems, applied a specific multiple-shooting discre-
tization technique with the newest NSGA-III optimization
algorithm, and constructed a new evolutionary optimal con-
trol solver to address the multiobjective trajectory planning
problem [6]. Fu et al. solved the ascent trajectory optimiza-
tion problem for hypersonic vehicles with the improved
chicken swarm optimization (ICSO) algorithm [9]. Cheng
et al. presented an iterative convex programming algorithm
for the complex ascent trajectory planning problem, tran-
scribed the dynamic equations into linearized algebraic
equality constraints with a given initial guess based on the
Newton–Kantorovich/Pseudospectral (N–K/PS) approach,
and formulated the ascent trajectory planning problem as a
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convex programming problem [10]. Mahmoud et al.
described the ascent and descent optimal trajectories with
two different dynamics in each stage and the relation between
the stages under the constraints of each phase [11].

However, the hypersonic vehicle is a strong coupling sys-
tem; its plant performance, trajectory performance, and con-
trol performance are not independent but affect each other.
Due to the limitation of control performance, the optimal
trajectory that only considers trajectory performance may
not be realized, so it is necessary to add control constraints
to trajectory optimization.

At present, the numerical method is widely studied and
applied in trajectory optimization [12–14], and it can be
divided into indirect method and direct method. The indirect
method uses optimal-control theory to obtain an analytical
solution to the trajectory optimization problem. The merit
of this method is that it can obtain an accurate analytical
solution by the first-order necessary optimal condition;
meanwhile, the initial costate is very difficult to guess. The
direct method first transforms the trajectory optimization
problem into nonlinear programming problem, then solves
the nonlinear programming problem. Compared with the
indirect method, the direct method has the advantages of
low precision of the initial guess and simple derivation pro-
cess. Recently, bioinspired heuristic algorithms have received
widespread attention in the field of direct methods for solv-
ing the nonlinear programming problem. The advantage of
the bioinspired heuristic algorithm is that the optimal solu-
tion is usually the global optimal solution, and these algo-
rithms have strong robustness.

Due to the effectiveness and ease of implementation,
more and more optimization algorithms based on swarm
intelligence are proposed and researched nowadays [15–
17]. The PIO algorithm performed better in a lot of popular
benchmark optimization problems compared with DE [18]
and PSO method and has proved effective in many areas.
For example, three-dimensional path planning [19] controls
parameter optimization [20] and predicts 3D protein struc-
ture [21]. Therefore, this paper chooses the PIO algorithm
as the root-finding algorithm to solve the nonlinear program-
ming problem.

Although the PIO algorithm is able to converge quickly,
it is often inaccurate in dealing with complex optimization
problems and easily falls into local optimization owing to
premature convergence. Premature convergence mostly orig-

inates from a loss of diversity and deceptiveness. The lack of
diversity means that the difference between all solution candi-
dates is small, which weakens the exploration. Meanwhile, a
deceptive direction of convergence forestalls the exploration.

To overcome these obstacles and obtain better solutions,
this paper introduces quantum representation and quantum
rotation gate in the quantum evolutionary algorithm (QEA)
to improve the PIO algorithm. The QEA is a probabilistic
evolutionary algorithm that integrates concepts from quan-
tum computing for robust search [22]. The QEA uses a qubit
as the probabilistic representation, which represents a linear
superposition of binary solutions [23]. The quantum rotation
gate is the evolutionary strategy of qubit in the QEA [24],
which is adopted as a mutation operator to update the pairs
of probability amplitudes toward the one with the best fit-
ness. In this paper, the position of pigeons is represented by
qubit; the current best pigeon is considered to be a linear
superposition of positive state and deceptive state. Other
pigeon makes its own judgment by observation. If the current
optimal solution still exists after iteration, the deceptive
probability amplitude will decrease. In this way, the accuracy
of the PIO algorithm is improved.

The rest of this paper is structured as follows. Section 2
briefly introduces the hypersonic vehicle model adopted in
this paper; Section 3 establishes the optimization problem;
constraints and performance index in trajectory optimization
are determined; Section 4 proposes a new trajectory optimi-
zation based on the improved PIO algorithm and trajectory
inverse algorithm in allusion to optimize ascent trajectory
under complex constraints. Section 5 shows the simulation
results. In this section, the comparison results of the pro-
posed algorithm, PIO, and PSO on trajectory optimization
are given. Meanwhile, the optimal trajectories with and with-
out control constraints are compared; then, the control vari-
ables are obtained by using the trajectory inverse algorithm
to determine whether the optimal trajectory is feasible.
Finally, we conclude in the last section.

