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Abstract

Purpose – The purpose of this paper is to present a novel swarm intelligence optimizer — pigeon-
inspired optimization (PIO) — and describe how this algorithm was applied to solve air robot path
planning problems.
Design/methodology/approach – The formulation of threat resources and objective function
in air robot path planning is given. The mathematical model and detailed implementation process of
PIO is presented. Comparative experiments with standard differential evolution (DE) algorithm are
also conducted.
Findings – The feasibility, effectiveness and robustness of the proposed PIO algorithm are shown by
a series of comparative experiments with standard DE algorithm. The computational results
also show that the proposed PIO algorithm can effectively improve the convergence speed, and the
superiority of global search is also verified in various cases.
Originality/value – In this paper, the authors first presented a PIO algorithm. In this newly
presented algorithm, map and compass operator model is presented based on magnetic field and sun,
while landmark operator model is designed based on landmarks. The authors also applied this newly
proposed PIO algorithm for solving air robot path planning problems.
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1. Introduction
Population-based swarm intelligence algorithms have been widely accepted and
successfully applied to solve many optimization problems. Unlike traditional single-point
based algorithms such as hill-climbing algorithms, a population-based swarm intelligence
algorithm consists of a set of points (population) which solve the problem through
information sharing to cooperate and/or compete among themselves (Shi, 2011a, b).
Exploration and exploitation is also the key issue for these meta-heuristic swarm intelligence
algorithms. In recent years, there are a lot of population-based swarm intelligence
algorithms existed, such as ant colony optimization, particle swarm optimization (Kennedy
and Eberhart, 1995), artificial bee colony algorithm (Karaboga, 2005; Karaboga and
Basturk, 2007), imperialist competitive algorithm (Esmaeil and Lucas, 2007) and brain
strom optimization (Shi, 2011a, b). All the bio-inspired optimization algorithms are trying
to simulate the natural ecosystem mechanisms, which have greatly improved the
feasibility of the modern optimization techniques, and offered practical solutions for those
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complicated combinatorial optimization problems. Path planning is the problem of
designing the path a vehicle is supposed to follow in such a way that a certain
objective is maximized and a goal is reached (Ergezer and Leblebicioglu, 2013).
Path planning is one of the most challenging issues of mission planning for air robots
(Duan et al., 2008, 2013; Duan et al., 2010a, b), especially in complicated combating
environments.

Pigeons are the most popular bird in the world, and they were once used
to send the message by Egyptians, which also occurred in many military
affairs. Homing pigeons can easily find their homes by using three homing tools:
magnetic field, sun and landmarks. In this paper, we presented a new bio-inspired
swarm intelligence optimizer – pigeon-inspired optimization (PIO). In this newly
invented algorithm, map and compass operator model is presented based on magnetic
field and sun, while landmark operator model is presented based on landmarks.
We also applied this newly proposed PIO algorithm for solving air robot path
planning problem.

The rest of the paper is organized as follows. Section 2 introduces the formulation
of threat resources and objective function in air robot path planning. Section 3
describes natural pigeon behaviors and the inspirations from the natural ones.
Section 4 presented the basic mathematical model of PIO and Section 5 specifies the
detailed implementation procedure of PIO. Subsequently, a series of comparison
experiments with the standard differential evolution (DE) are conducted, and the
comparative results and analysis are given in Section 6. Our concluding remarks are
contained in Section 7.

2. Problem Formulation
2.1 Threat sources in path planning
The threat sources modeling is the most important issue in air robot optimal path
planning. There are two kinds of threat sources: artificial threats and natural threats.
The artificial threats include the enemy’s radar, missiles and artillery and so on. There
are appropriate models of them under different circumstances. The traditional
optimization algorithms generally use circle models to describe these threats, and the
radius of the circle is the range of threat source, and the treat level can also be defined
to calculate the threat cost. Mathematically, the problem of 3D path planning for air
robot can be described as follows (Duan et al., 2010a, b).

Given the starting point A and target point B, (A,B A), k threats set {T1, T2,y, Tk},
and the parameters of air robot’s maneuvering performance constraints (such as the
restrictions of turning angle a, climbing/diving angle b and flying height h), our aim is
to find a set of waypoints {W0, W1,y,Wn, Wnþ 1} with W0¼A and Wnþ 1¼B such
that the resultant path is safe and flyable.

