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a b s t r a c t 

Unmanned aerial vehicle (UAV) flocking control with obstacle avoidance is a many- 

objective optimization problem for centralized algorithms. A UAV flocking distributed op- 

timization control frame is designed to render the many-objective optimization problem 

into a multi-objective optimization solved by a single UAV. For different objectives, two 

kinds of criteria are raised to guarantee flight safety: the hard constraints that must be 

satisfied and the soft ones that will be optimized. Considering the restrictions of on- 

board computing resources, multi-objective pigeon-inspired optimization (MPIO) is mod- 

ified based on the hierarchical learning behavior in pigeon flocks. On such a basis, a UAV 

distributed flocking control algorithm based on the modified MPIO is proposed to coordi- 

nate UAVs to fly in a stable formation under complex environments. Comparison experi- 

ments with basic MPIO and a modified non-dominated sorting genetic algorithm (NSGA-II) 

are carried out to show the feasibility, validity, and superiority of the proposed algorithm. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The unmanned aerial vehicle (UAV), an aircraft designed for missions that are too dull, dirty or dangerous for humans,

has attracted the widespread attention of researchers [3,20,25] . The future UAV will possess distributed autonomous airborne

abilities to complete a four-step loop independently [10] : observe, orient, decide, and act (OODA). The improvement of

distributed airborne abilities will trigger changes in future mission modes where small and smart UAVs will execute a task

in a group or a swarm [7,22,24] . A great number of problems exist in the course of the realization of the future mission

mode, such as how to coordinate a group of agents to move in a formation under complex obstacle environments [11,15] . 

In the literature, Wang et al. [28] presented a new dual-mode control strategy for navigation problems of UAVs flying in

a formation in an obstacle environment, and the time taken by the computations is a function of the number of UAVs on

collision paths. Saska [26] proposed a bio-inspired stabilization approach for control and navigation of large teams of UAVs

along a predefined path through a complex environment, and the UAV flocking is unsteady for lack of the strict velocity

alignment. Alonso-Mora et al. [1] realized multi-robot formation control among obstacles by a sophisticated algorithm based

on lots of local interaction information. In our previous work, a flocking control algorithm based on pigeon interaction mode
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switch behavior, which relies on the prior information of obstacles, is proposed to coordinate a heterogeneous UAV swarm

to fly through obstacle environments [23] . This paper aims to put forward a UAV flocking control algorithm, which can

form a stable formation among obstacles without depending on the number of UAVs, other information of neighbors except

positions and velocities, or prior information of environments. 

To implement the stable and collision-free collective motion of a UAVs swarm under obstacle environments, optimal

control decisions need to be made in the presence of many conflicting criteria [2,14] . These criteria depict trade-offs not only

between individual flocking control and obstacle avoidance control but also between individual control and other individual

control. Therefore, the UAV flocking centralized control problem with obstacle avoidance is a many-objective optimization

problem ( n · m objectives) where n is the number of UAVs and m is the number of objectives of each UAV. In this paper, a

distributed UAV flocking control optimization frame is designed to render the many-objective optimization problem into a

multi-objective optimization problem ( m objectives) to be solved by each UAV. The objectives of each UAV are summarized

as follows: 1) If obstacles are detected, pass through obstacles as soon as possible; If not, keep expected states; 2) Maintain

a presupposed distance with neighbors steadily; 3) Keep a safe distance with obstacles; 4) Avoid collisions with neighbors.

The above objectives are divided into soft constrains (1 and 2) and hard ones (3 and 4). Each UAV aims to minimize the

soft and satisfy the hard. However, considering the restrictions of onboard computing, the time requirement for the multi-

objective optimization algorithm computations is very strict. 

Pigeon-inspired optimization (PIO), a novel bio-inspired computing algorithm, was proposed by Duan and Qiao [8] .

Whether in image restoration [9] or UAV path planning [30] , PIO has proven its worth in mono-objective optimization

problems. However, the superiority of multi-objective pigeon-inspired optimization (MPIO) [21] is not apparent in multi-

objective optimization problems compared with the modified non-dominated sorting genetic algorithm (NSGA-II) [6,13,19] .

In this paper, a hierarchical learning behavior discovered in pigeon flocks [17,18] is adopted to modify the basic MPIO. By

the designed distributed UAV flocking control optimization frame and modified MPIO, a UAV distributed flocking control

algorithm is proposed to coordinate UAVs to fly in a stable formation under complex obstacle environments. 

The rest of the paper is organized as follows. Section 2 gives a brief review of the principle of basic PIO. After build-

ing the UAV model, self-propelled flocking model, and obstacle avoidance model, Section 3 formulates the multi-objective

optimization problem to be solved in this paper. Section 4 presents modified MPIO based on the hierarchical learning be-

havior in pigeon flocks. Section 5 proposes a distributed UAV flocking control algorithm with obstacle avoidance based on

the modified MPIO in Section 4 . Comparative simulation validations are elaborated in Section 6 , and our concluding remarks

are drawn in Section 7 . 

2. Pigeon-inspired optimization 

A pigeon can return to its loft over great distances by using three navigation tools: the sun [29] , the familiar visual

landmark [4] , and the earth’s magnetic field [16] . As the pigeon gradually moves to its loft, the effect of the sun and the

magnetic field on its navigation will decline progressively [12] . The pigeon will correct its route by known landmark image

messages or will follow other pigeons which are familiar with nearby landmarks. Inspired by the above pigeon navigation

behavior, PIO is proposed to provide a new approach to optimization problems [8] . In PIO, the position of each pigeon

and the loft represent the potential solution and the optimal solution to an optimization problem respectively. In other

words, the behavior of pigeon homing represents the convergence process of solutions to the global optimum. The map

and compass operator is presented to mimic the navigation effect of the sun and the magnetic field on pigeons, while the

landmark operator is raised to imitate the impact of familiar visual landmarks on the pigeon homing. PIO employs the two

independent operators to optimize feasible solutions to optimization problems. 