2. Vehicle Model

The hypersonic vehicle model used in this paper was devel-
oped by Bolender and Doman [25] and Parker et al. [26] as
an attempt to extend earlier work done by Chavez and
Schmidt [27]. The basic geometry of the vehicle model is
shown in Figure 1, which contains only longitudinal dynamics
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Figure 1: Geometry of the hypersonic vehicle.
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(in the figure, α is the angle of attack; Lv is vehicle length; δe is
elevator deflection; and M∞ is freestream Mach number). A
detailed explanation of the model derivation is given in [25].
Rather than using the relatively simple approach of Newto-
nian Impact Theory [27], the model was derived using a com-
pressible flow theory. The combination of oblique shock wave
and Prandtl-Meyer flow theory is used to determine the pres-
sure within the range of possible angles of attack and structural
bending conditions. The engine model is a scramjet taken
directly from the paper by Chavez and Schmidt [27]. Since
the angle of attack plays an important role in determining
the characteristics of the flow characteristics into the scramjet,
the thrust becomes very dependent on it.

2.1. Dynamic Equation. The dynamic equations of motion
for the longitudinal dynamics of the hypersonic vehicle are
as follows:

_v = T cos α −D
m

− g sin θ − αð Þ,

_α = qp −
T sin α + L

mv
+ g

v
−

v
Re + h

� �
cos γ,

_h = v sin θ − αð Þ,
_θ = qp,

_qp =
My

Iy
,

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð1Þ

where v is the velocity; h is the altitude; α is the angle of
attack; θ is the pitch angle; qp is the pitch rate; γ is the flight
path angle; Iy is the moment of inertia; g is the gravitational
acceleration; Re is the earth radius; m is the mass of the vehi-
cle; and T , L, D, and My are thrust, lift, drag, and moment,
respectively, expressed as

L = 0:5ρv2sCL,
D = 0:5ρv2sCD,
T = 0:5ρv2AeCT ,
My = 0:5ρv2s�cCM ,

8>>>>><
>>>>>:

ð2Þ

where v is the velocity; s is the reference area; Ae is the air
inlet area; ρ is the atmospheric density; �c is the mean aerody-
namic chord; and CL, CD, CT , and CM are lift coefficient, drag
coefficient, thrust coefficient, and moment coefficient,
respectively. The coefficients determined by the angle of
attack α and Mach number are as follows:

CL = CL0
+ CLα

× α + CLδe
× δe,

CD = CD0
+ CDα

× α + CDδe
× δe

CT = CT0
+ CTα

× α + CTϕ
× ϕ

CM = CM0
+ CMα

× α + CMδe
× δe

8>>>>>><
>>>>>>:

ð3Þ

where CL0
, CLα

, CLδe
, CD0

, CDα
,CDδe

, CT0
, CTα

,CTϕ
,CM0

,CMα
,

andCMδe
are determined by experimental and simulation

data; α is the angle of attack; δe is elevator deflection; and ϕ
is fuel equivalent ratio. The exact analytical expressions of
forces and moments are described in detail in [25].

2.2. Fuel Consumption. In the ascent phase of the hypersonic
vehicle, fuel mass is time-varying. Fuel consumption is calcu-
lated to determine the fuel mass at each moment. Fuel con-
sumption per unit time of the vehicle is

_m = −
T

g0 ⋅ Isp
, ð4Þ

where Isp is the specific impulse of the engine; T is thrust; and
g0 is the normal acceleration of gravity. The fuel consump-
tion between two adjacent points is

dm = _m ⋅
△v
a

, ð5Þ

where a is the acceleration of vehicle and Δv is the velocity
difference between two adjacent points.

3. Optimization Problem Establishment

The hypersonic vehicle model is a complex dynamic system
owing to the coupling between subsystems. Therefore, the
trajectory performance and control performance are also
coupled with each other during the ascent phase. The fully
integrated system model can be more simply expressed as

_x tð Þ = f x tð Þ, u tð Þ, tð Þ, ð6Þ

where xðtÞ is the vehicle states during the ascent phase and
uðtÞ is the control input. In this way, the hypersonic vehicle
ascent trajectory becomes the multidisciplinary system
model given in Equation (6) [28]. Hence, the control perfor-
mance constraint has to be taken into account when optimiz-
ing the ascent trajectory.

3.1. Optimization Problem Formulation. The optimal control
problem can be simply described as seeking the optimal con-
trol variable and the corresponding state variable, so that the
performance index achieves the extreme value under the con-
straints of equality and inequality. The optimization problem
of the multidisciplinary system in Equation (6) is as follows:

min  J =Φ x t f
� �

, t f
� �

,

s:t:
_x tð Þ = F x tð Þ, u tð Þ, tð Þ,
C x tð Þ, u tð Þ, tð Þ ≤ 0,
φ x t0ð Þ, x t f

� �
, t0, t f

� �
= 0,

8>><
>>:

8>>>>><
>>>>>:

ð7Þ

where t0 and t f are the initial time and the terminal time,
respectively; xðtÞ is the state variable; uðtÞ is input control
variable; J =Φðxðt f Þ, t f Þ is performance index which is
obtained by the objective function; φðxðt0Þ, xðt f Þ, t0, t f Þ =
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0 is given by boundary value constraint condition, which
is converted to CðxðtÞ, uðtÞ, tÞ ≤ 0 by constraints during
the flight.

