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Abstract: As the fault shock component in vibration signals is extremely sparse and weak, it is © fficu’ . to exwract the fault features when
large-scale, low-speed and heavy-duty mechanical equipment is in the early stage of failure. To soi. this problem, an early fault feature
extraction method based on the Teager energy operator, combined with optimal variational .wue decon.sosition (VMD) is presented in
this study. First, the Teager energy operator was used to strengthen the weak shock compone t of the original signal. Next, a
logistic-sine complex chaotic mapping with variable dimensions was constructed to enha ~e the glo al search ability and convergence
speed of the pigeon-inspired optimization (P10) algorithm, which is named the variable dime. >~ 1aotic pigeon-inspired optimization
(VDCPIO) algorithm. Then, the VDCPIO algorithm is used to search for the optimal ombir~tion value of key parameters of VMD. The
enhanced vibration signal is decomposed into a set of intrinsic mode functions (I Fs) ' y the optimized VMD, and then kurtosis for
every IMF and mean kurtosis of all IMFs are extracted. According to the average kurieuss, sevr al IMFs, whose kurtosis value is greater
than the average kurtosis value, are selected to reconstruct a new signal. Then, env. ~ne s,_.orum analysis of the reconstructed signal is
carried out to extract the early fault features. Finally, experimental verification of the n.. *hod was performed using the simulated signal
and measured signal from a rolling bearing; the experimental results indicate . ~t the met' od presented in this paper is more effective to
extract the early fault features of this kind of mechanical equipment.
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1 Introduction

Large-scale, low-speed and heavy-load machinery su." as «auie turrets and converters, generally has rotational
speed lower than 60 rpm. The key components of thes~ devic s can be easily damaged. Faults can cause sudden and
serious equipment accidents, and even endanger the sw.*=.," of  perators. Therefore, early fault diagnosis is of great
theoretical significance and practical value, to ensure sate 9pe.ation and avoiding heavy economic losses. However,
early fault signals of this type of equipment ha. ... ~ ergy and long periods, which are affected by strong
background noise and attenuation of the signal. The ta.'t features are extremely weak. Extracting fault information
from early fault signals is the key to fault diagnosis.

The vibration signals of rotating mar uner, exhibit obvious nonlinear and non-stationary characteristics.
Commonly used signal processing methr is incluc 2 the Short-time Fourier Transform (STFT) [1,2], Wavelet
Transform (WT) [3,4], Wigner-Vile Distributic~ (W /D) [5,6], S Transformation (ST) [7,8], Higher Order Statistics
(HOS) [9], Empirical Mode Decompr sitior (EMD) [10-13], Local Mean Decomposition (LMD) [14-16], and
Intrinsic Time Scale Decomposition (' D) ".7,17 .. The STFT is constrained by the time-frequency resolution of the
window function, and the time-fr.quei..>’ r.solution is fixed; WT needs to select the wavelet basis and
decomposition layer, which mak’ - it essenually a non-adaptive signal processing method; the ST transform
combines the advantages of the UTFT «. 4 the WT, but its spectrum is erratic, and constrained by the unqualified
principle; WVD is heavily affer’_." hy the cross term; HOS can theoretically completely suppress Gaussian noise, but
it cannot reduce the non-Gaus .1an r ise, and can easily interfere with the higher-order spectrum of the signal. EMD,
as an adaptive signal proces.™ . method, has many problems such as fitting-overshoot, the end-effect, and
mode-mixing; therefore, it, practic.. application is severely limited. LMD is likely to cause signal mutation in the
process of demodulation and ae crmputation burden is heavy; ITD uses the linear transformation method to divide
the frequency domain of u.. ribre .on signal, which results in the local fluctuation of the waveform amplitude of the
proper rotation comp”...nt (Pk< ), and then leads to signal distortion. Many scholars have proposed a large number
of improvement sch mes bas d on the above methods. These studies presented fairly good results, which have been
practically applied t. mechar .cal fault diagnosis. However, due to the limitations of the theoretical framework, the
problems discus~__' can w.uy be suppressed to some extent by existing approaches, but cannot be fundamentally
eliminated.

VMD is a ew ada' tive signal processing method [19]. By solving the variation problem iteratively, the signal
is decomposed in.. . set of finite band modal functions. This method realizes the separation of each frequency
componen. W u. - -1al, and overcomes the problems, such as the end-effect, mode-mixing, and wave-fluctuation. It
is very suita.'e for analyzing nonlinear and non-stationary vibration signals, and is widely used in the field of
mechanical fau, diagnosis [20-23]. However, the performance of VMD is affected by the total number of modal
parameters K, quadratic penalty parameter o, update parameter z, and convergence tolerance parameter &. Moreover,
these parameters must be preset and require a high level of experience and intuition. Therefore, VMD is not suitable
as an adaptive model in practical engineering applications.



At present, little research focuses on the parameter setting of VMD. Liu [24] proposed a traditional grid search
method for searching the optimal values of the decomposition parameters K and « of VMD, hut it was based on
personal experience and intuition, lacking strong theoretical support. Xiao [25] proposed a par.neter search method
based on the peak number and minimum frequency of the FFT spectrum to set the value K # «a . of VMD. In [26],
the FFT's spectral envelope is adopted to identify the effective frequency components contained in the .:gnal, and the
optimal value of VMD parameter K is determined according to the frequency compc enu  However, the FFT
method is not suitable when dealing with nonlinear and non-stationary vibration sigr ‘1s. 7ne PSO optimization
algorithm was used to search the optimal values of the parameters K and a of VML in |- ?8]. However, it can
suffer from the problem of local optimal solution, and the obtained values are not the aloba, “est values

With the significant development of bionic intelligent optimization technology . paper attempts to use a new
population-based swarm intelligence optimization algorithm to optimize the key p ramr ers v. VMD. Inspired by the
homing behavior of doves in nature, Duan [29] proposed a new bionic intellige. optimization algorithm PIO
(Pigeon-Inspired Optimization) in 2014. It mainly focuses on the optimizatior ui che barc.neters of actual problems,
and can be applied in areas including UAV formation, parameter optim ‘ation, & 'tomatic control, and image
processing. [30-34]. Compared with other swarm intelligence algorithms, the “igeon warm optimization algorithm
is easy to realize, easy to program, has less control parameters, and is .«sy to cinbed into specific search steps.
However, the standard PIO is still a heuristic optimization algorithm, and .an |asily suffer from the problem of
finding the local optimal solution. In [35], a pigeon swarm optimization «.4orithr . based on the quantum rotary gate
and Chebyshev chaotic search is proposed, which can solve this prob.. ™ to ,ume extent. However, the traditional
quantum rotary gate updates the phase of the quantum bit by tediously comp ring the rotary angle in the query table,
and the angle values in the table are discrete and fixed. Therefore, .. has lir .ted ability in increasing the population
diversity because of the limited-state mutation operator.

Large-scale, low-speed and heavy-load machinery has very weaw “arly fault shock features and extremely low
signal-to-noise ratio (SNR). In order to extract the early faui. atures more effectively, a novel Teager-VMD based
fault feature extraction method is investigated in this paper, wn. Y takes advantage of the variable dimensional
chaotic PIO. The contributions of this work can be summa ‘¢ccu . *~!lows:

(1) Using the Teager energy operator to preproce." .ne original vibration signal, enhancing the shock
component in the signal and the signal-to-noise ratio 6. .= sigi 1.