Consider N pigeons flying to their loft in a D -dimensional search space. The position X 

Nc 
i and velocity V 

Nc 
i of pigeon i

at iteration Nc is updated by the map and compass operator expressed in the following equation when iteration Nc is not

greater than the maximum iteration of the map and compass operator Nc 1 max : { 

V 

Nc 
i = e −R ·Nc · V 

Nc−1 
i + rand · ( X g − X 

Nc−1 
i ) 

X 

Nc 
i = X 

Nc−1 
i + V 

Nc 
i 

(1) 

where X 

Nc 
i , V 

Nc 
i , and the current global best position X g are D -dimensional vectors, i = 1 , 2 , . . . , N is the index of a pigeon, R

is the map and compass factor, and rand is a random number within [0,1]. 

When iteration Nc is within (N c 1 max , N c 2 max ] , the position X 

Nc 
i and velocity V 

Nc 
i of pigeon i at iteration Nc is updated by

the landmark operator expressed in the following equation where Nc 2 max is the maximum iteration of the landmark operator:

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

N = [ N/ 2 ] 

X 

Nc −1 
c e n t e r = 

∑ N 
i =1 X 

Nc −1 
i ·W ( X Nc −1 

i ) ∑ N 
i =1 W ( X Nc −1 

i ) 

X i 
Nc = X 

Nc −1 
i + rand ·

(
X center 

Nc −1 − X 

Nc −1 
i 

) (2) 
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where [] is the ceiling function, and the weighted average of positions X center is a D -dimensional vector. For maximum op-

timization problems, the weight W ( X 

Nc−1 
i 

) is defined as the cost function value f itness 
(
X 

Nc−1 
i 

)
. For minimum optimization

problems, the weight W ( X 

Nc−1 
i 

) is defined as 1 

f itness 
(
X nc−1 

i 

)
+ ε where ε is a constant. 

3. Problem formulation 

3.1. Unmanned aerial vehicle model 

Consider a swarm of n UAVs flying in a three-dimensional Euclidean space, and each UAV i has a position P i = ( x i , y i , h i )

in the inertial coordinate system, a horizontal airspeed V xy 
i , a yaw angle ψ 

i , and an altitude rate λi . In this paper, the

complete UAV model is composed of a first order Mach-hold autopilot model, a first order heading-hold autopilot model,

and a second order altitude-hold autopilot model. The model of UAV i is as the following equation [23] : ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ x i = V xy 
i cos ψ 

i 

˙ y i = V xy 
i sin ψ 

i 

˙ h 

i = λi 

˙ V 

i 
xy = 

1 
τv 

(V 

i 
xy _ c − V 

i ) 
˙ ψ 

i = 

1 
τψ 

(ψ 

i 
c − ψ 

i ) 

˙ λi = 

1 
τh 

(h 

i 
c − h 

i ) − 1 
τλ

λi 

(3)

where V i xy _ c , ψ 

i 
c , and h i c are the control inputs of UAV i ’s Mach-hold autopilot, heading-hold autopilot, and altitude-hold

autopilot respectively, and τ v , τψ 

, and ( τ h , τλ) are the time constants of the three autopilots respectively. The UAV motion

and autopilot saturation values considered in this paper are as follows: ⎧ ⎨ 

⎩ 

V xy _ min ≤ V 

i 
xy ≤ V xy _ max ∣∣ ˙ ψ 

i 
∣∣ ≤ n max g / V 

i 
xy 

λmin ≤ λi ≤ λmax 

(4)

where V xy _ max and λmax are the upper limits of the horizontal airspeed and altitude rate respectively, V xy _ min and λmin 

are the lower limits of the horizontal airspeed and altitude rate respectively, n max is the maximum lateral overload, and

g = 10 m / s 2 is the gravitational acceleration. 

3.2. Self-propelled flocking model 

During flocking flights of a UAV swarm, the desired flocking velocity vf i of UAV i is a function of the positions P 

j and

velocities v j = ( V xy 
j cos ψ 

j , V xy 
j sin ψ 

j , λ j ) of UAV j in the swarm where j = 1 , 2 , . . . , n [27] . In this paper, the desired flocking

velocity vf i is decoupled into the following horizontal- and vertical- directional equations: 

. 

v f i k = 

{
f f + f c + f a _ vn , k = 1 , 2 

K a _ h e ( h e − P i k ) + K v e 

(
v e k − v i 

k 

)
, k = 3 

(5)

where the horizontal directional equation, which consists of flocking geometry control component f f , collision avoidance

control component f c , and alignment control component f a _ vn , is designed to guarantee stable and collision-free collective

motion. The vertical directional equation is intended to control the UAV swarm to fly at an expected altitude, where K a _ h e is

the strength of the alignment with the scheduled altitude h e , K v e is the strength of the alignment with the expected vertical

velocity ve 3 , and ve is the anticipated velocity of flocking flight. 

The flocking geometry control component f f is as the following equation: 

f f = K f 

⎛ 

⎝ 

∑ 

j ∈ { d i j ≤R 1 
comm . } 

w 

j 
i 
( P j 

k 
− P i k ) 

(
1 −

(
R desire 

d i j 

)2 
)⎞ 

⎠ (6)

where K f is the strength of flocking control, d i j = 

√ (
x i − x j 

)2 + 

(
y i − y j 

)2 
is the horizontal distance between UAV i and j ,

R 1 comm . is the horizontal communication range, w 

j 
i 

is the influence weight of UAV j to UAV i , and R desire is the factor of

flocking geometry control. 