3.2. Construction of Performance Index. The mission in the
ascent phase is to make the vehicle move to the cruise win-
dow safely. The reduction of fuel consumption can help the
vehicle to increase the cruise distance. In this paper, the max-
imum residual mass at the end of the ascent phase is set as the
optimal objective function.

min  Jopt = −mf , ð8Þ

where Jopt is the performance index of the optimal trajec-
tory in this paper; mf is the mass of the vehicle at the tra-
jectory termination point, which is obtained by integrating
Equation (4).

To introduce equality constraints and inequality con-
straints into the optimization problem, this paper uses pen-
alty function, which is usually used to solve constrained
optimization problems, to construct objective function. The
basic idea is that, according to the characteristics of con-
straint conditions, it can be converted into some punishment
function and added to the objective function, to transform
the constrained optimization problem into an unconstrained
optimization problem to be solved, and the optimal solution
can be obtained by solving the unconstrained optimization
problem. The penalty function �PðxÞ constructed in this paper
is as follows:

�P xð Þ =〠h2i xð Þ+〠 min 0, gi xð Þf g½ �2, ð9Þ

where hðxÞ and gðxÞ represent equality constraints and
inequality constraints, respectively, and x is the state variable.

Each term in the penalty function is multiplied by a
certain penalty parameter and then combined with the
original objective function to obtain the augmented objec-
tive function.

min  Jopt = −mf + σ�P xð Þ, ð10Þ

where σ is the penalty matrix and x is the state variable.

3.3. Constraints for Ascent Phase. In this part, various con-
straints included in hðxÞ and gðxÞ are given. In addition to
the common constraint, such as path constraints and terminal
constraints, the impact of control constraints and state con-
straints on trajectory will also be taken into consideration.

3.3.1. Path Constraints. During the flight, intense friction
with the atmosphere will produce high temperatures. There-
fore, the heat flux constraint must be considered to prevent
the excessive surface temperature of the vehicle. The heat flux
constraint is as follows:

_Q = C
ffiffiffi
ρ

p
v3:15 ≤ _Qmax, ð11Þ

where C is constant; ρ is air density; and v is the velocity.
Dynamic pressure generated by high-speed flight provides

aerodynamic force and control torque to adjust attitude.
However, if the dynamic pressure exceeds the limit, it will
have a great impact on the vehicle. The dynamic pressure
constraint is as follows:

qmin ≤ q = 1
2 ρv

2 ≤ qmax, ð12Þ

where ρ is air density and v is the velocity. In order to ensure
the structural stability of the vehicle, the overload constraint
should be considered in the ascent trajectory optimization,
and the overload constraint is as follows:

n =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 +D2

p

mg
≤ nmax, ð13Þ

where g is the gravitational acceleration; m is the mass of the
vehicle; and L and D are lift and drag, respectively.

3.3.2. Terminal Constraints. The terminal constraint is
related to flight missions. In this paper, the flight height,
the velocity, and the flight path angle are required to meet
specific constraint as follows:

vt = vf +△v,
ht = hf +△h,
γt = γf +△γ,

ð14Þ

where vt , ht , and γt are actual cruising state; vf , hf , and γf are
the predetermined cruising state; and Δv, Δh, and Δγ are
acceptable error.

3.3.3. Control Constraints and State Constraints. Although
the ascent trajectory without considering control constraints
and state constraints is theoretically feasible, in practical
application, due to the influence of ascending requirement
and manoeuvring performance, it is necessary to control
the state variables within a certain range and consider the
control feasibility of the vehicle. As mentioned before, the
control performance is affecting the ascent trajectory. Conse-
quently, control constraints and state constraints are needed
in trajectory optimization.

In this paper, for the state constraint, the constraints of
the flight altitude, the velocity, and the flight path angle are
granted.

vmin ≤ v ≤ vmax,
hmin ≤ h ≤ hmax,
γmin ≤ γ ≤ γmax,

ð15Þ

where vmin and vmax are the lower and upper limits of the
velocity; hmin and hmax are the lower and upper limits of the
flight altitude; and γmin and γmax are the lower and upper
limits of the flight path angle.
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For the control constraint, the constraints of the angle of
attack and the elevator deflection are granted.

αmin ≤ α ≤ αmax,
δemin

≤ δe ≤ δemax
,

ð16Þ

where αmin and αmax are the lower and upper limits of the
angle of attack and δemin and δemax are the lower and upper
limits of elevator deflection.