(2) Constructing a variable dimension logistic-sir.> cu.™nlex chaotic mapping by using logistic mapping and
sine mapping according to the unique search mec*~nism € P1O, which is also used to solve the problem of local
optimization. That is, in the PIO initialization stage, .. ~ one-dimensional logistic-sine complex chaotic mapping was
used to initialize the pigeon population and increase the u.versity of the population. Then, in the search stage based
on the map and compass operator, the rand~ ... ndate mechanism of PIO was replaced by the two-dimensional
logistic-sine complex chaotic mapping. Le.tly, in e search stage based on the landmark operator, the random
updating mechanism of PIO was replaced v, the or -dimensional logistic-sine complex chaotic map again. In this
way, the global search capability and cor sergence ~ .eed of the PIO can be effectively improved.

(3) Using the improved PIO to s arch .or tk= optimal combination value of VMD’s parameters K and «, which
can help to construct an optimal VMD 1. ~ niev the best processing in fault feature extraction.

(4) Using the optimal VMD *, decomy. »e the enhanced signals into a set of IMFs, calculating the kurtosis of
each IMF and the average kurtosis o1 . '' IMFs. Next, according to the average kurtosis, several IMFs, whose kurtosis
is greater than average kurtosis. are scre.ned out, and a new signal is reconstructed. Then, envelope spectrum
analysis of the reconstructed s’ yjnai ‘s carried out to extract the features of the early faults. Finally, the effectiveness
of the proposed method is ve: fied ",y analyzing the simulated and measured bearing fault signals.

The remainder of this pape. ‘< organized as follows. In Section 2, the VMD method and the influence of its
parameters are introduce . in etail. In Section 3, the PIO algorithm is studied. In Section 4, our algorithm is
presented and its main ¢ ~ns re e plained. In Section 5, simulations of the algorithm are conducted and the results
are discussed. In Sectinn 6, (~se studies of fault diagnoses are provided to test the effectiveness of our approach.
Finally, conclusions *.nd futu-e work are described in Section 7.

2. Variational moc ~ decor position

The decor positio: process of VMD is the iterative solution process for the variational problem, which can be
divided into t /0 steps establishing the variational model and solving the model. It is an adaptive signal
decomposition m. "2 ased on Wiener filtering, Hilbert transform, and heterodyne demodulation.

2.1. Establis “me’.t u: variational models

We assume “hat the input signal X(t) is composed of several signal components with different center frequencies
and limited bandwidth. The signal decomposition problem can be transformed into the variational model. When the
constraint that the sum of the components is equal to the input signal X(t) is satisfied, the sum of the aggregating
bandwidths of the components is considered to be the smallest. The construction steps are as follows:



Step 1: In terms of Hilbert transform, the analytical signal of each modal function u(t) is obtained to calculate the
single-side spectrum of uk(t):{é(t)+lt}*uk(t), where §(t) is the Dirichlet function, and is the convolution
T

symbol.
Step 2: Frequency mixing is used to mix the analytical signals of each component w’.i « pre-estimated center
frequency e’ | and then modulate the spectrum of each mode to the corr sponding baseband:

Ka‘(t) +—J*u (t)} o

Step 3: The square L? norm of the demodulation signal gradient is calculated, .nd t . . ndwidth of each mode
signal is estimated. The optimal variational model can be constructed by introduciny = 'nstraint conditions:

0, K&(t) + lj * uk(t)}e"““*t
mt

st. iuk (t) = x(t)

K 2

min Z
o) | &

2 1)

where, K is the number of modal components; {u,}:={u,,u,,- u}an {® }:={0,, ®,, -, ®, }are shorthand

notations for the set of all modes and their center frequencies, ,"qoectively.Zk:zsz:1 is understood as the
summation over all modes.

2.2. Variational model solution

The second-order penalty factor a and the Lagrangian - iltiplication operator A(t) are introduced to transform
the constraint variation problem into a non-binding va: -.*~nal , voblem. The second penalty factor can guarantee the
reconstruction accuracy of the signal in the presence 0. Ga.sian noise. The Lagrange multiplier can ensure the
strictness of the model constraint conditions. The ¢ 2~~ad \ agrange can be written as:

L({ud{o}A)= Z [(5(t)+%j*ub(tﬂe‘j%
’ ()

A4 f\t)—Zuk(t)>

On this basis, the alternate direction mew ~ . of r .ultipliers (ADMM) is used for the alternate iterative update {u”*l},

{a)”“} and A" to search for the “ «."Vle point” of an extended Lagrange expression, that is, to satisfy the stopping

condition of the iteration. Final"* K mutudlly independent frequency band components are obtained. The solution
procedure for the variational r odel s as follows:

_\Igorithm 1: Complete optimization of VMD

Initialize: {u‘ﬁ} , {a)ﬁ} A ,n<-0
repeat:

n<n+1
for k=1 Kdo

Update U, ~ra” »>0:

f@)-F, 0 @)~ 6( )J (@)

1

G ' e 3
SR 1+2a(w—a))? ®
Upu ¢ @:
An+1
(w)| dw
w;wl(_,'- | (4)

i

An+1(a))| dw



end for
Dual ascent forall @>0:

A" ) « A" (o) +r( f(w) —ZGQ”(@)J (5)

) A an 12 ~nlI2
until convergence: ZK|UE+1—U|? /a;

2 2

<€ (6)

2.3. Influence of variational model parameters

It is known from the variational model solution process that the performance of Vv .. is closely related to the
decomposition parameters, such as the total number of modalities K, the seconda , ne’ alty «, the update step length
7, and the convergence fault tolerance threshold . Various parameters affect the dacom. ~<ition performance of VMD,
as follows:

1)  The total number of modal components K. The performance of \ MD is ve y sensitive to the value of K.
If the value of K is too small, the data will be under-segmented, and some cu. ~nnr ats will be contained in other
modalities. If the value K is too large, problems such as modal copying v .1l ocr* -

2) The secondary penalty parameter a. If the value of a ~ t7u smill, the bandwidth of the modal
component will be too large; some components will be included in ¢ *her mad>" components, or additional “noise”
will be captured. If the value of « is too large, the bandwidth of the mou. ' component will be too small, and some
components in the original signal will be lost.

3) Update the step size z. The VMD algorithm does not “uara. *2e ~ onvergence to a global minimum. When
the noise level of the signal is low, the Lagrangian multiplier ens.-es optimal convergence when the appropriate
value of 7 is chosen, and z > 0. When the signal has a higk ===~ !___i and 7 > 0, the Lagrangian multiplier will
severely hinder the convergence of the algorithm. Setting z to u =n effectively turn off the Lagrangian multiplier to
ensure that the algorithm converges effectively.

4) Convergence tolerance ¢. The value of paran.ter : aifects the reconstruction accuracy of the VMD
decomposition. The reconstruction error can be contro'led by -=ducing the convergence of the stopping criterion to a
specified degree.

Therefore, the design of an optimal VMD should be [ncused on how to obtain the optimal combination value of
key parameters of the VMD.

3. Variable dimension chaotic P1O

The autonomous homing behavior of r.geons . as been an unsolved mystery for a long period of time, which
has attracted many researchers to find c¢.* exactlh how pigeons can accurately return home in long-distance
conditions. The researchers proposed tha the lo.._ -+ .nge homing behavior of pigeons is based on the dual help of the
geomagnetic field and geomorphologic- « lan .scape. The geomagnetic field is used to determine the general direction,
and the actual direction is corrected ba.~1 ,n th- geomorphological landscape for the purpose of accurately locking
the position.