The collision avoidance control component f c is as the following equation: 

f c = K c 

∑ 

j ∈ { d i j ≤R 1 
lim } 

( 

1 ∣∣P i k − P j 
k 

∣∣ − 1 

R 

1 
lim 

) 2 (
P i k − P j 

k 

)∣∣P i k − P j 
k 

∣∣ (7)

where K c is the strength of collision avoidance control, and R 1 
lim 

is the maximum range of collision avoidance control. 
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Fig. 1. Obstacle avoidance model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The alignment control component f a _ vn is as the following equation: 

f a _ vn = K a _ vn 

⎛ 

⎝ 

∑ 

j ∈ { d i j ≤R 1 
comm . } 

w 

j 
i 
( v j 

l 
− v i l ) 

⎞ 

⎠ (8) 

where K a _ vn is the strength of the alignment with neighbors’ velocities. 

3.3. Obstacle avoidance model 

In this paper, the obstacle avoidance control is considered as a series of gap-aiming behaviors. For each time step, each

UAV attempts to move through the largest gap between obstacles. The procedure of the proposed obstacle avoidance control

model is as follows: 

Step 1 Identify the nearest obstacle: As shown in Fig. 1 , the horizontal attention zone Z i a of UAV i for obstacle avoidance

is a sector of radius R 2 comm . and central angle 2 θ lim 

, where R 2 comm . is the horizontal perception range and θ lim 

is the

field of view. The expected horizontal velocity direction is in the symmetrical center line of the horizontal attention

zone Z i a , where the angle between the horizontal velocity direction and the x axis of the inertial coordinate system

is yaw angle. If there is a point on an external envelope surface of obstacle j within the horizontal attention zone Z i a ,

the obstacle j will be detected by UAV i and the index of obstacle j will be saved in obstacle set A 

i 
o of UAV i , where

j = 1 , 2 , . . . , n o , n o is the number of obstacles, the distance between the envelope and obstacle j is R 2 
lim 

, and R 2 
lim 

is the

minimum allowable distance between UAVs and obstacles. The index of the nearest obstacle detected by UAV i is as

the following equation: 

Ind 1 i = arg min 

j∈ A i o 
(d i j 

o ) (9) 

where d 
i j 
o is the minimum distance between UAV i and obstacle j . 

Step 2 Identify the largest visual gap: To maximize clearance, UAV i will calculate the gap g j between obstacle Ind 1 
i 

and

obstacle j identified within the attention zone. The index of the obstacle corresponding to the largest visual gap is as

the following equation: 

Ind 2 i = argmax 
j∈ A i o 

( g j ) (10) 

Step 3 Calculate the desired velocity for obstacle avoidance: UAV i will select the symmetrical center line of the largest

visual gap g Ind 2 
i as the steering aim θm 

. If there is only one obstacle within the attention zone, the steering aim

θm 

= atan 

( 

obs 
Ind 1 

i 
2 

−y i 

obs 
Ind 1 

i 
1 

−x i 

) 

where ob s Ind 1 
i is the position of a point on the external envelope surface of obstacle Ind 1 

i 
, and

the point is the marginal point, closest to UAV i , of the projection of the envelope on the vertical direction of expected
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horizontal velocity. If there are no obstacles within the attention zone, the steering aim θm 

is the desired yaw angle

ψ m 

= atan( 
v e 2 
v e 1 

) . The desired obstacle avoidance velocity vo i for UAV i is as the following equation: 

v o 

i 
k = 

{
w 

i 
i ‖ 

v e 1 , 2 ‖ 

cos θm 

, k = 1 

w 

i 
i ‖ 

v e 1 , 2 ‖ 

sin θm 

, k = 2 

(11)

where w 

i 
i 

is the influence weight of obstacle avoidance judgement. 

3.4. Performance criteria 

In this paper, the criteria for UAV flocking control under obstacle environments are described in four objective functions.

If there are no obstacles within the attention zone, the first objective function Cost 1 i defines the degree of passage through

the obstacle environments by the projection of the horizontal position of UAV i on the expected horizontal velocity direction.

If not, the first objective function Cost 1 i describes the alignment degree with the expected horizontal velocity. The first

objective function Cost 1 i is defined as the following equation: 

Cost 1 i = 

{ 

− P i 1 , 2 ·v e 1 , 2 
‖ v e 1 , 2 ‖ , i f A 

i 
o � = ∅ ∣∣v e 1 − ˙ x i 

∣∣ + 

∣∣v e 2 − ˙ y i 
∣∣, i f A 

i 
o = ∅ 

(12)

The second objective function Cost 2 i depicts the quality of UAV flocking and the alignment degree with neighbors’ veloc-

ities, which is expressed in the following equation: 

Cost i 
2 = 

∑ 

j ∈ { d i j ≤R 1 
comm . } 

(
f 1 
∣∣R desire − d i j 

∣∣ + f 2 
(∣∣ ˙ x j − ˙ x i 

∣∣ + 

∣∣ ˙ y j − ˙ y i 
∣∣)) (13)

where f 1 and f 2 are the weight of the alignment degree with the desired flocking geometry and neighbors’ velocities respec-

tively. 

The above two objective functions are soft constrains, while the next two objective functions are hard ones that the UAV

must fulfill. The third objective function Cost 3 i shown in the following equation represents the quality of obstacle avoidance

control: 

Cost 3 i = 

{
1 , if ∃ d i j 

o ≤ R 

2 
lim 

0 , if ∀ d i j 
o > R 

2 
lim 

(14)

where j = 1 , 2 , . . . , n o . 