Moreover, considering the attitude stability of the vehicle,
the rate of change of the flight path angle cannot be too high
or too low during the ascent phase. In this paper, the absolute
value of the rate of change of the flight path angle never
exceeds 0.002 rad/s.

4. Trajectory Optimization Algorithm

Asmentioned in the previous section, trajectory performance
and control performance are both considered in trajectory
optimization. As the constraints increase, the complexity of
trajectory optimization increases. An effective trajectory
optimization algorithm is needed to solve the trajectory opti-
mization problem under complex constraints.

The optimization can be divided into two steps: (1)
identifying feasible designs and (2) identifying the optimal
design from the set of feasible candidates [29]. This paper
proposes an ascent trajectory optimization algorithm to solve
a complex optimization problem under multiple constraints,
as shown in Figure 2. The algorithm first establishes the
constraints and fitness function of the ascent trajectory, opti-
mizes the ascent trajectory using the optimization algorithm,
and then performs a feasibility analysis on the optimal trajec-
tory. When the trajectory is not feasible, the penalty value of
fitness function is adjusted until the feasible optimal ascent
trajectory is obtained. The specific methods included in the
algorithm are introduced, respectively, in this section.

4.1. The Improved PIO Algorithm. In the global optimization
problem, especially for multimodal problems, when the PIO
algorithm cannot generate new children, it is easy for the
algorithm to converge to local optimization prematurely.
The main reason for premature convergence is the low diver-
sity of the algorithm. Also, in the convergence stage, when
the population aggregates at a certain point, even if this is
not the correct global optimal solution, it will be regarded
as the global optimal solution. Therefore, to overcome these
weaknesses in the PIO algorithm, this paper represents the
position of pigeons by qubit, the current best pigeon is con-
sidered to be a linear superposition of positive state and
deceptive state. The other pigeon makes its own judgment
by observation. Meanwhile, the quantum rotation gate is
adopted in the PIO algorithm as a mutation operator to
enhance positive probability.

4.1.1. Map/Compass Operator. In the basic PIO algorithm,
the spatial position of the pigeon is the possible solution to
the optimization problem. The position of the pigeon’s home
is the global optimal solution. The fitness of the pigeon is the

value of the objective function. The position Xi and the speed
Vi of the ith pigeon are

XT
i = Xi,1, Xi,2,⋯, Xi,n½ �, i = 1, 2,⋯,NP,

VT
i = Vi,1, Vi,2,⋯, Vi,n½ �, i = 1, 2,⋯,NP,

ð17Þ

where NP is the population size.
For the sake of the optimal solution to meet the multiple

constraints presented in the previous section, strong con-
straints need to be applied to the value range of each possible
solution element; i.e., the position and speed constraints of
the pigeon are as follows:

Xlow ≤X ið Þ
i ≤Xup,

Vlow ≤V ið Þ
i ≤Vup,

8<
: ð18Þ

where i = 1, 2,⋯NP; Xlow and Xup are the lower and upper
limits of each element in the position, respectively; and
V low and Vup are the lower and upper limits of each element
in the speed, respectively.

In the map compass operator, each individual in the pop-
ulation updates its speed and position through geomagnetic,
solar height information and the optimal information in the
population.

Vi tð Þ =Vi t − 1ð Þ ⋅ e−Rt + rand ⋅ Xg −Xi t − 1ð Þ� �
, ð19Þ

Xi tð Þ =Xi t − 1ð Þ +Vi tð Þ, ð20Þ
where t is the current number of iterations, R is the map com-
pass factor, Xg is the global optimal solution in the current
population, and rand is the uniform random value between
the [0,1] regions. According to the map compass operator,
each pigeon in the population adjusts its direction according
to Equation (19).

The map compass operator of the PIO algorithm is
improved in this paper, so as to solve the problem that the
basic PIO algorithm falls into local optimal due to premature
convergence.

The improved PIO algorithm adopts qubit to describe the
current state of the pigeon. To maintain population diversity,
the position state of the pigeon is obtained according to
Monte Carlo random simulation:

Xi tð Þ = PiPg tð Þ ± L
2 ln 1

u

� �
, ð21Þ

where

PiPg tð Þ = f tð Þ × Pi tð Þ + 1 − f tð Þð Þ × Pg tð Þ, ð22Þ
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where t is the number of iterations; u and f are uniformly dis-
tributed random numbers on [0,1]; PiðtÞ is the historical
optimal position at tth iteration; PgðtÞ is the global optimal
position at the tth iteration; and L is defined as follows:

L = 2ω tð Þ mbest tð Þ −Xi tð Þj j, ð23Þ

where ωðtÞ is inertia weight which has great influence on the
convergence of the algorithm; mbestðtÞ is the average optimal

position of all pigeons in the population at tth iteration and
ωðtÞ and mbestðtÞ are defined as follows:

ω tð Þ = ωmax − ωmax − ωminð Þ × t
T
,

mbest tð Þ =
1
NP

〠
NP

i=1
Pi tð Þ,

ð24Þ

where NP is the population size; ωmax and ωmin are lower and
upper limits of inertia weight; and T is the maximum number
of iterations.

