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Abstract: Inspired by the behaviour of pigeon flocks, an improved method of path planning and 
autonomous formation for unmanned aerial vehicles based on the pigeon-inspired optimisation 
and differential evolution is proposed in this paper. Firstly, the mathematical model for UAV 
path planning is devised as a multi-objective optimisation with three indices, i.e., the length of a 
path, the sinuosity of a path, and the risk of a path. Then, the method integrated by pigeon-
inspired optimisation and mutation strategies of differential evolution is developed to optimise 
feasible paths. Besides, Pareto dominance is applied to select the global best position of a pigeon. 
Finally, a series of simulation results compared with standard particle swarm optimisation 
algorithm and standard differential evolution algorithm show the effectiveness of our method. 
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1 Introduction 
Unmanned aerial vehicle (UAV) plays an important role in 
some high-risk missions because of its small size, easy of 
use, low cost, low environment requirements, and strong 
survivability, etc. UAV path planning refers to finding the 
optimal or suboptimal collision-free path with some certain 
performance indices for a UAV from the departure point to 
the terminal point under certain constraints, which can be 
formulated as a typical constrained optimisation problem. 

Population-based optimisation algorithms have been 
applied to solve path planning problems. Unlike traditional 
single-point base algorithms that may easily get trapped into 
local optimal and unsuitable for dynamic or nonlinear 
problems, the population-based optimisation algorithms can 
overcome these disadvantages and have more efficiency in 
solving path planning problems. Genetic algorithm (GA) is 
a search heuristic inspired by the process of natural 
selection which belongs to evolutionary algorithms (EA). 
GA based on mutation, crossover and selection. Hu and 
Yang (2004) proposed a knowledge-based GA for path 
planning of a mobile robot, which uses problem-specific 
GAs for robot path planning instead of the standard GAs. 
Ant colony optimisation (ACO) is a metaheuristic which 
takes inspiration from the foraging behaviour of ant species. 
ACO based on autocatalysis, i.e., the exploitation of 
positive feedback, can be used by ants to find the shortest 
path between a food source and their nest. Brand et al. 
(2010) investigated the application of ACO to robot path 
planning in a dynamic environment. Particle swarm 
optimisation (PSO) is an evolutionary computation 
technique developed by Kennedy and Eberhart in 1995. The 
method is inspired by social behaviour of bird flocking or 
fish schooling. Qin et al. (2004) presented an advanced PSO 
algorithm for mobile robot path planning. Roberge et al. 
(2013) used GA and PSO to cope with real-time UAV path 
planning problems. Cui et al. (2020) proposed a hybrid 
multi-objective particle swarm optimisation (HMOPSO) 
algorithm for multi-objective optimisation by combining 
particle swarm search with local search. 

Pigeon-inspired optimisation (PIO) (Duan and Qiao, 
2014) is a new bio-inspired swarm intelligence optimiser 
especially for air robot path planning. Inspired by natural 
pigeons’ behaviour, the algorithm presents a map and 
compass operator model based on magnetic field and sun, 
landmark operator model based on landmarks. 

Further improvements and discussions of PIO path 
planning are as follows. Zhang and Duan (2017) proposed a 
novel Predator-prey pigeon-inspired optimisation (PPPIO) 
to solve the three-dimensional path planning problem of 
UAVs in a dynamic environment. Li and Deng (2018) 
proposed a new algorithm for independent navigation of 
UAV path planning based on pigeon-inspired optimisation 
and quantum entanglement theory. Cui et al. (2019) 
establish an external archive to store the best solution that is 
continuously generated during the evolution of the 
population. Qiu and Duan (2018) modified multi-objective 
pigeon-inspired optimisation (MPIO) based on the 
hierarchical learning behaviour in pigeon flocks. 

Despite good performance of PIO, it still has 
deficiencies in solving multi-objective problems. For 
example, it uses a single objective function or multiplying 
multiple objective functions with different weight 
coefficients. The latter is a single objective method and has 
some inescapable problems. Therefore, in this paper, an 
improved method is proposed by integrating mutation 
strategies of differential evolution into the PIO algorithm 
and applying Pareto dominance to deal with the UAV path 
planning problem. 