The fourth objective function Cost 4 i expressed in the following equation portrays the quality of collision avoidance con-

trol: 

Cost 4 i = 

{
1 , if ∃ d i j ≤ R 

1 
lim 

0 , if ∀ d i j > R 

1 
lim 

(15)

where j = 1 , 2 , . . . , n . 

Integrating the above models, the UAV flocking control problem under obstacle environments is transformed into finding

an influence weight vector w i of UAV i which satisfies the following conditions: 

(1) Minimize the soft constrains: 

min f itness = [ Cost 1 i , Cost 2 i ] (16)

(2) Satisfy the hard constrains: {
Cost 3 i = 0 

Cost 4 i = 0 

(17)

4. Multi-objective pigeon-inspired optimization based on hierarchical learning 

To solve the UAV flocking control problem under obstacle environments described by Eqs. (16) and (17) , modified MPIO

is proposed, where a hierarchical learning behavior is introduced to improve the capability of the proposed algorithm. 

By analyzing the flight data gathered by miniature GPS during multiple pigeon flocking flights, a hierarchical network

was discovered in the in-flight leader-follower relations of pigeons [17,18] . In a pigeon flock, except the general leader whose

motion will not be influenced by the other pigeon, each pigeon has its rank in the hierarchy. During the flight, pigeons will

attempt to follow the ones in upper ranks and lead the ones in lower ranks. The leadership hierarchy is hypothesized to be

the result of feedback between learning and competence [5] . 

Inspired by the hierarchical learning in pigeon flocks, modified MPIO is proposed. In the basic PIO, all the pigeons will

correct their positions X 

Nc based on the sun and magnetic field described by the current global best position X g , and the
i 
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Fig. 2. Modified multi-objective pigeon-inspired optimization. 

 

 

 

 

 

 

 

 

 

 

landmark image preview message specified by the weighted average of positions X center . In the modified MPIO, pigeons are

split into two roles: One is the general leader (pigeon i 1 as shown in Fig. 2 ) and the other is the ordinary follower (pigeon

i 2 as shown in Fig. 2 ). By the non-dominated sorting in Pareto sorting scheme, all the pigeons will be divided into different

sets: first frontier S 1 (Pareto frontier), second frontier S 2 , and so on. The crowded-comparison operator will continue to sort

the pigeons in each set. As a result, a sequence of pigeons in descending order will be generated by the Pareto sorting

scheme, and the sequence number N 

i 
o of pigeon i is its rank in the hierarchy. The pigeons with rank N 

i 
o ≤ [ p l · N ] will be

regarded as general leaders, which are supposed to fly based on the map and compass operator and the landmark operator,

and update their states by the current global best position X g and the weighted average of positions X center , where p l is

the percentage of general leaders in the pigeon flock. The other pigeons will be regarded as ordinary followers, which are

supposed to learn the pigeons in the upper ranks (pigeon i 3 and i 4 as shown in Fig. 2 ) by copying their positions. The

pseudocode of the modified MPIO is shown below: 
Algorithm Modified MPIO. 

Input: function to be optimized Cost 

dimension of search space D 

upper bound of positions X U 
lower bound of positions X L 
upper bound of velocities V U 
lower bound of velocities V L 
number of pigeons N 

maximum iteration Nc 3 max 

map and compass factor R 

transition factor f t 
reduced number of pigeons at each iteration N d 
percentage of general leaders in the pigeon flock p l 
learning error e 

learning strength s l 
Initialization: positions of pigeons X 1 

velocities of pigeons V 1 

iteration Nc ← 1 

Calculate objective function value Cost 

1: For Nc = 1 → Nc 3 max Do 

2: Sort positions X Nc by Pareto sorting 

3: Calculate landmark X center 
Nc by Eqs. (18) 

4: historical information set A ← { A, S 1 } 

5: Sort A by Pareto sorting 

6: A ← S A 1 

7: Calculate current global best position X g 
8: N c ← N c + 1 

9: For i = 1 → N Do 

10: If N i o ≤ [ p l · N ] Then 

( continued on next page ) 
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11: Calculate velocity V Nc 
i by Eqs. (19) 

12: Calculate position X Nc 
i by Eqs. (20) 

13: Else 

14: For k = 1 → s l Do 

15: Calculate position X Nc 
i by Eqs. (21) 

16: End For 

17: End If 

18: Calculate objective function value Cost i 
19: If X Nc−1 

i ≺ X Nc 
i Then 

20: X Nc 
i = X Nc−1 

i 

21: End If 

22: End For 

23: If N c ≤ N c 3 max Then 

24: If N − N d ≤ N i o ≤ N Then 

25: X Nc 
i ← Null 

26: End If 

27: number of pigeons N ← N − N d 
28: End If 

29: End For 

30: Sort positions X Nc by Pareto sorting 

31: Return Pareto frontier S 1 . 

The specific steps of the modified MPIO are as follows: 

Initialization: Initialize the positions X 

1 and velocities V 

1 of N pigeons within a D -dimensional search space. The upper

bound and lower bound of the position X is X U and X L respectively. The upper bound and lower bound of the velocity V is

V U and V L respectively. Calculate the objective function values Cost of all the pigeons. The maximum iteration is Nc 3 max . The

current iteration Nc = 1 . 

Step 1: Rank the pigeons’ positions X 

Nc by Pareto sorting scheme. The Pareto frontier S 1 and rank N 

i 
o of pigeon i are

generated. Then obtain the landmark X center 
Nc by the following equation: 

X center 
Nc = 

n X ∑ 

i =1 

X i 

n X 

(18)

where n X is the number of positions in the Pareto frontier S 1 . 