3.1. Mathematical model of the p? jeon . *arm optimization algorithm

Imitating the mechanism .nat »igeons use as navigation tools to find targets, the PIO proposes two different
operator models.

1) Map and compa~s ope. ~tor. Pigeons can use magnetic objects to sense geomagnetic fields and then form
maps in their minds. Mea .whi' 2, they use the sun's altitude as a compass to orient their flight, and as they approach
their destination, their dc,enc’ :nce .n the sun and magnetic objects decreases.

2) Landmark onera.. ~ "_andmark operators are used to simulate the effects of landmarks on pigeons in
navigation tools. Wk .n pigerns 1ly close to their destination, they will rely more on nearby landmarks. If pigeons are
familiar with landm. rks, they will fly directly to their destination. Otherwise, they will follow pigeons familiar with
landmarks.

In the P10 .nodel, virtual pigeons are used to simulate the navigation process. According to the principle of the
map and comg 1ss opere or, the pigeon's position and velocity are initialized, and in the multi-dimensional search
space, the pige.~'s poition and velocity are updated in each iteration. Its position and velocity are recorded
separately, =~ fallows:

{Xi :[Xil".“ “iXiD]

Vi :[Vil’ViZ" 'ViD]

(7

Where, i =1, 2, ..., N, and based on formula (8), each pigeon updates its position X; and speed V;.:



Ve =V Nt we ™M 4 rand x (X

XiNC — XiNc—l +ViNc
where R is the map and compass factor, which has values between [0,1]. rand is a random nu.nber . *he range [0,1];
N is the current number of iterations; Xgpest i the global optimal position after N.-* “rations, obtained by
comparing the positions of all the pigeons. When the number of iterations reaches ¢he :quired number, the
calculation of the map and the compass operator is stopped, and the landmark operator is .~~". calculated in the next
iteration.

In the landmark operator, half the number of pigeons will be reduced after ea~* itera.'™n. As the pigeons far
from the destination are unfamiliar with the landmarks, they will no longer have tt : abi ** - to distinguish routes and
are therefore discarded. Xcenter iS the central position of the remaining pigeons, w. *ch " vill be treated as a landmark,
and the reference direction for the flight. Based the following equation, the pigeon’s pu. *tion X; can be updated:

- XiNc_l)

gbest

®)

LS

z XX F (X N Mo
T A et ®

N N.-1 Z F(Xichl)

i=1
X = X rand x (X g = X7) (10)
where:
1 .
— —  —fitness,_. (X7

= (xiNc-l): fitness(X" ) +& mn (X577) (11)

fitness(X,*™),and fitness_ (X™*) >0

In Eq. (11), fitness (+) is a fitness function, fitnessyin *-) @ .. ,5es the minimization problem, and fitnessyax (-)
addresses the maximization problem. Similarly, when the 1.~ ations reach the maximum number of iterations, the
landmark operator also stops working. From the PIO ., >rithr, processing, we can understand that the algorithm is
divided into three stages: the (Dinitialization stage; (2)m." a.* compass operation stage; and (3)landmark operation
stage. In stage (1) the rand operator is used to * :.i~'i7e “e position and velocity of the pigeon group, and the
diversity of the individual is limited as well. In stay. (2) the position and velocity of the pigeon population are
updated by using the rand and R operator, which makes it easy for the algorithm to only obtain the local optimal
solution. In stage (3)the rand operator is user’ w .. ate the location of the remaining pigeons, which may also yield
the local optimal solution. In addition, alth ugh the . efinition and function of the R operator are given in [29], and
its range of values is set to be [0,1], the basis . € setti".g the value of R is not given. Furthermore, once the value of R
is given, it will be fixed in the search pr .cess of u.. second stage of the P1O, which means that every individual has
to adjust their own speeds to be the ¢ ..me. rher fore, the search space in the second stage is limited, to a certain
extent, by the size and type of the R coer«. . w* (ch is more likely to suffer from precocity problems.

3.2. Improvement of the algorithm

PIO has simple structure _ 1 strong convergence ability. However, it still has the inherent weakness of
traditional bionic intelligent a’ yorit ms, which is that it can easily obtain the local optimal solution [35]. Therefore,
in accordance with the unique -~ arch mechanism of PIO, in this section, an improved algorithm that combines a
variable dimensional comr osite cni..>tic map with PIO, is proposed to improve the searching ability of the global
optimal solution and con' erge .ce sreed of P1O.

3.2.1. Complex dimensinnal v, ~c «c mappings

Chaotic mappir 4 [36] i a mathematical function that shows some chaotic behavior over time. Different values
of a chaotic functic 1 form ¢ aotic sequences. The population is initialized by the chaotic characteristics of the
sequence generated by “he ~"aotic mapping, which makes the population have better diversity. At present, there are
many different .naotic mapping functions, among which logistic mapping and sine mapping are commonly used.
They have the advantai 2s of simple structure and good chaotic characteristics [37,38]. However, the mapping
structure of these ~haot’_ functions is simple, which also leads to the disadvantages of simple chaotic behavior and a
fragile tim’ “~*~nval. The construction process is as follows:
The definitic » 0 a known logistic mapping is as follows:

X = HX, (1_ Y']) (12)
where u is the chaos control parameter and z = 4a, o €[0,1]; X, is the variable of the logistic map, and x, €[0,1].
The definition of a known sine mapping is as follows:



X, = Bsin(zx,) (13)
where $ is the chaos control parameter, and 5 [0,1] ; X, is the variable of the sine map X, €[0 {.

The logistic map and sine map have the disadvantages of simple behavior and weak chr stic ."me intervals, and
their weakness may negatively affect some chaos-based applications. Therefore, the looistic and ..ne maps are
combined, and Eq. (12) is added into Eq. (13), which can obtain two completely diffe ent haotic mappings, as
shown below.

(11D logistic-sine complex chaotic mapping:
Xo = Sin(ﬂ'(40Xn (l_ X ))) (14)
where 0 is the chaos control parameter and @ [0,1]; X, is the variable of the ¢/ mpo .te .. ap, andx €[0,1]. It is

important to note here that the two chaotic maps have the same definitional doma.. and value domain, and their
composite maps are not necessarily chaotic. Thus, it is possible to determine v .iether the composite map is a chaotic
map or not by drawing its bifurcation diagram, as shown in Fig. 1. As can be seen fro.1 Fig. 1, the logistic map and
sine map have differences in their mathematical formula, but their chaotic bei. viors - ve very similar and both have
good chaotic characteristics. In addition, the composed maps not only e* .uvit chaouc behavior, but also have more
complex chaotic behavior and better chaotic properties. In order to fu ther .ilus rate the chaotic characteristics of
these three different maps, the corresponding Lyapunov exponents are caicuiated '.ere, where the Lyapunov exponent
is defined as follows:

e 1O .
A= L'ﬂlﬁ;lnlf (%,)| (15)