The rest of the paper is organised as follows. Section 2 
gives a mathematical model of UAV path planning. In 
Section 3, a brief review of the principle of basic PIO is 
presented. Section 4 concerns the proposed method based 
on multi-objective PIO and DE. Comparative simulation 
validations are elaborated in Section 5. Finally, our 
conclusions and future perspectives are drawn in Section 6. 

2 Mathematical model of UAV path planning 
To achieve the goal of UAV path planning, the environment 
of the flying airspace should be expressed and stored first to 
make the UAV understand the surrounding environments. 
The method is proposed by Sun et al. (2005) and improved 
to three-dimensional model in this paper. 

Figure 1 UAV flying airspace model 

 

Figure 1 describes the global coordinate system O-XYZ, and 
the cylinders, defined as m, are a series of dangerous areas, 
such as enemy radar detection areas. UAV must keep clear 
of these areas, otherwise it will be shot down by anti-aircraft 
weapons. D and T are the departure point and the terminal 
point of a UAV. O’-X’Y’Z’ is a local coordinate system 
which is set D as the origin, the line between D and T as X’ 
axis and the Y’ axis and Z’ axis accord with the Cartesian 
coordinate system. The corresponding transformation 
equation between the global coordinate system and the local 
coordinate system is as follows: 
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where θ is the inclination angle and χ is the deflection angle 
from the X axis to the line DT. (x’, y’, z’) is the coordinate in 
the local coordinate system, (x, y, z) is the coordinate in the 
global coordinate system, (xD, yD, zD) is the departure point 
D in the global system. 

At first, the flying path DT is split into n+1 segments. 
The path can be defined as 

( )1 2, , , , ,nP D P P P T=   (2) 

Furthermore, denote the departure point D and the terminal 
point T as P0 and Pn+1, and then the path can be defined as 

( )0 1 1, , , ,n nP P P P P +=   (3) 

If the UAV expects to arrive at the terminal point T safely, it 
must not enter the dangerous areas in the flying airspace. 
Times which the UAV enters these areas will be calculated 
to determine whether the path is feasible. If the flying path 
segment (Pi, Pi+1) of the UAV intersects the border of the 
dangerous area j, the attribute value, defined as ETij, is one. 
Otherwise, the attribute value is zero. Then the sum of the 
times of a path P is 

0 1

( )
n m

ij
i j

ET P ET
= =

=  (4) 

The UAV path planning is to find the optimal or suboptimal 
collision-free path with some certain performance indices. 
In this paper, three performance indices, i.e., the length of a 
path, the sinuosity of a path, and the risk of a path are 
concerned. 

According to the flying airspace model, the length of a 
UAV’s path is defined as FL(P): 

( )1
0

( ) ,
n

L i i
i

F P D P P+
=

=  (5) 

where D(⋅,⋅) is the Euclidean distance between the point Pi 
and Pi+1. 

When the UAV flies in the airspace, we hope the 
sinuosity of the path should be as low as possible. The 
sinuosity of a path is defined as follows: 

( )( )0
1,2, ,

( ) min , 180ºS i
i n

F P
=

= −


α α  (6) 

where α0 is the angle between the X’ axis and (P0,P1), αi is 
the intersection angle between the line (Pi,Pi+1) and 
(Pi+1,Pi+2). 

To evaluate the risk degree of a flying path, function 
FR(P) is defined as follows: 

( )( )( ) exp ,R jF P ξ D P d= − ⋅  (7) 

 

where ξ is a parameter, D(P,dj) is the minimum distance 
between the path and the dangerous areas. 

Integrate the functions (5), (6) and (7), the mathematical 
optimisation model of the UAV path planning can be 
described as the following multi-objective optimisation with 
a constraint: 

( )min ( ) ( ), ( ), ( )
. . ( ) 0

L S RF P F P F P F P
s t ET P

=
=

 (8) 

The length, sinuosity and risk degree of a path are 
dependent in some ways, which makes the algorithm 
difficult to get the best solutions at the same time. 
Therefore, it is necessary to find a Pareto set to keep 
balance among all objectives. 