Step 2: The Pareto frontier S 1 will be saved in a historical information set A . Rank all the positions saved in set A and

obtain the Pareto frontier S A 
1 

. Empty set A and put the positions X 

A 
i in Pareto frontier S A 

1 
into set A , where i = 1 , 2 , . . . , n A and

n A is the number of positions in the Pareto frontier S A 
1 

. Randomly select a position in the Pareto frontier S A 
1 

as the current

global best position X g . 

Step 3: The current iteration N c = N c + 1 . 

Step 4: If pigeon i ’s rank N 

i 
o ≤ [ p l · N ] where p l is the percentage of general leaders in the pigeon flock, update velocity

 

Nc 
i by the following equation: 

V 

Nc 
i = e −R ·Nc · V 

Nc−1 
i + ran d 1 · f t (1 − lg 

Nc 
Nc 3 max 

)( X g − X 

Nc−1 
i ) 

+ ran d 2 · f t · lg 
Nc 
Nc 3 max 

( X center 
Nc−1 − X 

Nc−1 
i ) (19)

where R is the map and compass factor, rand 1 and rand 2 are random numbers within [0,1], and f t is the transition factor

from the map and compass operator to the landmark operator. Then update position X 

Nc 
i by the following equation: 

X 

Nc 
i = X 

Nc−1 
i + 

⎧ ⎨ 

⎩ 

V U 
i 
, i f V 

Nc 
i > V 

i 
U 

V 

Nc 
i , i f V L 

i ≤ V 

Nc 
i ≤ V U 

i 

V L 
i 
, i f V 

Nc 
i < V L 

i 

(20)

Then revise velocity X 

Nc 
i within range [ X L 

i , X U 
i ]. 

If pigeon i ’s rank N 

i 
o > [ p l · N ] , learn the pigeon in upper ranks by the following equation: 

X 

Nc 
i ( d ∗) = X 

Nc−1 
j ( d ∗) + e · rand (21)

where d ∗ = [ rand · D ] is the index of dimension for learning, j is the index of the pigeon to be learned which satisfies that

N 

j 
o = [ rand ·

(
N 

i 
o − 1 

)
] , and e is the learning error. The above learning process will repeat s l times, where s l is the learning

strength. 

Step 5: Calculate objective function value Cost i of each pigeon. If X 

Nc−1 
i 

dominates X 

Nc 
i (i.e., X 

Nc−1 
i 

≺ X 

Nc 
i ), X 

Nc 
i = X 

Nc−1 
i 

. 

Step 6: If current iteration N c ≤ N c 3 max , delete the pigeons which satisfy that rank N 

i 
o ∈ [ N − N d + 1 , N] , the number of

pigeons N = N − N d , and return to Step 1 , where N d is the reduced number of pigeons at each iteration. Otherwise, rank the

pigeons’ positions X 

Nc by Pareto sorting scheme and output the Pareto frontier S 1 . 

As shown in the pseudocode, it is evident that the time complexity of the modified MPIO mainly lies in the hierarchical

learning operation regardless of the Pareto sorting operation. The time complexity of the hierarchical learning operation is
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Fig. 3. UAV flocking control algorithm with obstacle avoidance. 

 

 

 

 

 

 

 

O ( s l N ) in each iteration, while the Pareto sorting operation is O ( mN 

2 ), where m is the number of the objective functions.

Due to that s l < mN , the time complexity of the modified MPIO is shown as the following equation: 

T = 

Nc 3 max ∑ 

Nc=1 

O 

(
m N 

2 
)

= 

Nc 3 max ∑ 

Nc=1 

O 

(
m ( N − N d ( Nc − 1 ) ) 

2 
)

= O 

( 

m 

( 

N c 3 max N 

2 + 

N c 3 max 

(
N c 3 max − 1 

)(
2 N c 3 max − 1 

)
( N d ) 

2 

6 

− N c 3 max 

(
N c 3 max − 1 

)
N d N 

) ) 

= O 

( 

mN c 3 max 

( 

N 

2 + 

(
N c 3 max 

)2 
( N d ) 

2 

3 

− N c 3 max N d N 

) ) 

(22) 

Considering that N − N d 

(
Nc 3 max − 1 

)
> 0 and N d > 0, Eqs. (22) can be expressed as the following equation: 

T < O 

⎛ 

⎜ ⎝ 

mN c 3 max 

⎛ 

⎜ ⎝ 

N 

2 + 

(
N c 3 max 

)2 
(

N 
Nc 3 max −1 

)2 

3 

⎞ 

⎟ ⎠ 

⎞ 

⎟ ⎠ 

= O 

(
mN c 3 max 

(
N 

2 + 

N 

2 

3 

))

= O 

(
mN c 3 max N 

2 
)

(23) 

The time complexity of NSGA-II is O ( mItr max Num 

2 ), where Num and Itr max are the number of population and the max-

imum iteration respectively. Under the same initial condition that Nc 3 max = It r max and N = Num, the time complexity of the

modified MPIO is strictly less than the time complexity of NSGA-II. 