Start

Initialize the trajectory 
optimization algorithm

Evaluate the fitness 

Reach the maximum number 
of iterations

Determine the penalty value 
and construct the fitness 

function

Adjust penalty 
value

Establish the constrains of 
the ascent trajectory

Update optimization 
information

Obtain optimal trajectory

�e trajectory satisfies 
all constraints

Output optimal trajectory

Y

Y

N

End

N

Verify the feasibility of 
trajectory

Figure 2: Ascent trajectory optimization algorithm.
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Figure 3: The procedure of the improved PIO algorithm.
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Hence, the improved PIO algorithm updates pigeons’
position according to the following principle:

4.1.2. Landmark Operator. In the landmark operator, some
individuals with better fitness are known as pigeons familiar
with the landmarks, and the remaining pigeons may follow
the elite pigeons or be abandoned by the population. In each
iteration, pigeons are sorted according to the fitness, and half
of the pigeons with poor fitness are eliminated. Then, the
population centre point CðtÞ is selected as the reference
direction of the remaining pigeons and the position of the
pigeon is updated.

NP tð Þ = NP t − 1ð Þ
2 ,

Xc tð Þ = ∑Xi tð Þ ⋅ fitness Xi tð Þð Þ
NP∑f itness Xi tð Þð Þ ,

Xi tð Þ = Xi t − 1ð Þ + rand ⋅ Xc − Xi t − 1ð Þð Þ,

ð26Þ

where NP is the population size; t is the number of iterations;
Xc is the position of centre point; and fitness () is a fitness
function, which is constructed by the objective function in
Equation (10), i.e.,

fitness xð Þ = Joptmin
= −mf + σ�P xð Þ: ð27Þ

4.1.3. Judgment on Global Optimal Solution. To avoid the
problem that the wrong global optimal solution was obtained
by reason of the aggregation of pigeons, herein, this paper
adopts the quantum rotating gate in the QEA [24] to solve
this problem.

Qubit chromosomes can be represented as follows:

q =
α1 ⋯ αi ⋯ αm

β1 ⋯ βi ⋯ βm

" #
, ð28Þ

where q is qubit chromosomes and jαij2 + jβij2 = 1, i = 1,⋯,
m,m, is the length of the chromosome. jαij2 and jβij2 repre-
sent the probability that the state of the quantum bit is 0 and
1, respectively. By comparing the random number generated
within the interval with jαij2, if the random number is larger
than jαij2, the corresponding qubit of the chromosome is set
as 1, otherwise set as 0 [30].

In the QEA, the probability amplitude update is calcu-
lated by

αi t + 1ð Þ = cos Δθð Þ − sin Δθð Þ½ � αi tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αi tð Þj jp 2

" #
, ð29Þ

where Δ + θ is the rotation angle and t is the number of itera-
tions. Unlike the quantum bit evolution strategy in QEA, it is
used as a mutation operator to enhance positive probability.

The improved PIO algorithm will get a global optimal
xbestðtÞ after each iteration, but for the reasons mentioned
above, this global optimal may not be the accurate global opti-
mal. Probability amplitudes are initialized as αi = βi =

ffiffiffi
2

p
/2, i

= 1, 2,⋯, n. If the current global optimal solution remains
after iteration, run the mutation operator to increase αi; this
means that xbestðtÞ is more likely to be a global optimal

Table 1: Test function optimization results.

Test function D Algorithm Optimal value Time (s)

Ackley 5

PSO 7.1431E-04 0.11

PIO 0.0137 0.12

The improved PIO 5.0849E-15 0.09

Rastrigin 5

PSO 5.7730E-06 0.13

PIO 0.0121 0.12

The improved PIO 0 0.09

Rosenbrock 2

PSO 1.0878E-09 0.11

PIO 1.0900E-08 0.12

The improved PIO 7.9993E-33 0.09

Table 2: Parameters of global optimization methods.

Parameters PSO PIO
The improved

PIO

Population size (NP) 100 100 100

Maximum number of iterations (T) 50 50 50

Map factor (R) N/A 0.2 0.2

Learning factor ( c1, c2½ �) [2,2] N/A N/A

Dimension (D) 10 10 10

Rotating angle (°) N/A N/A -11

Xi t + 1ð Þ =
PiPg tð Þ + ω tð Þ × mbest tð Þ − Xi tð Þj j × ln 1

f tð Þ , f tð Þ ≥ 0:5,

PiPg tð Þ − ω tð Þ × mbest tð Þ − Xi tð Þj j × ln 1
f tð Þ , f tð Þ < 0:5:

8>>><
>>>:

ð25Þ
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solution. Otherwise, the probability amplitude is reset to initial
values to maintain vigilance against the deceptiveness.