The Lyapunov exponent can be used to effectively describe the s..~=d of separation of adjacent points in maps,
or the sensitivity of the orbit to initial conditions in the siny 'ar attractor, and the larger the value is, the more
sensitive the mapping is to the initial conditions, and th~ hetter the chaotic characteristics are. By calculating the
Lyapunov exponent of three different maps (as shown in Fiy 2) the chaotic behavior of the 1D complex chaotic map,
logistic map and sine map appears in different contro! ~terva." It can be observed from Fig. 1 that the logistic-sine
composite map exhibits hyperchaotic behavior when the ~on.. ~l parameter @ < [0.42,0.57]U[0.61,0.82] w[0.84,1] ;

the sine  composite map  exhibits |, w72 c behavior  when  the  control  parameter
B <[0.28,0.36] L[0.61,0.78] U[0.8,1] ; and the sine c..nosite map demonstrates hyperchaotic behavior when the

control parameter « <[0.85,1] . By comparin”, ... ~haotic behavior of the above three maps, it can be seen that the

logistic-sine composite map has the best ch atic prop rties and the largest Lyapunov exponent. It also shows that the
logistic-sine composite mapping has betf r iniu.’ s isitivity and stronger ergodicity. Therefore, the 1D logistic-sine
chaotic map shows better chaotic chara’ ceris’.cs.
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Fig. 1. Bifurcatio' diagram. corresponding to different chaotic mappings: (a) logistic mapping; (b) sine mapping; (c) 1D logistic-sine
complex mapping
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(22D logistic-sine complex chaotic mapping:
Xi,; =SiN(z (46X (1—x)+1—-6)sin(zy;)))
Y =sin(z(40y,(1-y;) + A - ) sin(7X;,,)))

where, 0 is the chaos control parameter, and @ [0,1]; X, and Y, ~ the variables of the complex mapping, and

(16)

X, €[0,1], vy, €[0,1]. In the 2D logistic-sine complex chaotic me, ning whose two input parameters (X, Y;)are

affected by each other, the output pairs (X, , Y,,,) are distributeu . » the two-dimensional phase plane. Compared with
the logistic mapping, the sine mapping, and 1D logistic-s* _ ~~mnlex chaotic mapping, the 2D logistic-sine complex
chaotic mapping has a more complex structure and has a stre »c :r traversal. In addition, when y, =0orx, =0, the 2D

logistic-sine complex chaotic mapping does not degra. - .~ a 1.> logistic-sine complex chaotic mapping. It is shown
that the 1D and 2D logistic-sine complex mappings are tv ‘9 u. Ferent logistic-sine complex mappings. In addition, to
further verify the performance of the 2D logistic-s? -. 2~™ni.. x chaotic map, we continue to compare the chaotic orbit
and Lyapunov exponents of chaotic maps with the 2L 'ngistic map, 2D SLMM, and 2D LSCM, as shown in Fig. 3
and Fig. 4. It can be seen from Fig. 3 that the 2D-LSCM map has more complex chaotic orbits; further, from Fig. 4,
we can see that the 2D-LSCM mapping has @ .aiy. - Lyapunov exponent. Therefore, from the comparison results, the
2D-LSCM has better chaotic characteristics .n the ini “al value sensitivity and ergodic property.
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Fig.4. The Lyapunov exponent corresponding to different complex chaotic mappings: (a) 2D logistic mapping; (b) 2D SLMM; (c) 2D
LSCM

3.2.2. Improved PIO based on variable-dimensional complex chaotic mappings

To solve the problem that the standard PIO algorithm easily obtains only the local opti'.ial su™ tion, three core
steps of P1O are improved by using the variable dimensional chaotic mapping method. Th~* is, in the first stage of
P10, the initial position and initial velocity of the pigeons are initialized with 1D logistic sine ,omplex mapping. In
the second stage of P10, the 2D logistic-sine complex mapping is used to update the loca.. ~ “ nd speed of individual
pigeons, and to get a better next-generation population. In the third stage of PIO, . = 1D ~qistic-sine complex
mapping is used to update the position of the individuals in the excellent population. 7 =n, the global optimal
solution will be obtained. The detailed algorithm process is shown as follows:

Algorithm 2: PIO implementation procedure

Input:
Np: number of individuals in pigeon swarm
D: dimension of the search space
R: the map and compass factor
0: the control parameters of LSCM
Xip: the parameters of 1D LSCM
Xop. Yop: the parameters of 2D LSCM
S: the borders of the search space
NCimax: the maximum number of generations that the map and compass operation . carried out
NComax: the maximum number of generations that the landmark operatic s carried ¢ it.
Initialize:
Nclmax _Tl ’ NCZmax
for N,=1 to N, do
for D=1to D do
H 1 1
X, =s, +(Sin(z (40X, (1- X)) *x(s,—s,)

V,=sin(z (40X (1- X! ))

end for
end for

X, =X, N, =1

f(X,) = fitness(X )

X, =argmin[f (X )]
Map and compass operations:

for Nc=1 to Nc, . do

=T,,Np=p,D=d , X, =X, =Y,, =rand,c -0.99 and S=[s,,S, ]

for i=1 to Np do
while X; >S do
Xoor=sin(z (40X, . 1" X, )+(1-0)sin(zY,,))

Y,ob=sin(z(40Y, (1-,))+(1-0)sin(zX,5))

D —
Ne _ysN.-1 XohxN, i+1 oy Nt
VI _Vi *g +]2D ><(ngest Xl )

xiNc _ XiN(l-r ,- X
end while
end for

evaluate X, dupd>': X and X

p
end for
Landmark op rations:

X,p = ranu
for N 'Nc. . .1 to Nc,, . do
while X >3 do
N,=N_, /2
X, = X+ (sin(m (40X, (L= X)) x (X et — X ™)



end while
evaluate X, ,and update X and X
end for
Output: X

gbest *

3.2.3. Performance comparison

To verify the convergence and optimization performance of VDCPIO, different a._ rithms, including the
standard PIO, the standard PSO, CQPSO, and VDCPIO algorithms, are tested to . mpare their optimization
performance. The objective functions are as follows:

f,(x) =100(x7 = x,)* + (1= X;)

in2x2+x2 —0.5
£,(x) = 0.5+ N FXo TS (17)
[1.0+0.0010¢ +x}) |

fo(X) = 4x7 = 2.1% + X7 / 3+ XX, —4XZ + X,

The initial population is set to 30. The maximum number of iteratic . 1s se’ to 200. The optimization result is
shown in Fig. 5. From the figures, it can be observed that, for all threc ~hiecl. . functions in Eq. (17), the evolution
generation and convergence speed of the standard P1O algorithm are betic than the standard PSO algorithm. The
evolution generation and convergence speed of CQPSO algorithm .. hetter t! an the standard PSO and standard PIO.
The evolution generation and convergence speed of VDCPIO, , vapos. ' «n this paper, are better than the others.
Therefore, the experimental results indicate that the VDCPIO algorittn. has better optimization performance.
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Fig. 5. Performance comparison of VDCPIO w' a stanu. 1" 50, standard PIO, CQPSO and other optimization algorithms for different
test functions: (a) test functions f;(x); (b) test f .ictio’ 5 f5(x); (c) test functions f3(x).

Furthermore, to verify the effec. ~n ss o’ the VDCPIO algorithm in solving the problem of local optimal
solution, the fy(x) in Eq. (17) is t-en as v test function. The test conditions are shown in Table 1, and the
experimental results are shown in ", A. The experimental results indicate that the standard P10 algorithm can easily
obtain the local optimal solution when .~= dimension of the test function is large, the iterations of the PIO are
insufficient, or the population ¢” v. PIO is insufficient. Meanwhile, the VDCPIO is used to test the same conditions.
The experimental results are .now' in Fig. 7, which indicate that the proposed VDCPIO can effectively overcome
the local optimal solution.