5. UAV distributed flocking control algorithm with obstacle avoidance based on modified multi-objective 

pigeon-inspired optimization 

By integrating the above models, a UAV distributed control algorithm based on the modified MPIO is proposed to co-

ordinate a UAV swarm to pass through obstacle environments. The distributed UAV flocking control optimization frame

designed in this paper is shown in Fig. 3 . The UAV flocking with obstacle avoidance is decoupled into the behavior con-

trol of horizontal- and vertical- channels. The control algorithm in the vertical channel is described as the alignment with
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the expected altitude and vertical velocity. In the horizontal channel, the designed control algorithm is composed of two

parts: One is the flocking control based on the neighbors’ states gained by distributed communication, and the other is the

obstacle avoidance control based on the real-time perceived obstacle information. The outputs of the flocking control and

obstacle avoidance control are integrated by a solver to obtain the control inputs of the Mach-hold autopilot and heading-

hold autopilot. The modified MPIO is applied to assist each UAV in seeking an influence weight vector w i which satisfies

the conditions expressed in Eqs. (16) and (17) . As a result, the stable and collision-free collective motion of a UAV swarm

under obstacle environments will be guaranteed. The proposed UAV distributed flocking control algorithm under obstacle

environments based on the modified MPIO is implemented as the following specific steps: 

Step 1: The initial states of n UAVs, including position P i = ( x i , y i , h i ) , horizontal airspeed V xy 
i , yaw angle ψ 

i , altitude

rate λi , and influence weight vector w i are generated, where i = 1 , 2 , . . . , n is the UAV index. Current simulation time

t = 0 . 

Step 2: i = 1 . 

Step 3: Calculate desired flocking acceleration 

. 

v f i by the self-propelled flocking model in Section 3.2 . Calculate desired

velocity for obstacle avoidance vo i by the obstacle avoidance model in Section 3.3 . 

Step 4: Initialize the positions X 

1 of N pigeons within a n -dimensional search space. The upper bound X U 
i ′ and lower

bound X L 
i ′ of the position X is 1 and 0 respectively, where i ′ is the index of pigeons. Calculate the objective function

values Cost of all the pigeons by Eqs. (12) –(15) . The current iteration Nc = 1 . 

Step 5: Conduct Steps 1–3 in Section 4 . It’s important to note that only the two objective function values that correspond

to soft constrains (i.e., Cost 1 and Cost 2 ) are involved in the crowded-comparison operation. 

Step 6: i ′ = 1 . 

Step 7: Conduct Step 4 in Section 4 . Then calculate the objective function value Cos t i ′ of pigeon i ′ by Eqs. (12) –(15) . If

the position X 

Nc 
i ′ fails to meet the hard constrains (i.e., Cost 3 i ′ = 1 or Cost 4 i ′ = 1 ), the position X 

Nc 
i ′ of pigeon i ′ will be

recreated within the search space. If X 

Nc−1 
i ′ dominates X 

Nc 
i ′ (i.e., X 

Nc−1 
i ′ ≺ X 

Nc 
i ′ ), X 

Nc 
i ′ = X 

Nc−1 
i ′ . 

Step 8: If i ′ = N, go to Step 9 , otherwise i ′ = i ′ + 1 , and then go to Step 7 . 

Step 9: If current iteration N c ≤ N c 3 max , delete the pigeons which satisfy that rank N 

i 
o ∈ [ N − N d + 1 , N] , the number of

pigeons N = N − N d , and return to Step 5 . Otherwise, rank the pigeons’ positions X 

Nc by Pareto sorting scheme. 

Step 10: The influence weight vector w i = X 

Nc 
i ∗ , and the index i ∗ is as the following equation: 

i ∗= arg min 

j 

( Cost 2 j ) (24)

where j is the index of pigeons in Pareto frontier S 1 . 

Step 11: Calculate control input u 

i by the following equation: 

u 

i 
l = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

. 

v f i 1 +( v o 

i 
1 − v i 1 ) . 

v f i 2 +( v o 

i 
2 − v i 2 ) . 

v f i 3 

(25)

If the control input 
∣∣u i 

l 

∣∣ < u lim 

, u 

i 
l 
= 0 , where l = 1 , 2 , 3 and u lim 

is dead zone threshold of control inputs. Calculate

the control inputs of UAV i ’s autopilots (V i xy _ c , ψ 

i 
c , h 

i 
c ) by the following equation: ⎧ ⎨ 

⎩ 

V 

i 
xy _ c = τv ( u 

i 
1 cos ψ 

i + u 

i 
2 sin ψ 

i ) + V 

i 
xy 

ψ 

i 
c = 

τψ 

V i xy 
( u 

i 
2 cos ψ 

i − u 

i 
1 sin ψ 

i ) + ψ 

i 

h 

i 
c = h 

i + 

τh 

τλ
λ + τh u 

i 
3 

(26)

If 
∣∣V i xy _ c − ‖ v e 1 , 2 ‖ 

∣∣ < V lim 

xy _ c , V i xy _ c = ‖ v e 1 , 2 ‖ . If 
∣∣ψ 

i 
c − ψ m 

∣∣ < ψ 

lim 

c , ψ 

i 
c = ψ m 

. V lim 

xy _ c and ψ 

lim 

c are the allowable control

errors. Then Calculate the UAV states at next time by Eq. (3) . 

Step 12: If i = n, go to Step 13 , otherwise i = i + 1 , and then go to Step 3 . 

Step 13: If t < T max , t = t + ts and then go to Step 2 , where ts is the sampling time and T max is the maximum simulation

time. 

Step 14: Output the states of n UAVs. 

6. Comparative simulation results 

To validate the feasibility and effectiveness of the proposed UAV distributed flocking control algorithm with obstacle

avoidance based on the modified MPIO, five small UAVs (fixed or rotatory wings) are disposed to fly in a formation through

a complicated scenario with obstacles. It is important to note that the proposed UAV distributed flocking control algorithm

does not only apply to small UAVs. 