2.2 The performance evaluation function
Suppose that the terrain of the environments and the information of threat regions are
known, and the starting points and targets are also known. The cost function of air
robot flight path can be defined as follows (Zhu and Duan, 2014; Duan et al., 2010a, b;
Duan and Li, 2014):

F ¼ w1 f lð Þ þ w2 f hð Þ þ w3 f cð Þ ð1Þ

where w1, w2 and w3 are weight coefficients, which have relations to length, height and
threat cost separately, and w1þw2þw3¼ 1.
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For the given path, the length cost can be defined as:

f lð Þ ¼
Xn

i¼1

l2i ð2Þ

where li is the length of the i-th path segment.
The height cost f(h) can be defined as:

f hð Þ ¼
Xn

i¼1

hi ð3Þ

where hi is the average altitude above the sea level of the i-th route segment.
In order to simplify the calculations, more efficient approximation to the exact

solution is adopted. In this work, threat cost of each edge connecting two discrete
points was calculated at five points along it, as is shown in Figure 1.

Suppose the air robot fly in path Li, j , we can divide the path Li, j into five sections in
this case, and the threat cost fmin can be calculated by:

fmin ¼
0 Rij4Rj

Lij

5

PNt

k¼1

tkð 1
d4

0:1;k

þ 1
d4

0:3;k

þ 1
d4

0:5;k

þ 1
d4

0:7;k

þ 1
d4

0:9;k

Þ RijpRj

8<
: ð4Þ

where Lij is the length of Li, j , tk is the k-th threat level, R j is the radius of the j-th threat,
Nt is the number of the threat, Rij denotes the average distance between the i-th path
segment and the j-th threat, d0.1,k is the length of the 1/10 point and the k-th threat
center. By controlling the threat cost defined here, the survival probability of air robot
can be increased accordingly.

3. Natural pigeon behavior
The word “pigeon” is derived from the Latin word “pipio,” meaning “young cheeping
bird.” Pigeon is a type of very common and popular bird. The wild pigeon is found in
coastal areas, and the feral pigeon is found almost exclusively in areas of human
habitation. Pigeons were once widely used in the military because of their homing
behavior (see Figure 2).

During First World War and Second World War, pigeons especially contributed
to the Australian, French, German, American and UK forces. Pigeons have the
special homing ability that they are thought to use a combination of the sun, the Earth’s
magnetic field and landmarks to find their way around. Guilford argues that pigeons
probably use different navigational tools during different parts of their journey

3/10

Threat k

9/10

(xi–1,yi–1)

(xi,yi)

Threat k+1

1/10

5/10

7/10

Threat k–1
Figure 1.
Computation of threat
cost of air robot
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(Guilford et al., 2004). Guilford and his colleagues developed a mathematical model that
predicts when pigeons will swap from one technique to another. When pigeons start
their journey, they may rely more on compass-like tools. While in the middle of their
journey, they could switch to using landmarks when they need to reassess their route
and make corrections.

Investigation of pigeons’ ability to detect different magnetic fields demonstrates
that the pigeons’ impressive homing skills almost depend on tiny magnetic particles in
their beaks. Specifically, there are iron crystals in pigeons’ beaks, which can give birds
a nose for north. Studies show that the species seem to have a system in which signals
from magnetite particles are carried from the nose to the brain by the trigeminal nerve
(Mora et al., 2004). Evidence that the sun is also involved in pigeon navigation has been
interpreted, either partly or entirely, in terms of the pigeon’s ability to distinguish
differences in altitude between the Sun at the home base and at the point of release
(Whiten, 1972). Recent researches on pigeon behavior also show that the pigeon can
follow some landmarks, such as main roads, railways and rivers rather than head for
their destination directly.

Inspired by the above homing behaviors of pigeons, a novel bio-inspired swarm
intelligence optimizer has been proposed in this paper, which is named PIO.