3 Brief review of basic PIO 
Pigeons have the special homing ability by using three 
special navigation tools: the sun, the earth’s magnetic field 
and the landmarks. As the pigeons gradually approach to 
their loft, the effect of the sun and magnetic field will 
decline progressively. The pigeons will use familiar 
landmark image messages to correct their route. Inspired by 
the pigeons’ navigation behaviour, a bio-inspired swarm 
intelligence optimiser is proposed named PIO. In PIO, the 
position of each pigeon and the loft represent the potential 
solution and the optimal solution to an optimisation problem 
respectively. In other words, the behaviour of pigeon 
homing represents the convergence process of solutions to 
the global optimum. The map and compass operator is 
presented to imitate the navigation tool of the sun and the 
magnetic field on pigeons, while the landmark operator is 
raised to imitate the impact of familiar landmarks on the 
pigeon homing. PIO employs the two independent operators 
to optimise feasible solutions to optimise problems. 

In the map and compass operator, the rules are denoted 
by the position Xi and the velocity Vi of pigeon i. The 
positions and velocities in a D-dimension search space are 
updated each iteration. The position Xi and the velocity Vi at 
the tth iteration can be calculated in the following formulas: 

( )( ) ( 1) ( 1)
( ) ( 1) ( )

Rt
i i g i

i i i

V t V t e rand X X t
X t X t V t

− = − ⋅ + ⋅ − −
 = − +

 (9) 

where R is the map and compass factor, rand is a random 
number within [0,1], and Xg is the current global best 
position. 

In the landmark operator, half of the pigeons are 
decreased by Np every iteration. Xc(t) is defined as the centre 
of some pigeons’ position at the tth iteration. Each pigeon’s 
position Xi can be can be calculated with the following 
equations: 
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where fitness(⋅) is the quality of each pigeon. For minimum 
optimisation problems, 

( ) ( )min

1( )
( )i

i
fitness X t

f X t ε
=

+
 

where ε is a constant value. 
Given the formulas (9) and (10), the basic PIO process 

generally follows the steps described in Table 1. 

Table 1 Steps of basic PIO 

Step 1 Initialise the airspace information and the dangerous 
areas information. 

Step 2 Initialise PIO algorithm parameters, including space 
dimension D, population size Np, map and compass 
factor R, the number of Nc1 and Nc2 for two operators, 
etc. 

Step 3 Set each pigeon with a randomised velocity and 
position. Then compare the fitness of each pigeon and 
find the global best position Xg. 

Step 4 Operate map and compass operator. Update velocity 
and path of each pigeon using equation (9). Compare 
the fitness of each pigeon and find the new Xg. 

Step 5 If the number of iterative times is greater than Nc1, stop 
the map and compass operator and operate the 
landmark operator. Otherwise go to Step 4. 

Step 6 Rank all of the pigeons according to the fitness value. 
Half pigeons whose fitness values are low will follow 
the pigeons with higher fitness. According to  
equation (10), calculate Xc and update the position Xi. 

Step 7 If the number of iterative times is greater than Nc2, stop 
the landmark operator. Otherwise, go to Step 6. 

4 Path planning method based on multi-objective 
PIO and DE 

In the following section, a novel path planning method 
based on multi-objective pigeon-inspired optimisation and 
differential evolution (MOPIODE) is introduced to solve the 
problems in Section 2. To evaluate the quality of a path, 
Pareto dominance is used to select the global best position 
of a path. For the infeasible paths which blocked by the 
dangerous areas, the improved mutation operation of 
differential evolution is applied to improve the feasibility of 
these paths. 

 
 

At first, generate initialisation pigeons randomly and set 
a feasible path for initial Xg. Then classify these pigeons by 
feasibility, i.e., whether ET(P)=0. 

For those feasible paths, i.e., ET(P) = 0, Xi(t) and Xg(t) is 
defined as the position and global best position in the tth 
iteration, respectively. The three objective functions, i.e., 
the length of a path, the sinuosity of a path and the risk of a 
path are used to construct multi-objective Pareto dominance 
to update the global best path. If F(Xi(t + 1))  F(Xg(t)) is 
satisfied, where  represents Pareto dominance for feasible 
paths. If Xi(t+1) and Xg(t) do not dominate each other, keep 
the Xg(t) unchanged. Then update each pigeon’s position 
and velocity according to equation (9). 