The initial positions of the UAVs are shown in Table 1 , and other initial states of the UAVs are as follows: The horizontal

airspeed V i xy = 10 m/s, yaw angle ψ 

i = 0 rad, and altitude rate λi = 0 m/s. In the motion space of the UAVs, six 100-meter-

high obstacles exist with the parameters shown in Table 1 , where (x 
j 
o , y 

j 
o ) and R 

j 
o are the position and radius of obstacle j
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Table 1 

Initial parameters of the UAVs and obstacles. 

i x i ( m ) y i ( m ) h i ( m ) 

UAV 1 14.6929 107.3676 6 8.16 82 

2 21.2809 116.6406 34.8423 

3 20.3911 113.6529 24.6351 

4 3.5699 108.9509 96.377 

5 10.2116 111.558 30.1431 

j x j o (m ) y j o (m ) R j o (m ) 

Obstacle 1 120 120 5 

2 240 75 5 

3 350 40 5 

4 240 155 5 

5 360 110 5 

6 350 180 5 

Table 2 

Parameters of modified MPIO, MPIO and NSGA-II. 

Algorithm Variable Description Value 

Modified MPIO/MPIO N Number of pigeons 58 

Nc 3 max Maximum iteration 20 

N d Reduced number of pigeons at each iteration 2 

V U 
i Upper bound of velocities 0.05 

V L 
i Lower bound of velocities −0.05 

R Map and compass factor 0.3 

f t Transition factor 3 

p l Percentage of general leaders 0.9 

e Learning error 0.01 

s l Learning strength 2 

NSGA-II Num Number of population 20 

Itr max Maximum iteration 20 

S pool Size of a mating pool after tournament selection 25 

S tour Size of the tournament 2 

ηc Crossover distribution index 20 

ηm Mutation distribution index 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

respectively. The parameters of the UAV model are as follows: The time constants of the three autopilots τ V , τ ψ 

, and ( τ h ,

τ λ ) are 1 s, 0.75 s, and (1 s, 0.3 s) respectively, the upper limits of the horizontal airspeed V xy _ max , altitude rate λmax , and

lateral overload n max are 15 m/s, 5 m/s, and 10 g respectively, and the lower limits of the horizontal airspeed V xy _ min and

altitude rate λmin are 5 m/s and −5 m/s respectively. 

The simulation is conducted according to the specific steps of the proposed UAV distributed flocking control algorithm

with obstacle avoidance based on the modified MPIO in Section 5 , where the maximum simulation time T max = 49 . 5 s, the

sampling time ts = 0 . 5 s and the initial influence weight vector w i = [ 1,1,1,1,1 ]. The parameters of the self-propelled flocking

model are as follows: The expected altitude h e = 50 m, the expected velocity of flocking flight v e = [ 10,0,0 ] m/s , the horizontal

communication range R 1 comm . = 20 m, the maximum range of collision avoidance control R 1 
lim 

= 2 m, the factor of flocking

geometry control R desire = 10 m, the strength of the alignment K a _ h e , K v e , K f , and K a _ vn are 30, 10, 0.1, and 0.1 respectively,

and the strength of collision avoidance control K c = 10 0,0 0 0. The parameters of the obstacle avoidance model are as follows:

The horizontal perception range R 2 comm . = 105 m, the field of view θlim 

= 

π
2 , and the minimum allowable distance between

UAVs and obstacles R 2 
lim 

= 10 m . The weight f 1 and f 2 in the second objective function are both 1. The parameters of the

modified MPIO are shown in Table 2 . The dead zone threshold of control inputs u lim 

= 0 . 25 m/s 2 . The allowable control

errors V lim 

xy _ c and ψ 

lim 

c are 0.25 m/s and 0.1 rad respectively. 

Fig. 4 depicts the detailed results of the 5 UAV distributed flocking flight under obstacle environments, in which (a)–

(g) describe three-dimensional flocking trajectories, flocking trajectories in a top-down view, the number of obstacles in

obstacle sets, altitudes, horizontal airspeeds, yaw angles, and altitude rates of the UAVs respectively. As shown in Fig. 4 (a)

and (b), the UAVs can fly safely through the obstacle environment in a stable formation without collision. As shown in

Fig. 4 (b), according to the detected obstacles, the regions passed by the UAVs could be divided into nine parts. The number

of obstacles that can be identified in Regions I-IX are 1, 2, 1, 2, 3, 4, 2, 3, and 1 respectively, and the indexes of the obstacles

are 1, (1, 2), 2, (2, 4), (2, 4, 5), (2, 4, 5, 6), (5, 6), (3, 5, 6), and 5 respectively. As shown in Fig. 4 (c), the main regions among

nine parts are Region I, IV, and VIII. At about 14.5 s, all the UAVs entered Region IV and will attempt to move through the

gap between obstacles 2 and 4. At about 27 s, all the UAVs entered Region VIII and will attempt to move through the gap

between obstacles 5 and 6. At about 39s, all the UAVs have passed all the obstacles. As shown in Fig. 4 (d) and (g), the

altitudes and altitude rates converge to expected altitude h e and 0 m/s at about 10 s. As shown in Fig. 4 (e) and (f), the
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(a) Flocking trajectories (b) Flocking trajectories in a top-down view
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(e) Horizontal airspeeds of UAVs
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(f) Yaw angles of UAVs
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Fig. 4. UAV flocking flight based on the modified MPIO. 
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(a) Flocking trajectories in a top-

down view (MPIO)
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(b) The number of obstacles detected by

each UAV (MPIO)
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(c) Horizontal airspeeds of UAVs
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(d) Yaw angles of UAVs (MPIO) (e) Flocking trajectories in a top-down

view (NSGA-II)

0 5 10 15 20 25 30 35 40 45 50

1

2

3

4

5

1

1

1

1

1

2

2

2

2

2

1

1

2

2

1

1

2

2

3

3

3

4

4

4

3

3

2

2

2

4

4

3

3

2

2

3

3

3

1

1

1

0

1

0

0

1

0

0

t(s)

(f) The number of obstacles detected by

each UAV (NSGA-II)

0 10 20 30 40 50
7

7.5

8

8.5

9

9.5

10

10.5

t(s)

V
(m
/s
) UAV 1

UAV 2
UAV 3
UAV 4
UAV 5

(g) Horizontal airspeeds of UAVs

(NSGA-II)
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 (h) Yaw angles of UAVs (NSGA-II)

Fig. 5. UAV flocking flight based on MPIO and NSGA-II. 
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Fig. 6. Objective functions of modified MPIO, MPIO and NSGA-II. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

horizontal airspeeds and yaw angles converge to the corresponding expected states after fluctuations within the allowable

range at about 46 s and 41.5 s respectively. 