Table 1
The local optimal solution of 2101 ider f' ree different test conditions.
Test function Dimension  opulations Maximum iterations Global optimum Local optimum Iterations
3r 30 200 0.1020 158
f,(x) 0 30 100 0 0.0033 75
9 10 200 0.0024 61
3 - 014 — - - - . : v : y 017
n
! 0.09 i
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(@) (b) (c)
Fig. 6. Three cases of the P10 algorithm falling into the local optimal solution: (a) higher dimension of test function; (b) iteration is
insufficient; (c) population is insufficient.
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Fig. 7. Three cases of the VDCPIO algorithm falling into the local optimal solution: (a) high. - dime~ ion of test function; (b) iteration is
insufficient; (c) population is insufficient.

According to the experimental results of PIO, it is easy obtain thc lor « op ‘mal solution when the parameter
values of PIO are not properly set. Therefore, the local optimal soluti~n can he - voided to some extent by adjusting
the relevant parameter values of PIO rationally. Here, the parameter va. *es of the PIO are adjusted to be further
validated in two test conditions, as follows: (D the dimension of t*= test fun tion is set to 30, populations are set to
60, and number of iterations is set to 200; @) the dimension of th~ test. "r*.on is set to 30, populations are set to 30,
and number of iterations is set to 300. Then, both PIO and VDCPIC ~re tested under these two conditions, and the
results are shown in Fig. 8. The experimental results indir . ... «we local optimal solution can be effectively
avoided by setting appropriate parameter values of PIO. Mu.~over, the convergence rate of the VDCPIO is
significantly superior to that of PIO.
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Fig. 8. Optimization results of P)* and VDCP10 in two different test conditions: (a) test condition 1; (b) test condition 2.

Finally, the experimental results o1 .. » local optimal solution indicate when the parameter values of P1O are not
suitable. It leads to the local or .... 2l solution, and the VDCPIO does not obtain the local optimum under the same
condition. In addition, the cor erge .ce speed of VDCPIO is significantly better than that of PIO when both VDCPIO
and P10 do obtain the local opu. ~ ( solution under the same conditions. By analyzing the optimization mechanism of
P10, the main reason for t*.s is that .. 2 random number generated by P1O cannot complete the traversal search of the
continuous variable spar : wi* jout -zpetition. Because the search space is limited, it is possible to obtain the local
optimal solution. The goou ndo’ ness, ergodicity, and initial sensitivity of chaos can overcome this defect of PI1O.
To further verify the * undity an. reliability of the proposed method, the experiment in Fig. 8 is repeated 100 times,
and the experimente results . ve shown in Table 2. The experimental results from Table 2 indicate that in 100 times
of repeated solution, “e PIO ,btains the local optimal solution 12 and 18 times, and the VDCPIO does so only 1 and
2 times. The exr .. menw. results indicate that there are many reasons for P10 to obtain the local optimal solution.
The proposed ¥ DCPIO vethod can effectively overcome this limitation.

Table 2
The number “*~es that local optimal solutions of P10 and VDCPIO were found under 100 repeated tests.
Test functio Algorithm Local optimum Global optimum Iterations Repetitions
PIO 12 88
200
f,(x) VDCPIO 1 99 100

PIO 18 82 300




VDCPIO 2 98

4 Fault feature extraction based on VDCPIQO's optimal Teager-VMD algorithm

The vibration signals of large-scale, low-speed, and heavy-duty machinery are sp se: /ibration signals with
early faults include only a few signal components, such as frequency multip'icativ. frequency division,
micro-impact, or even a single micro-impact component. This type of micro-impact or ¢ ~n a single micro-impact
component is precisely better in reflecting the early fault features of the equipment oc. quse u.e impact components
of early faults are extremely sparse and weak, it is not always possible to extract tF :se f- un . atures effectively if the
VMD is used directly for decomposition. Therefore, before using VMD to decu. ~ «0se the vibration signal, the
Teager energy operator is employed to enhance the shock component of t _ vibrau.1 signal and improve the
signal-to-noise ratio of the signal. Then, the fitness function of VDCPIO is de ermineu. and the combination value of
the key parameters of VMD is searched. Finally, several IMFs are selected ac *ording * » the average kurtosis, which
is used to reconstruct a new signal. The characteristic frequency of the f~..% is ea. ucted by analyzing the envelope
spectrum of the reconstructed signal.

4.1, Teager energy operator

The equation of motion of a linear oscillator with no attenuatinn free os. ‘llation:

mX+kx =0 (18)
The general solution is a cosine function:
x(t) = Acos(wt + 6) (19)

A simple mathematical method to analyze and track the ei.. 1y of narrowband signals is the nonlinear energy
tracking operator, referred to as “energy operator” and d- . “~< as w. For a continuous signal x(t), the definition of
energy operator is given by

v Ix(1)] = (?j 0 2O oy - xoxc @)

Substituting x(t) into the Eq. (20) yieldsy [x(t), - A"@", It can reflect and track changes in energy. The output

of the Teager energy operator is the product of the instantaneous amplitude of vibration and the square of the
instantaneous frequency. Compared with th: tradi. 2nal definition of energy, the product with the square of the
frequency is increased. Because the vibrativ. freque .cy of instantaneous impact is higher, the output of the Teager
energy operator can effectively enhance * ie instan.. 1eous impact composition.

4.2. Fitness function

As described in Section 2, thr | ~rformance of VMD susceptible to the total number of mode K, the secondary
penalty o, the updated step-size z, and thi. ~anvergence fault tolerance threshold &. Because the actual vibration signal
is complex and changeable, th~ . ‘evant parameters of VMD are often difficult to determine. It is found that the
performance of VMD in vit atior signal decomposition is mainly influenced by two key parameters: the total
number of modalities K and se. ~ .dary penalty a. Therefore, the VDCPIO optimization algorithm is used to search
the optimal combination v «lues ot~ and o of VMD. Before optimization, the PIO algorithm needs to determine a
suitable fitness function Ider 1y, thre VMD algorithm can decompose the complex vibration signals into a set of
IMFs that are strictly pairw.” - ortr ogonal. At the same time, the summation of these IMFs can accurately reconstruct
the original signal. F swever, . practical applications, the following conditions may be encountered. O There is
good orthogonality | atween € ch IMF, but the reconstruction error of the reconstructed signal is very large. The main
reasons for this are ..~ follov 5: when the value of a is low, the IMFs will capture additional “noise” information;
when the value .1 u is hign, the IMFs will lose some information. @ The accuracy of the reconstructed signal is
very high, but * 1e orthoy Hnality between the IMFs is very poor. The main reasons for this are as follows: the value of
K is low, which *=ads tc the lack of signal segmentation, that is, information coupling between the IMF is serious. It
is indicater that the uithogonality between the IMFs and the accuracy of signal reconstruction have some influence
on each oti.>r. I 1> upparent that using the orthogonality of IMFs or the reconstruction accuracy of the signal as
evaluation inu < of VMD performance cannot guarantee that the combined value of [K, «] of the VMD is optimal
because of the p: >blems mentioned above.

To address this problem, the ratio of Y Vitiuei ey 10 Vi is used as the fitness function of VDCPIO.
Its expression is given by



n
; . IMF
fitness,pepio = ZVMI (IMF(i), IMF(i+1)) N (21)
i=1

where Vy, is the mutual information of the reconstructed and original signals. The greatr ..~ value of mutual
information, the higher the precision of the reconstructed signal and the smaller the reconsuuction error.