For the infeasible paths, i.e., the paths blocked by 
dangerous areas in the flying airspace, use the improved 
mutation operation to improve the feasibility and accelerate 
the search progress. In tth iteration, select two infeasible 
paths randomly, denoted as XR1(t) and XR2(t), then apply the 
mutation operation. The equation for Xi(t+1) of DE/rand/1 is 
as following: 

( )1 2( 1) ( ) ( ) ( )i i R RX t X t F X t X t+ = + ⋅ −  (11) 

where F is the scaling factor to control the magnitude of the 
difference vector. 

Table 2 Steps of path planning method 

Step 1 Initialise the flying airspace and the dangerous 
areas, set the parameters including the space 
dimension D, the population size Np, map and 
compass factor R, the number of Nc1 and Nc2 for two 
operators, the scaling factor F, etc. 

Step 2 Initialise the pigeons randomly and select the global 
best position, then divide the pigeons into two sets, 
i.e., the feasible sets and the infeasible sets according 
to their feasibility. 

Step 3 Update the position and velocity according to the map 
and compass operator, i.e., equation (9), in the feasible 
set’s pigeons. Evaluate these paths’ feasibility, if a 
path is infeasible, move it to the infeasible set. Then 
calculate each pigeon’ s fitness and select the global 
best position Xg. 

Step 4 Update the position according to the improved 
mutation operation, i.e., the equation (11), in the 
infeasible set’s pigeons. Evaluate these paths 
feasibility, if a path is feasible, move it to the feasible 
set. 

Step 5 If the number of iterative times is greater than Nc1, go 
to Step 6, otherwise return to Step 4. 

Step 6 Abandon the pigeons in the infeasible set. Stop the map 
and compass operator and apply the landmark operator. 

Step 7 If the number of iterative times is greater than Nc2, 
stop the landmark operator and output the solution. 
Otherwise, go to Step 6. 

If the number of iterative times is greater than Nc1, for the 
feasible pigeons, stop the map and compass operator and 
operate landmark operator. The infeasible pigeons will be 
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abandoned because they will disturb the calculation of 
centre of the pigeons Xc. 

The steps of the path planning method for UAV based 
on multi-objective pigeon-inspired optimisation and 
differential evolution are described in Table 2. 

5 Comparative simulation results 
To validate the proposed method in solving UAV path 
planning problems, the simulation experiments are 
conducted by MATLAB on a PC. The performances are 
compared with multi-objective particle swarm optimisation 
(MOPSO) algorithm and multi-objective differential 
evolution (MODE) algorithm. 

Table 3 Flying airspace information 

   y(m) z(m) 
D  5 5 25 
T  95 95 25 
 j xj yj zj 
Dangerous area 1 20 20 10 
 2 40 45 7 
 3 75 65 8 
 4 26 76 23 
 5 82 35 12 

Table 4 Parameters of MOPIODE, MOPSO and MODE 

Algorithm Variable Description Value 
MOPIODE Np Number of pigeons 50 

Nc1 Maximum iteration of map and 
compass operator 

60 

Nc2 Maximum iteration of landmark 
operator 

100 

VU Upper bound of velocities 2 
VL Lower bound of velocities –2 
R Map and compass factor 0.1 
F Scaling factor 0.3 
ε Constant in landmark operator 0.4 

MOPSO N Number of particles 50 
Nc Maximum iteration 100 
W Inertia weight 0.8 
c1 Personal attractor 0.5 
c2 Global attractor 0.5 

MODE N Number of populations 50 
Nc Maximum iteration 100 
F Scaling factor 0.5 

Cru Upper bound of crossover 
probability 

0.6 

crl Lower bound of crossover 
probability 

0.1 

 

 

The coordinate of departure point D, terminal point T, and 
the dangerous areas’ information are shown in Table 3. The 
number of path points, i.e., n = 13. The adjustable parameter 
α in formula FS(P) is set to 0.2. The simulation parameters 
are shown in Table 4. 