4.1.4. The Procedure of the Improved PIO Algorithm. The
procedure of the improved PIO algorithm is as follows.

Step 1. Initialize population information and parameters of
the improved PIO algorithm. Set a random speed and path
for each pigeon.

Step 2. Compare the fitness of each pigeon, set xbest(t) with
the current best fitness.

Step 3. Use the improved map compass operator to update;
then use the landmark operator to convergence; obtain
gbest(t).

Step 4. Compare gbest(t) with xbest(t). If they are the same, go
to (a); otherwise, go to (b).

Start

Read in the trajectory to be 
analyzed

Use Gaussian pseudo-spectral 
method to discretize trajectory

Parametric
model 

of vehicle

Linear interpolation at each off-line 
point to obtain state variables

Compute the intermediate 
point of two discrete points

Use the control variables of the 
previous iteration to obtain the 

differential value of state variables

Calculate the differential 
error of state variablesa�er 

each iteration

Use Newton-Raphson method to get 
new control input

If the differential
 error of the state variables

is within the range

If the control variables
is within the range

Save control variables

Set the control 
variables to the 
constraint value

Trajectory endpoint

End

Y

Use the updated 
control variables

Jump to the 
next trajectory

 point

Use control variables
as the initial 

control variables
 for the next node

N

Y

N

N

Figure 4: The procedure of the trajectory inverse algorithm.
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(a) Conduct the mutation operator by Equation (29)

(b) Conduct the mutation operator by Equation (29)

Step 5. If the maximum iteration number is reached, get
global optimum xbest(t). Otherwise, return to Step 3.

The above steps can be summarized in Figure 3.
To validate the improved PIO algorithm, three test func-

tions are used to compare three algorithms, i.e., PSO [31],
PIO [18], and the improved PIO. In order to rule out the
effect of a few special values on the results, all experimental
data in this section are the average of the values obtained
from 40 independent runs of each algorithm. The optimized
results for the test functions of these algorithms are listed in
Table 1, where D is the dimension of the design variables.
To avoid the difference in optimized results originating from
the selection of control parameters, all equivalent control
parameters are set to be the same (the specific parameters
are listed in Table 2).

The improved PIO algorithm shows great potential for
solving the multimodal optimization problem in terms of
accuracy. The optimal value of the improved PIO algorithm
is much smaller than that of other algorithms; the improved
PIO algorithm also has the shortest running time. Therefore,
the improved PIO algorithm outperforms PSO and PIO on
benchmark functions.

4.2. Trajectory Feasibility Analysis. To verify whether the
control variables required by the trajectory conforms to con-
straints, this paper uses a trajectory inverse algorithm, which
can solve the control variables needed according to the state
variables at the current time node and the state variables at
the next node.

For the vehicle, the known output is an ascent trajectory
varying with time, and the algorithm can work out the value
of the actual control variable required by the vehicle follow-
ing a given trajectory. By analyzing the change curve of the
control variable, it can be estimated whether the required
control variable exceeds the physical limit when the vehicle
follows the reference trajectory [32].

In the trajectory inverse algorithm, the dynamic system
to be analyzed can be defined by state variable x, control var-
iable u, and an output vector y. The motion equation is
shown as follows:

_x = f x, uð Þ,
x 0ð Þ = x0,

y = g xð Þ,
ð30Þ

where f and g represent any functions related to system var-
iables; x0 is the initial value of the state variable; and y is usu-
ally used to represent the known trajectory. The above
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Figure 5: State variables of optimal ascent trajectories.
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formula can associate the control variable u with the known
trajectory to solve the required control variable.

As shown in Equation (31), the state differential value of
the trajectory at the discrete point n − 1 is determined by the
state variable xn−1 at the current point and the current con-
trol input variable un−1,k. The state variable differential of dis-

crete points can obtain the state variable of the next discrete
point through the integration of time.

_xn−1,k = f xn−1, un−1,k½ �, ð31Þ

xn,k =
ðtn
tn−1

_x tð Þdt + xn−1,k, ð32Þ

where tn is the time at node n; tn−1 is the time at node n − 1;
and k is the number of iterations. Let Δt be the time interval
between two nodes, i.e.,

Δt = tn − tn−1: ð33Þ

When Δt is fairly small, Equation (32) can be approxi-
mated as

xn,k ≈ _xn−1,k△t + xn−1,k: ð34Þ
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Figure 6: Dynamic pressure, heat flux, and overload of optimal ascent trajectories.

Table 3: Terminal states of trajectories.