4. Mathematical model of PIO
In order to idealize some of the homing characteristics of pigeons, two operators are
designed by using some rules:

(1) Map and compass operator: pigeons can sense the earth field by using
magnetoreception to shape the map in their brains. They regard the altitude of
the sun as compass to adjust the direction. As they fly to their destination, they
rely less on sun and magnetic particles.

(2) Landmark operator: when the pigeons fly close to their destination, they will rely
on landmarks neighboring them. If they are familiar with the landmarks, they will
fly straight to the destination. If they are far from the destination and unfamiliar to
the landmarks, they will follow the pigeons who are familiar with the landmarks.

Figure 2.
Homing behavior

of pigeons
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4.1 Map and compass operator
In the PIO model, virtual pigeons are used naturally. In this map and compass operator,
the rules are defined with the position Xi and the velocity Vi of pigeon i, and the
positions and velocities in a D-dimension search space are updated in each iteration.
The new position Xi and velocity Vi of pigeon i at the t-th iteration can be calculated
with the following equations:

ViðtÞ ¼ Viðt � 1Þ � e�Rt þ rand � ðXg � Xiðt � 1ÞÞ ð5Þ
XiðtÞ ¼ Xiðt � 1Þ þ ViðtÞ ð6Þ

where R is the map and compass factor, rand is a random number, and Xg is the current
global best position, and which can be obtained by comparing all the positions among
all the pigeons. Figure 2 shows the map and compass operator model of PIO.

As shown in Figure 3, the best positions of all pigeons are guaranteed by using map
and compass. By comparing all the flied positions, it is obvious that the right-centered
pigeon’s position is the best one. Each pigeon can adjust its flying direction by following
this specific pigeon according to Equation (5), which is expressed by the thick arrows.
The thin arrows are its former flying direction, which has relation to Viðt � 1Þ� e�Rt in
Equation (5). The vector sum of these two arrows is its next flying direction.

4.2 Landmark operator
In the landmark operator, half of the number of pigeons is decreased by N p in every
generation. However, the pigeons are still far from the destination, and they are
unfamiliar with the landmarks. Let Xc(t) be the center of some pigeon’s position at the t-
th iteration, and suppose every pigeon can fly straight to the destination. The position
updation rule for pigeon i at the t-th iteration can be given by:

NPðtÞ ¼
NPðt � 1Þ

2
ð7Þ

Figure 3.
Map and compass
operator model of PIO
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XcðtÞ ¼
P

XiðtÞ � fitness XiðtÞð Þ
NP

P
fitness XiðtÞð Þ ð8Þ

XiðtÞ ¼ Xiðt � 1Þ þ rand � ðXcðtÞ � Xiðt � 1ÞÞ ð9Þ

where fitness ( ) is the quality of the pigeon individual. For the minimum optimization
problems, we can choose fitness XiðtÞð Þ ¼ 1

fmin XiðtÞð Þþe. For maximum optimization problems,

we can choose fitness XiðtÞð Þ ¼ fmax XiðtÞð Þ. For each individual pigeon, the optimal
position of the Nc-th iteration can be denoted with Xp, and Xp¼min (Xi1, Xi2, y, XiNc).
Figure 4 shows the landmark operator model of PIO.

As shown in Figure 4, the center of all pigeons (the pigeon in the center of the circle)
is their destination in each iteration. Half of all the pigeons (the pigeons out of the
circle) that are far from their destination will follow the pigeons that are close to
their destination, which also means that two pigeons may be at the same position.
The pigeons that are close to their destination (the pigeons in the circle) will fly to their
destination very quickly.

5. PIO implementation procedure
The detailed implementation procedure of PIO for air robot path planning can be
described as follows.

Step 1: according to the environmental modeling in Section 2, initialize the terrain
information and the threaten information including the coordinates of threat centers,
threat radiuses and threat levels.

Step 2: initialize parameters of PIO algorithm, such as solution space dimension D,
the population size N p, map and compass factor R, the number of iteration Nc1 max
and Nc2 max for two operators, and Nc2 max4Nc1 max.

Figure 4.
Landmark operator model
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Step 3: set each pigeon with a randomized velocity and path. Comparing the fitness
of each pigeons, and find the current best path.