ZLML’}"{MHD‘IMHM)) is the sum of the mutual information of each adjacent IMF The smaller the mutual

information, the smaller the correlation between the neighboring IMFs that is, the .. mbine." components of the
signal can be well decomposed into a single IMF. Mutual information is a non-par . “atric "4 non-linear measure
index in information theory, which can measure the correlation means to measure .nhe @ .iu.. > of information shared
between two variables. The measurement is not limited to a simple linear relationsn., but the nonlinear relationship
between variables can also be evaluated. Its expression is as follows:

P(X,y)
MI(x,y) = X, y)lg————— 22
00 =2, 2 PO oty @
where p(X, y) denotes joint distribution and p(x) and p(y) are margir al p’Joa ilities. If there is no overlapping
information between x and y, that is, x and y are independent, the mutiial 1...orma* on value is equal to 0. Conversely,
the higher the correlation between x and y, the closer the value of mutua, foriiation is to 1 [39].

Therefore, based on the above analysis, the ratio of Z::lvh}mf ~iyivrc. ) OV is used as the fitness function

of P1O. When ZLIVA'A':"(TMFU)',MF(M» is minimum an Vy, is maxime ™ that is, their ratio is minimal, the signal can

be correctly decomposed into a set of IMFs. Therefore, the . ~mpined value of [K, a] corresponding to the fitness
value at this time is optimal, which can ensure that the VMD has u.. hest decomposition performance.

4.3. Signal reconstruction based on kurtosis criterion

Large-scale, low-speed and heavy-load machinery ., ~rate. at large loads and very low rotational speeds. When
such machinery has an early fault, the energy of the sh.~k « >mponent that characterizes the fault in the vibration
signal is extremely sparse and weak. Thus, itis ve .*¥i~u." to directly analyze the spectrum of the vibration signal.
Therefore, the kurtosis criterion is used to reconsti.~t a new signal according to the original vibration signal.
Kurtosis reflects the numerical statistics of the distribution characteristics of the vibration signal, and it is a
dimensionless parameter of the normalized f .uiu. ~rder central moment and the description of the waveform peak
[40]. Its mathematical expression is given b

n
Z (X - ,U)4
K=2—0— (23)
No

where p is the mean value of the ‘anal X;, o is the standard deviation of the signal X;, and n is the length of the
signal.

When the vibration signal =~ many snock components, the corresponding kurtosis also increases significantly.
The greater the amount of sh’ ck, 1 ie greater the corresponding kurtosis. Thus, the sensitivity of kurtosis to shock
signals can be used to detect u. n Jportions or intensities of the shock components in IMF. In [41], the IMF with the
greatest kurtosis is selecter as the .. ~al analytical signal. However, the shock component that characterizes the fault
in the vibration signal is r ener ly distributed in different IMFs. Although the IMF with the greatest kurtosis contains
more shock components « - * aronr 2r shock components. But these shock components cannot fully characterize the
features of early faulte * large-. - ale, low-speed, and heavy-load machinery, such as the harmonic component formed
by the fault shockin . Morec ‘er, fault characteristic information, such as frequency doubling information, which is
present in other IMF ~ompon' nts, will be lost. Therefore, the average kurtosis of all IMFs is proposed as a screening
indicator in this ~ape.. T..¢ IMF components that do not contain or contain a very small number of shock
components ar elimir. *ed based on the average kurtosis. Then, a new signal with the greatest shock component
ratio or intensit ' is recor structed using the remaining IMF components.

4.4. Fault? *'v= extraction based on VDCPIO-based optimal VMD algorithm and Teager energy operator

Figure 9 .".ows the process of extracting fault features of the large-scale, low-speed and heavy-load machinery
based on VDCP1.)'s optimal VMD algorithm and Teager energy operator. The detailed steps are listed as follows:

(1) Obtain the original vibration signal, and enhance the impact component of the vibration signal by using the
Teager energy operator.

(2) Initialize the parameters of the variable dimension complex chaotic map, and determine the fitness



function in the optimization process.

(3) Initialize the parameters of the pigeon population, use the VMD parameter combiration [K, o] as the
individual position of the pigeon group, and use the 1D-LSCM to generate a certain ' 'mber of parameter
combinations [K, o] as the initial position and velocity of the individual pigeon group.

(4) Under the condition of different pigeon individual positions, perform the VMD r per. “ion of the signal and
calculate the corresponding fitness value of each pigeon position.

(5) Update the optimal values of the local optimum and population global by cor., 2ring .~ fitness value.

(6) Update the individual speed and position of pigeons by using formula (5).

(7) Repeat step 4 until the iteration number reaches the predefined set valur, and uu.>*1 the best fitness value
and pigeon individual position.

(8) After the optimization of the pigeon group is finished, a set of op*’.iial paran.ster combination [K, «] is
obtained. The combination value is used to set the parameters K, o of the VI 'D algon hm, and the optimized VMD
algorithm is used to process the early fault signal.

(9) The IMF component is filtered according to the average kurtos's, an”' . ~ most sensitive IMF component of
the fault feature is obtained.

(10) The average kurtosis of the IMF components is calculated, a. ' the «wIF component that is larger than the
average value is selected according to the average kurtosis.

(11) The filtrated IMF component is used to reconstruct the sign..” an<" the reconstructed signal is demodulated
by envelope demodulation. The corresponding envelope spectru.~ is obtained and matched with the fault
characteristic frequency to judge the fault type.
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Fig. 9. Fault diagnosis process based on VDCPIO's Teager-VMD
5. Simulation and comparative analysis

When pitting or defective faults occur in the bearings of large-scale, low-speed, and heavy-load machinery,



periodic shock signals will be produced because of collision between the parts. In the middle or late stage of the fault,
the fault frequency and its multiplier can be easily obtained using the traditional spectrum analysis because of the
large amplitude of the shock signal. However, in the early stages of the fault, the shock <.gnal of the fault is
extremely sparse and weak, which is easily overwhelmed by strong noise. It is difficult 0 . termine the fault
characteristic frequency by using the traditional method. The vibration signal collected bv the acce. :rometer will
reveal that the shock signal caused by the fault produces a sinusoidal signal with exponen’.al a ‘enuation. Therefore,
the vibration response caused by the simulated pulse is used as the fault signal of the be: ‘ing. and it is analyzed and
verified. It is defined as follows:

x(t) =s(t) +n(t)

s(t) =D Ah(t-iT -7,)

h(t) =e “sin(2z f t)

A =1+ A,sin(2z ft)
where x(t) is a shock simulation signal with noise, s(t) is a pure periodic shnck s, =~ n(t) is Gaussian white noise, T
is the average period of the pulse, 7;is the small fluctuation of the -th <.o ' relative to T, h(t) is a damped
exponential sinusoidal signal, C is the attenuation/damping coefficient, 1, s user’ to simulate the rotation frequency
of the drive shaft, f, is used to simulate the natural frequency of the sys.>m, ~y is the initial amplitude of the shock
signal, and A; is the amplitude of the shock signal after i-th damning. The: the fault signal of the bearing can be
simulated by setting the appropriate values for the relevant paramew ~ of tr 2 simulation signal. The parameters are
set as follows: C = 750, f, = 1 Hz, f, = 3000 Hz, Ay = 0.5. In a1ition, Ti,ner denotes the simulated characteristic
frequency of the bearing fault, and fiyer = 1/T = 8 Hz. The sianal-tn-1. ‘se ratio of x(t) is set to be -11 dB. f; is the

sampling frequency and is set as 12 kHz. L is the data length . * x(t) and is set to be 12000. The simulated signal for
the bearing fault is shown in Fig. 10.
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Fig. 10. Simulation signal of the fault of t+ . ... - ring of the bearing: (a) pure shock signal; (b) noisy shock signal.