Algorithm Terminal states

PSO (with control constraints) v, h, r, γ,m½ � = 2338m/s, 26485m, 287863m, 0:11°, 15776 kg½ �
PIO (with control constraints) v, h, r, γ,m½ � = 2337m/s, 26495m, 285903m, 0:03°, 15833 kg½ �
The improved PIO (with control constraints) v, h, r, γ,m½ � = 2337m/s, 26495m, 287800m, 0°, 15893 kg½ �
The improved PIO (without control constraints) v, h, r, γ,m½ � = 2337m/s, 26495m, 274864m, 0°, 15894 kg½ �

Table 4: Performance for different methods.

Algorithm
Computational time

(s)
Values of the fitness

function

PSO 504 -15237

PIO 521 -15612

The improved
PIO

327 -15894
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The error vector en,k is defined as the error between the
state variable differential estimation value at the nth discrete
point and the target trajectory point _�xn after the trajectory is
solved in the kth iteration, as shown in Equation (35).
According to the defined error vector, the control variable
of the next iteration can be obtained by Newton’s method,
as shown in Equation (36).

en,k = _xn,k − _�xn, ð35Þ

un−1,k+1 = un−1,k − J½ �−1en,k, ð36Þ

where J is the jacobian matrix, which is defined as follows:

J =

∂e _xv
∂uα

∂e _xv
∂uδe

∂e _xv
∂uϕ

∂e _xγ
∂uα

∂e _xγ
∂uδe

∂e _xγ
∂uϕ

∂e _xqp
∂uα

∂e _xqp
∂uδe

∂e _xqp
∂uϕ

2
66666666664

3
77777777775
, ð37Þ

where uα, uδe , and uϕ are input of the angle of attack, the ele-
vator deflection, and the fuel equivalent ratio, respectively;
and e _xv , e _xγ , and e _xqp

are the errors of the estimated values

of the velocity, the path angle, and the pitch rate, respectively.
Through the iterative solution of Equation (35), the con-

trol variable at the n − 1 discrete point can be obtained, so

that the trajectory can change from the n − 1 discrete point
to the point n.

The trajectory inverse algorithm needs to consider the
mass change caused by vehicle fuel consumption. The mass
of the vehicle needs to be calculated according to the vehicle
mass during the last iteration and the instantaneous fuel flow
rate. Assuming that the fuel consumption rate remains
unchanged within the time interval Δt, the following equa-
tion can be obtained:

mn =mn−1 + _mΔt, ð38Þ

where mn and mn−1 are the mass of the vehicle at the n dis-
crete point and the n − 1 discrete point, respectively, and _m
is fuel consumption per unit time of the vehicle given in
Equation (4).

The entire procedure of trajectory inverse algorithm is
shown in Figure 4.

5. Results

The results in this section are mainly divided into two
parts. The first part is the comparison of the optimal tra-
jectories obtained by different methods. The second part is
to verify the feasibility of the optimal trajectory obtained
by the improved PIO algorithm using the trajectory inverse
algorithm.

This section uses the Doman model described in Section
2 and studies its optimal ascent trajectory from 6 Mach, alti-
tude 22379m, to 7.8 Mach, altitude 26495m. The optimiza-
tion variables were obtained by using the Chebyshev
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interpolation method to discretize the angle of attack and
elevator deflection. Then, the optimization variables are
expressed as follows:

X = α1, α2,⋯, αD, δe1 , δe2 ,⋯δeD , t f
� �

, ð39Þ

where α is the angle of attack; δe is the elevator deflection;
X is the position vector of pigeons; D is the dimension of
the position vector; and t f is the terminal time;

5.1. Optimal Ascent Trajectory. To invest the feasibility and
optimality of the proposed method, comparative studies with
other global optimization methods such as PSO and PIO are
presented. Besides, to analyze the impact of control con-
straints, the optimal trajectories with and without control
constraints are obtained by the proposed method. The con-
trol parameters of global optimization methods are given in
Table 2; to avoid the influence of parameters on the effective-
ness of the optimization algorithm, all equivalent control
parameters are set to be the same.

According to the actual situation, select the initial state as
½v, h, r, γ,m� = ½1780m/s, 22379m, 0, 5°, 16817 kg�. For con-
straints, set the terminal constraints as vf = 2337m/s, hf =
26495m, and γf = 0; the path constraints are _Qmax = 600
kW/m2, 10 kPa ≤ q ≤ 100 kPa, and nmax = 3:5; the state con-
straints are 1500m/s ≤ v ≤ 2500m/s and 20000m ≤ h ≤
30000m. The above constraints are the basic constraints,
and this paper will optimize a standard ascent trajectory
based on the basic constraints.