Step 4: operate map and compass operator. Firstly, we update the velocity and path
of every pigeon by using Equations (5) and (6). Then we compare all the pigeons’
fitness and find the new best path.

Step 5: if Nc4 Nc1max, stop the map and compass operator and operate next
operator. Otherwise, go to Step 4.

Step 6: rank all pigeons according their fitness values. Half of pigeons whose fitness
are low will follow those pigeons with high fitness according to Equation (7). We then find
the center of all pigeons according to Equation (8), and this center is the desirable
destination. All pigeons will fly to the destination by adjusting their flying direction
according to Equation (9). Next, store the best solution parameters and the best cost value.

Step 7: if Nc4 Nc2max, stop the landmark operator, and output the results. If not,
go to Step 6.

The above steps can be summarized as pseudocode:
PIO algorithm
Input
N P: number of individuals in pigeon swarm
D: dimension of the search space
R: the map and compass factor
Search range: the borders of the search space
Nc1max: the maximum number of generations that the map and compass operation is
carried out
Nc2max: the maximum number of generations that the landmark operation is carried out.
Output
Xg: the global optima of the fitness function f
1. Initialization
Set initial values for Nc1max, Nc2max, N P, D, R and the search range
Set initial path Xi and velocity Vi for each pigeon individual
Set X p¼Xi, Nc¼ 1
Calculate fitness values of different pigeon individuals
Xg:¼ arg min [ f(X p)]
2. Map and compass operations
For Nc¼ 1 to Nc1maxdo
for i¼ 1 to N p do
while Xi is beyond the search range do
calculate Vi and Xi according to Equations (5) and (6)
end while
end for
evaluate Xi, and update X p and Xg

end for
3. Landmark operations
For Nc¼ Nc1maxþ 1 to Nc2max do
while X p is beyond the search range do
rank all the available pigeon individuals according to their fitness values
NP ¼ NP=2
keep half of the individuals with better fitness value, and abandon the other half
Xc¼ average value of the paths of the remaining pigeon individuals
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calculate Xi according to Equation (9)
end while
evaluate Xi, and update X p and Xg

end for
4. Output
Xg is output as the global optima of the fitness function f

The above programming steps of PIO algorithm can also be summarized as a
flowchart (see Figure 5).

6. Comparative experiments
The PIO procedure can be implemented in various ways by setting up PIO algorithm’s
parameters differently. In order to investigate the feasibility and effectiveness of our
proposed PIO algorithm, a series of experiments are conducted, and further
comparative experimental results with the standard DE algorithm are also given.

Set the coordinates of the starting point as (0, 0, 30), and the target point as
(65, 100, 30), while the initial parameters of PIO algorithm were set as: N P¼ 150
(see Figures 6 and 8) and 300 (see Figures 7 and 9), D¼ 20, R¼ 0.2, Nc1max¼ 150,

Y

N

N

Y

Start

Environmental modeling and parameters
initialization

Update each pigeon’s velocity
and position using Eqs (5) and (6)

Evaluate Xi , update Xp , Xg

Nc > Nc1max

Nc > Nc2max

Nc = Nc +1

Nc = Nc +1

Update NP , velocity using Eqs (7)-(9)

Evaluate Xi , update Xp , Xg

End

Figure 5.
The procedure of PIO
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Nc2max¼ 200. We also set D¼ 20. The comparative results with DE are shown in
Figures 6 and 7.

From Figures 6-9, it is obvious that our proposed PIO algorithm can converge more
quickly and more stable comparing with the standard DE algorithm, and the optimal
path generated by using PIO is more smooth and satisfactory than the standard DE
algorithm. With the increasing of pigeon number, the convergence performance is
much better. Generally, the experimental results also show that our PIO algorithm
is much better in stability and superiority over the standard DE algorithm.

7. Conclusions
This paper presents a novel swarm intelligence optimizer, which is named PIO.
We also applied this new algorithm for solving the air robot path planning problem.
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Computational experiments are conducted to validate the performance of the proposed
PIO algorithm. The comparative simulation results show that our proposed PIO
algorithm is a feasible and effective algorithm for air robot path planning.

Our future work will apply this newly presented algorithm to solve other complicated
optimization problems.
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