As shown in Fig. 10, the amplitude f the pL se attenuation signal with noise is small, and it is basically
submerged in the noise, which can simulaw the weak vibration signal of the bearing's early fault. First, the
simulation signal is processed using the rad™*ionar EEMD, LMD, and VMD algorithms, and the parameters are set
(K =4; a =2000; = 0.3; ¢ = 1e-7) " aser on r :rsonal experience. Then, the corresponding envelope spectrum is
obtained, as shown in Fig. 11.
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Fig. 11. Envelo ¢ ;,(Je}ctrum of the fault simulation signal of the ir(mzer ring of the bearing based on:(a) VMD; (tg) )LMD; (c) EEMD.

It can be bserved rom Fig. 11 that, in the envelope spectrum based on the corresponding VMD, LMD, and
EEMD, the fau. char~ .teristic frequency (8 Hz) is completely submerged by other interference lines. Only the
second har—~nic frequency of the characteristic frequency of the simulated fault (16 Hz) in the envelope spectrum
obtained by VIV D s effectively extracted, and the spectral lines of the other two methods are almost completely
submerged by e other interference lines. The results indicate that when the signal-to-noise ratio of the signal is low,
which also mear.., the shock signal is very weak, the simulation signal cannot be directly processed using the above
signal method, and the characteristic frequency of the simulated fault cannot be effectively extracted.

The Teager energy operator is a nonlinear differential operator. The instantaneous value of the signal, as well as
the non-linear combination of its differential, are used to estimate the total energy needed to generate the dynamic



signal. It can enhance the transient characteristics of the signal, which also enhances the shock component of the
signal. For this reason, before processing the signal, we use the Teager energy operator to enhance the shock
components of the simulated signal in Fig. 12. Continue to use the standard VMD, LMD and ".EMD to process the
Teager energy signal is shown in Fig. 12. The corresponding envelope spectrum is shown in F"J. .°
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g. 12. Teager energy signal of the simulated signal of the fault of the * iner rinc of u1e bearing.
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Fig. 13. Envelope spectrum of the fault simulation signal of the bea: g ' ased on the Teager energy operator: (a) VMD; (b) LMD; (c)
EEMD.

Compared with the envelope spectrums shown in + 7. " and Fig. 13, it can be seen that the envelope spectrum
of the fault simulation signal of the bearing pretreated by .~ Teager energy operator, its fundamental frequency, and
the amplitude of the second harmonic frequency u. *he iawit feature are larger than the envelope spectrum of the
original simulation signal, and the frequency doubling . Mponent of the signal is richer. In addition, by comparing
and analyzing the envelope spectrums corresperding to EEMD, LMD, and VMD, it can be seen that the fundamental
frequency and amplitude of the second har nonic . -equency of the fault characteristic frequency obtained by the
VMD method are obviously larger than th. ~e obtair 2d by the EEMD method, and slightly larger than that of the
LMD method. Moreover, the multiple f equen.’~< obtained by the VMD method are more abundant than those
obtained by the LMD and EEMD metf uds. ~ herefore, analyzing and comparing the fault simulation signals proves
that the VMD method has a better p. fo .nanr : than the LMD and EEMD methods with respect to processing
vibration signals. However, it can br observ. ¥ rom Fig. 11 and Fig. 13 that there are still many interference lines in
the envelope spectrum obtained 'y *he VMD method. By analyzing the principle of VMD, we know that the
performance of VMD is closely ielated .. its parameters, especially K and «, which have the greatest influence on
VMD. Using a manual method .v . >t the combination value of [K, o] of VMD has some blindness and contingency;
hence, it is not possible to g1 «rant” 2 the best performance. Therefore, the VDCPIO algorithm is used to search the
optimal combination value of |, ~ «] of VMD. Then, an optimal VMD algorithm is obtained. The detailed steps are
described below:

(1) Input the simi- atior sigr il and use the Teager energy operator to enhance the shock component in the
signal.

(2) Initialize th. paramete. s of variable dimensional complex chaotic mappings, such as @ = 0.99, X;p = rand;
Xop=rand, and Yip : rand; t 2n, determine the fitness function fitnessypcpio in the optimization process.

(3) Initialize th, naran .ters of the pigeon populations, such as NCimax = 120, NComax = 80, Np = 30, D =10, S
=[2,4000], and . - 1D-LoCM;

(4) Use ne parar eter combination of VMD [K, «] as the pigeon's individual position. Use 1D-LSCM to
produce a certa.» numb r of parameter combination values of [K, «] to use these values as the initial position and
velocity of indiviauw. In the pigeon group. According to the standard deviation Stdsig.a Of the simulation signal, set
the updatin stey ... of the VMD algorithm as = 0.003 and the convergence fault-tolerant threshold value as ¢ =
le-7. Then, u.~ 2D-LSCM to update the position and speed of pigeon swarm individuals in the global search stage.
Finally, use 1D-. SCM to update the position of pigeon swarm individuals in the local search stage.

(5) Calculate the corresponding fitness value of each pigeon's position by VMD operation under different
position conditions of the pigeon. Then, compare the fitness values, and update the individual local optimal value
and the global optimum value of the population. Then, obtain a set of optimal combination value of [K, a].



According to the optimal combination value f [K, «], reset parameters K and « of VMD.
(6) Process the simulation signal by the optimized VMD algorithm and obtain a number of IMF components.

Then, reconstruct the new signal based on the average kurtosis of the IMFs to screen out the MF components that
are greater than the mean. Finally, analyze the envelope spectrum of the reconstructed signal.

(7) Compare the theoretical calculation value of the fault characteristic frequency of *".c ~imulation signal with
the spectral line in the envelope spectrum.

(8) Experimental validation.

Table 3 and Fig. 14(a) show the different intelligent optimization algorithms usc.' to search the optimal
parameter combination value of [K, a] of VMD. The results show that the propos 4 V1 ~PIO algorithm is superior
to other algorithms with respect to iteration times and convergence speed. Then, ti.. ap".mal combination value of [K,
o] obtained using the VDCPIO algorithm is used to reset the corresponding p»-~Teters ~¥ VMD, and the simulated
signal of the bearing fault is processed. The results are shown in Fig. 14(b). ™ ne ampi. ude of the fault characteristic
frequency (8 Hz) and the amplitude of the multiple frequencies (2X-8X) of the <pectr-. lines of fault features in Fig.
14(b) are greater than those in Fig. 13(a). Furthermore, the spectral 'ies are clearer and more prominent, and
interference lines are less. Therefore, we can conclude that the characte st frec Jency is extracted effectively, and
that the proposed method is more effective and has a better performan. -

Table 3

The iterations and fitness values are generated by using the different intelligen. ~timizati- n algorithms to search for the optimal
combination values of [K, a].

Parameters MelRNg
PSO P10 CQPSO VDCPIO
K, a] [6,1904] [7,2275] [9,2561] [12,3169]
Iterations 102 170 82 52
Minimum of fitness 0.2427 0.1 %4 0.1431 0.0627
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Fig. 14. Envelope spectrum of the 7 wlt s' aulation signal based on VDCPIQ's Teager-VMD algorithm: (a) search process of the optimal
combination value of [K, a] of VI.™ (F envelope spectrum of the reconstructed signal.

6 Analysis and comparis’ n of faulu.neasured signals

To further verify the . sctiv ness of the proposed method in practical fault diagnosis, the vibration signals of
low-speed and heavy-’..d mac. nery are simulated by controlling the load capacity and bearing speed of the fault
diagnosis test-platfo m, as st wn in Fig. 15.