This paper adds control constraints to the basic con-
straints so that the control performance limitation can be
considered into trajectory optimization; the control con-
straints are as follows:

−6∘ ≤ α ≤ 8∘,
−10∘ ≤ δe ≤ 10∘,

0 ≤ ϕ ≤ 1,
_γj j ≤ 0:002 rad/s,

ð40Þ

where α is the angle of attack; δe is the elevator deflection; ϕ is
the fuel equivalent ratio; and γ is the flight path angle.
Besides, if the flight path angle too large or too small, the dif-
ficulty of trajectory control will increase. Therefore, this
paper also constrains the flight path angle, i.e., −2° ≤ γ ≤ 5°.
The optimal trajectories generated using different algorithms
are plotted in Figures 5 and 6. Table 3 lists the terminal states
of optimal trajectories obtained by different algorithms.

When control constraint is considered, it can be seen
from Table 3 and Figure 5 that the optimal trajectory
obtained by the proposed algorithm is most in line with ter-
minal constraints and has the lowest fuel consumption.
Figure 6 shows that compared to the trajectories obtained
by other algorithms, the dynamic pressure of the trajectory
obtained by the proposed algorithm is largest in the con-
strained range and the higher dynamic pressure resulted in
better performance. The heat flux of the trajectory obtained
by the proposed algorithm is smallest, which can reduce the
requirement of aerodynamic heating for the vehicle materials
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Figure 8: Control variables obtained by trajectory inverse algorithm.
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to a certain extent. The overload amplitude of the trajectory
obtained by the proposed algorithm decreases, which ensures
better control performance. Therefore, the proposed trajec-
tory optimization algorithm based on the improved PIO
algorithm is feasible and optimal.

The optimal trajectories obtained by the proposed algo-
rithm with and without control constraints in Figures 5
and 6 and Table 3 show that with control constraints having
been taken into account, the fuel consumption increases by
0.11% while the range increases by 4.50%, which is of great
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practical significance for the long-distance flight. Besides, the
ascent trajectory with control constraints avoids the subduc-
tion segment and the flight path angle changes more gently;
that is, the trajectory control performance is better. From
the perspective of dynamic pressure, heat flux, and over-
load, the trajectory performance with control constraints
is also improved.

In order to further analyze the computational complexity
of the proposed method, Table 4 illustrates the results of the
three methods in terms of the computational time and values
of the fitness function, while Figure 7 shows the fitness value
versus iteration time.

Table 4 shows that the proposed trajectory optimization
algorithm has much less computational time and the mini-
mum fitness value. Besides, it can be seen from Figure 7 that
the proposed trajectory optimization algorithm can converge
to the global optimal solution fastest. These results further
prove that the proposed algorithm is feasible and optimal.

5.2. Trajectory Feasibility. The optimal trajectory is input into
the trajectory inverse algorithm to verify the feasibility of tra-
jectory with control constraints. The simulation results are
shown in Figure 8.

The control variables obtained by the trajectory inverse
algorithm are all within the constraint range. The control
variables are brought into the dynamic equations of the vehi-
cle, and the actual ascent trajectory is obtained by numerical
integration of state variables by the Runge-Kutta method and
compared with the optimal trajectory solved by the proposed
algorithm; the results are shown in Figure 9.

The actual trajectory obtained by the trajectory inverse
algorithm is consistent with the optimal trajectory solved
by the proposed algorithm, thus verifying the feasibility of
the optimal trajectory, and the effectiveness of the algorithm
is also proved.

6. Conclusion

In this paper, a new trajectory optimization algorithm based
on the improved PIO algorithm is proposed to solve the tra-
jectory optimization problem under control constraints.

To get rid of premature convergence, a quantum-based
approach is incorporated into the PIO algorithm to perceive
deceptiveness and preserve the diversity of the population.
To be specific, the position of pigeons is represented by
qubit, the quantum representation of the current best solu-
tion can effectively maintain the diversity in exploration.
Then, the quantum rotation gate is used to decrease the
deceptive probability.

By comparing the optimization result with trajectory
optimization algorithm based on PSO and the standard
PIO, it can be seen that although the trajectories are quite dif-
ferent, the trajectory obtained by the proposed algorithm has
a better performance index, and the terminal states are more
accurate. Meanwhile, compared with the optimal trajectory
without control constraints, the optimal trajectory with con-
trol constraints has better control performance. Also, the
proposed algorithm has shorter computational time and
smaller fitness value and can converge to the optimal solution

faster. Therefore, the proposed algorithm is feasible in trajec-
tory optimization.

In the following research, two problems can be further
studied. The first point is how to choose the appropriate
interpolation method for the given optimal control problem.
Different interpolation methods and interpolation nodes
affect the effectiveness and efficiency of the algorithm. The
second point is that the efficiency of the PIO algorithm is
affected by parameters. How to select appropriate parameters
to optimize the efficiency of the algorithm is worth studying.
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