To further validate the superiority of the modified MPIO, the UAV flocking simulation based on the basic MPIO [21] and

NSGA-II [6] was conducted with the same initial condition and parameter configuration. The parameters of the basic MPIO

and NSGA-II are shown in Table 2 . To guarantee the fairness and validity of comparisons, the same calculation times of

objective functions and the same number of final solutions are required, which is expressed in the following equation: {
N · Nc 3 max −

N c 3 max ( N c 3 max −1 ) 
2 

N d = Num · It r max 

N − N d 

(
Nc 3 max − 1 

)
= Num 

(27)

Fig. 5 illustrates the detailed results of the distributed flocking flight of the UAVs based on the basic MPIO and NSGA-II

where (a)–(d) describe the flocking trajectories in a top-down view, the number of obstacles in obstacle sets, horizontal

airspeeds, and yaw angles of basic MPIO respectively, and (e)–(h) depict the flocking trajectories in a top-down view, the

number of obstacles in obstacle sets, horizontal airspeeds, and yaw angles of NSGA-II respectively. It is important to note

that the optimization algorithm is only applied to the horizontal control panel. As a result, the curves of altitudes and

altitude rates for three optimization algorithms are identical. As shown in Fig. 5 (a) and (e), after passing through Region I

where only obstacle 1 can be detected, the UAVs based on the modified MPIO are always in front of the UAVs based on

the other two optimization algorithms. As shown in Fig. 5 (b) and (f), all the UAVs based on the basic MPIO and NSGA-II,

entered Region IV at about 16 s and 15 s respectively, entered Region VIII at about 28.5 s, and passed all the obstacles

at about 40.5 s and 40 s respectively. It’s important to note that UAV 1 based on the basic MPIO was in a region where

obstacles 2–6 can be detected from 27 to 27.5 s, which results in the short strip in Fig. 5 (b) that represents that the number

of obstacles detected by UAV 1 is 5. As shown in Fig. 5 (c) and (g), the UAV horizontal airspeeds based on the basic MPIO

did not converge, and the convergence time of the UAV horizontal airspeeds based on NSGA-II is 48s and is longer than the

modified MPIO. As shown in Fig. 5 (d) and (h), the convergence time of the UAV yaw angles based on the basic MPIO and
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NSGA-III are about 46 s and 41.5 s respectively. The modified MPIO yielded better performance than the basic MPIO and

had very competitive performance when compared with NSGA-II. The superiority of the modified MPIO is also corroborated

in the curves of the cost functions corresponding to the soft constrains. The time corresponding to the lowest point of the

sum of the first objective function 

∑ 

i Cost 1 i is the time after which the first UAV will pass all the obstacles. The time, at

which 

∑ 

i Cost 1 i has stopped the rise, is the time before which the last UAV has passed all the obstacles. On the base of the

roughly same flocking quality (as shown in Fig. 6 (b)), the UAVs based on the modified MPIO are the fastest through all the

obstacles (as shown in Fig. 6 (a)). As shown in Fig. 6 (b), after all the UAVs have passed all the obstacles, the modified MPIO

exceeds the basic MPIO and NSGA-II by slightly good performance in flocking quality. 

To sum up, the UAVs are capable of coordinating themselves to fly through complex obstacle environments in a stable

and collision-free flocking formation by means of the proposed UAV distributed flocking control algorithm based on the

modified MPIO. Compared with the basic MPIO and NSGA-II, the modified MPIO, which has better Pareto frontier under the

condition of small population size and few iterations, is more suitable to solve the multi-objective optimization problem

designed for UAV flocking and obstacle avoidance coordination control. 

7. Conclusions 

This paper designed a distributed optimization control frame to transform UAV flocking control to a multi-objective op-

timization problem. Besides, modified MPIO is presented to assist each UAV in solving the multi-objective optimization

problem. By integrating the frame and modified MPIO, a UAV flocking control algorithm is proposed to coordinate UAVs to

fly in a stale formation through complex environments, which is verified in a simulation case of small UAVs. The proposed

UAV flocking control algorithm has the following advantages: 

(1) The algorithm is proposed based on a distributed UAV flocking control optimization frame to assist a single UAV in

solving a multi-objective optimization problem. Therefore, the distributed algorithm does not depend on the number

of UAVs. 

(2) In the algorithm, the neighbors’ states are only used in the flocking control. Since the desired flocking velocity of the

flocking control is a function of the positions and velocities of neighbors, the algorithm does not depend on other

information of neighbors except positions and velocities. 

(3) In the algorithm, the obstacle avoidance control is implemented by real-time obstacle perception. In another word,

the algorithm does not depend on prior information of environments. 

However, some deficiencies also exist in this paper: (1) The convergence analysis of the modified MPIO is lacking; (2)

Since the control algorithm is distributed, deadlocks may still occur; (3) The simulation tests for emergency conditions and

dynamic obstacles remain to be conducted. In the future, we will focus on the improvement of the distributed flocking

control algorithm and the validation on UAV platforms. 
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