Fig. 15. Rolling bearing fault test platform

The pitch diameter of the bearing of the test platform is 39.5 mm, the diameter of the rol' ag body is 7.5 mm,
the number of rolling bodies is 12, and the radial load force is 4000 N. The fault vibration <. nal of an inner ring
rotating at 60 rpm is collected under heavy load., and the sampling frequency is 10 kHz. The {eore. ~ally calculated
value of the fault characteristic frequency listed in Table 4.

Table 4
Theoretical calculation value of bearing fault characteristic frequency.
Speed(rpm) Characteristic frequency of in :rﬁg £ " (finer/Hz)
60 7.4

Now, we analyze the inner ring fault of the bearing. The fault signal of th- inner ring of the bearing inner ring is
processed by EEMD, LMD, and VMD, respectively, and the corresponding e velope s, ectrum is obtained, as shown
in Fig. 16. It can be observed from Fig. 16 that the spectrum lines of the faui. ~harar cristic frequencies (the actual
frequency is 7.17 Hz, slightly deviated from the theoretical calculation) ir ui¢ enveiupe spectrums obtained using the
standard EEMD, LMD, and VMD methods are almost submerged by o 1er i..en rence lines. The results show that
the frequency of the bearing fault cannot be extracted directly using the auuve sir 1al processing methods as the fault
signal of a bearing operating under a large load and low speed is weak. ““ereiure, the shock components in the fault
signal of the inner ring of the bearing are enhanced using the Teager energy « Jerator. Then, EEMD, LMD, and VMD
are used to process the enhanced fault signals, and the correspondin,, envel” pe spectrum was obtained, as shown in
Fig. 17. It can be seen from Fig. 17 that the amplitude of the env.'ape spectrums obtained by the standard EEMD,
LMD, and VMD methods are obviously increased, and the spectral lir.. ~ of the fault characteristic frequency can be
extracted effectively. In addition, the amplitude of the spectra, ‘ine of the fault characteristic frequency extracted by
the VMD method is the largest, and its interference spectral line 15 ~ignificantly less than those shown in Fig. 17(a)
and Fig. 17(b). The results show that the fusion method ba. 2u v, ' ~ Teager energy operator and VMD algorithm can
effectively extract the fault characteristic frequency of the ¥ ner ring of the bearing. However, there are several
interfering spectral lines in the spectrum envelope, anc ..~ faui. ~haracteristic frequency is not obvious.

In this case, the VDCPIO algorithm is used to searc™ ti.. 9ptimal combination value of [K, «] of VMD, and its
search steps are consistent with the search steps mr **~ned ,~ section 5. Except setting the updated step-size of VMD
in accordance with the standard deviation of the si,™al, ail the correlation parameters of chaotic mappings and
pigeon swarm optimization algorithm remain unchanged. i irst, the optimal combination value of [K, a] = [13, 2217]
is obtained, and the parameters of VMD are <... Then, VMD was used to process signal in Fig. 17(a). As the result,
13 IMF components (as shown in Fig. 18(a)" and the. ' corresponding kurtosis [15.8, 20.5, 21.0, 21.3, 22.1, 20.3, 22.5,
18.1,19.2, 22.0, 23.8, 21.9, 30.1] are obtaine." The 7 verage kurtosis is 21.4. The IMF components having a kurtosis
greater than the average kurtosis are selr cted to 1 unstruct a new signal (as shown in Fig. 18(b)), and the envelope
spectrum of the reconstructed signal 7., an7.yzec (as shown in Fig. 18(c)). It can be observed from the envelope
spectrum shown in Fig. 18(c) that this ni.*" od ¢ .n effectively extract not only the base frequency of the fault feature
frequency (7.17 Hz) but also the d .uble frey. ancy (14.34 Hz) and triple frequency (21.51 Hz) of the fault feature
frequency, and the interference sy .cu." line is obviously reduced. Therefore, the experimental results show that the
proposed method can effectivelv extract .ne early fault feature frequency of bearing under the low-speed and
heavy-load condition. It prov'ues 'n effective diagnosis basis for actual large-scale, low-speed, and heavy-load

machinery.
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7. Summary

In this paper, the Teager energy operatr. ana . “timal variable mode decomposition (VMD) are combined as a
hybrid method to extract the early fault fea 'res of la ge-scale, low-speed, and heavy-load machinery. The results of
the experiment and application demonstr7*e the . 'ne (ority of the proposed method. The conclusions are summarized
as follows:

(1) A variable dimensional logistic-s. *= ¢ mpo «te chaotic map method is proposed based on the logistic map and
sine map. It is used to solve the poblen. *he . PIO algorithm is prone to trip in the local optimal solution. The
experimental results indicate that 7. ~an effectively improve the global search ability and convergence speed of the
P10 algorithm. Then, the imprc.ed k1 algorithm is used to search the optimal combination value of the key
parameters [K, a] of the VMD .. ensure that the VMD algorithm can obtain the best performance adaptively. To
verify the effectiveness of thr pror ised optimal VMD method, the simulated signal of the bearing fault is further
decomposed by the optimal +"”J method, and the fault signal is reconstructed based on the average kurtosis
criterion. The experiment 4 results "dicate that the proposed optimal VMD method has better performance in
improving the signal-to-r vise " atio /SNR), and can extract fault feature frequency more efficiently.

(2) It should be noted the. e fe .ture signal of the early fault of large-scale, low-speed and heavy-load machinery
is extremely sparse ar .. .veak. 1. S may cause the VMD to misjudge the fault signals as “noise”, rather than properly
decomposing the fai it signai. into the corresponding IMF components. Using the Teager energy operator to directly
process the original ."anal, tk : shock components in the signal can be enhanced. This helps the VMD to reasonably
decompose the ~'. ck siy.als that characterize the fault features into the corresponding IMF components. The
experiment res (lts ana 3pplications indicate that the method combining the Teager energy operator and optimal
VMD has bette. nerforr ince and advantages in extracting the early fault features of this kind of machinery.

(3) In the actuar ., _.ation of large-scale, low-speed and heavy-load machinery, in addition to its low speed and
heavy loao, 't .. ~'~0 operate intermittently. In such cases, the validity of the proposed method is to be verified.
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*Highlights (f

Research highlights:

1. The proposed variable dimensional chaotic PIO algorithm (VDCPIO) is constructe . b ~d on the variable
dimensional composite chaotic mapping and the pigeon-inspired optimization (P1O) algo~~m. Compared with the
traditional PIO and PSO algorithm, it has better global searching ability and convergence sr -ed.

2. Compared with wavelet, EEMD, LMD, ITD and other signal processing n..*hods. Variational mode
decomposition (VMD) is more suitable for analyzing nonlinear and non-stationary * tbra '_ - signals. However, VMD’s
performance is greatly affected by the parameters [K, a]. The optimal VMD is obtai..* ",y using the VDCPIO algorithm
to search the optimal combination values of the parameters [K, «].

3. The feature signal of early fault of large-scale low-speed and heavy-lr=d n..~"* cry is extremely sparse and weak.
The Teager energy operator is used to enhance the shock components in the r .y, “al vibration signal, which helps the
optimal VMD method to properly decompose the weak shock sianair chare cerizing the fault feature into the
corresponding IMF components.

4. Compared with the traditional EEMD, LMD and VMD me.. ds. 11ie Teager-VMD method based on VDCPIO
parameter optimization, which has a distinct advantage in the f~~*'»~ == action of early fault of large-scale low-speed
and heavy-load machinery.