Figure 2 descript the results of UAV path optimised by 
MOPIODE, MOPSO and MODE algorithms. Coordinates 
of these path points are shown in Table 5. Moreover,  
Figure 3 shows three evolution curves of the three 
algorithms. 

Figure 2 Simulation results, (a) path optimised by MOPIODE 
(b) path optimised by MOPSO (c) path optimised by 
MODE (d) path optimised by MOPIODE in a  
top-down view (e) path optimised by MOPSO in a  
top-down view (f) path optimised by MODE in a  
top-down view (see online version for colours) 

 
(a) 

 
(b) 
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Figure 2 Simulation results, (a) path optimised by MOPIODE 
(b) path optimised by MOPSO (c) path optimised by 
MODE (d) path optimised by MOPIODE in a  
top-down view (e) path optimised by MOPSO in a  
top-down view (f) path optimised by MODE in a  
top-down view (continued) (see online version  
for colours) 

 
(c) 

 
(d) 

 
(e) 

Figure 2 Simulation results, (a) path optimised by MOPIODE 
(b) path optimised by MOPSO (c) path optimised by 
MODE (d) path optimised by MOPIODE in a  
top-down view (e) path optimised by MOPSO in a  
top-down view (f) path optimised by MODE in a  
top-down view (continued) (see online version  
for colours) 

 
(f) 

Table 5 Coordinates of path points 

Algorithm Path i x(m) y(m) z(m) 

MOPIODE 1 13.85 9.67 25.49 
 2 26.64 5.48 23.69 
 3 34.89 18.76 27.61 
 4 37.52 25.77 20.91 
 5 53.08 21.63 28.31 
 6 67.21 20.73 24.98 
 7 61.57 40.08 19.42 
 8 61.51 50.93 29.17 
 9 60.59 66.06 18.82 
 10 61.52 79.05 28.65 
 11 70.69 82.38 29.65 
 12 82.84 82.65 22.22 
 13 88.29 87.56 28.50 
MOPSO 1 10.67 8.55 25.83 
 2 31.30 3.54 26.59 
 3 39.01 11.91 26.41 
 4 45.02 13.82 24.99 
 5 65.62 8.44 25.07 
 6 62.53 25.37 20.12 
 7 52.04 49.83 28.16 
 8 60.01 55.96 24.12 
 9 64.29 59.66 25.29 
 10 56.53 82.62 26.70 
 11 71.82 82.28 23.46 
 12 80.72 87.09 23.82 
 13 88.41 89.68 23.87 
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Table 5 Coordinates of path points (continued) 

Algorithm Path i x(m) y(m) z(m) 

MODE 1 12.61 10.95 31.36 
 2 39.10 0.00 22.36 
 3 32.53 19.04 18.34 
 4 31.23 29.43 21.42 
 5 54.97 20.91 17.99 
 6 67.92 19.40 24.60 
 7 68.14 34.73 16.98 
 8 59.98 48.56 21.63 
 9 49.29 77.17 21.40 
 10 54.82 82.38 25.35 
 11 67.23 84.94 22.28 
 12 77.94 83.31 21.01 
 13 74.07 99.45 33.87 

Figure 3 Evolution curves of three algorithms, (a) length of a 
UAV’s path (b) sinuosity of a UAV’s path (c) risk of a 
UAV’s path (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

Figure 2 illustrates the detailed results of the UAV’s path 
optimised by MOPIODE, MOPSO and MODE separately. 
Where Figures 3(d) to 3(f) describe these paths in a  

top-down view. It’s obvious in Figures 3(a) to 3(c), the 
proposed path planning method outperformed the other two 
algorithms, in terms of the length, sinuosity and risk degree 
of the path. These prove that MOPIODE produces 
improvements in finding a short, smooth and safety path for 
UAV than PSO and DE algorithm. 

6 Conclusions and future perspectives 
This paper proposed a new path plan method by integrating 
PIO into DE algorithm, improving its ability to get out of 
dangerous areas. The performance of the proposed method 
was evaluated and compared with that of PSO and DE. 
Experimental results showed that MOPIODE outperforms 
generally the other two algorithms in solving the problem. 

Our future work will focus on applications of the 
improved PIO algorithm to solve other complicated 
optimisation problems. 
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