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Pigeon-inspired optimization and
lateral inhibition for image matching
of autonomous aerial refueling

Yongbin Sun and Haibin Duan

Abstract

Autonomous aerial refueling (AAR) is an essential application of unmanned aerial vehicles for both military and civilian

domains. In this paper, a hybrid algorithm of the pigeon-inspired optimization (PIO) and lateral inhibition (LI), called

LI-PIO, is proposed for image matching problem of AAR. LI is adopted for image pre-processing to enhance the edges

and contrast of images. PIO, inspired from the homing characteristics of pigeons, is a novel bio-inspired swarm

intelligence algorithm. To demonstrate the effectiveness and feasibility of our proposed algorithm, we make extensive

comparative experiments with particle swarm optimization (PSO), particle swarm optimization based on lateral inhib-

ition (LI-PSO), and PIO. It can be concluded from the experimental results that our proposed LI-PIO has excellent

performances for image matching problem of AAR, especially in convergent rate and computation speed.
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Introduction

Aerial refueling1,2 is an effective method of increasing
the endurance and range of aircrafts. In recent dec-
ades, with the progress of unmanned aerial vehicles
(UAVs), aerial refueling has been developed to
autonomous aerial refueling (AAR).2,3 The realiza-
tion of automation makes vision sensors and image
processing essential. Visual system can play an
important part in the visual guidance, measurement,
and detection.4–9 In the process of flying boom AAR,
the tanker aircraft has to recognize the boom and
receptacle accurately. The requirements can be satis-
fied by the image matching (template matching)
method,10 which is a process of searching the right
sub-image in the reference image according to the
known template.

The classical template matching method is based
on gray cross-correlation measurement by comparing
the template with the captured image pixel by pixel. In
recent years, plenty of image matching methods have
been developed11–14 and they can be classified as the
statistic-based algorithm and the feature-based algo-
rithm.10 The statistic-based algorithm analyzes the
attributes of image that reflect the similarity between
the template and the original image such as absolute
difference, mean absolute difference, square differ-
ence, and mean square difference. The feature-based

algorithm is based on the image features, such as
border, unique points, texture, entropy, and energy.
Compared with the statistic-based algorithm, the
feature-based algorithm depends more on the circum-
stances. The statistic-based algorithm has stronger
ability to suppress noise. Besides, it is easy to program
and implement on hardware. Our proposed pigeon-
inspired optimization based on lateral inhibition
(LI-PIO) is one of the statistic-based algorithms.

In the matching process, all the possible positions
in the original image have to be computed. Therefore,
an effective algorithm is needed to shorten the tremen-
dous time cost of matching. Among all the algo-
rithms, swarm intelligence optimization algorithms
have outstanding advantages in terms of accuracy
and efficiency. Thus, in recent years, many global
swarm intelligence optimization algorithms appear,
including genetic algorithm (GA),15 particle swarm
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optimization (PSO),16 artificial bee colony (ABC),17

ant colony optimization (ACO),18 biogeography-
based optimization (BBO),19 and brain storm
optimization (BSO).20 These swarm intelligence opti-
mization algorithms have already been applied to
image matching, air robot path planning, object seg-
mentation, and other practical aspects. In this paper,
our proposed LI-PIO is used for image matching and
has good performances in terms of convergence speed,
robustness, and stability.

Inspired by the homing characteristics of pigeons,
Duan firstly proposed a novel swarm intelligence algo-
rithm, pigeon-inspired optimization (PIO).21 The basic
PIO includes two operators: map and compass oper-
ator, and landmark operator. The two operators have
different computational rules, which can adjust to dif-
ferent problems. In Duan’s researches,21 the PIO algo-
rithm has proven itself feasible and effective for path
planning. When the algorithm is applied to image
matching, the superiority should appear as well. In
this paper, we combine the PIO algorithm and lateral
inhibition for image matching problem of AAR.

The remainder of this paper is organized as fol-
lows. The AAR system is presented in the forthcom-
ing section. Next, the details of the PIO algorithm are
introduced. Besides, the lateral inhibition mechanism
is described in a later section. In subsequent sections,
the hybrid of PIO and lateral inhibition including the
detailed implementation procedures is specified and
comparative experiments are given to demonstrate
the effectiveness of LI-PIO. Conclusions are con-
tained in the final section.

The autonomous aerial refueling system

The model of the AAR system

Three approaches are currently adopted for aerial
refueling: the flying boom method, where the tanker
extends the retractable boom to the fuel receptacle of
receiver aircraft; the probe and drogue method, where
the tanker drags a flexible hose with a drogue and the
receiver aircraft aims at inserting the probe into the
drogue; the boom drogue adapter units method,
which is the combination of the above two methods
by attaching the drogue adapter units to the boom.
We mainly focus on the flying boom method in this
paper.

The model of the AAR system in the experimental
environment consists of tanker aircraft, receiver
UAV, the boom, and visual system as shown in
Figure 1. In our research, an octocopter and a quad-
copter are adopted as the tanker aircraft and receiver
UAV, respectively. A retractable boom, which can
move in three degrees of freedom, is attached to the
tanker. Besides, the onboard cameras are mounted on
the tanker aircraft to capture the red cooperative mar-
kers around the receptacle of receiver UAV, which are
used for the visual measurement.

The implementation of AAR system

AAR is a complex and difficult problem in the global
world. To some extent, the procedure of AAR is simi-
lar to the formation flight22,23 as shown in Figure 2.
The tanker aircraft and the receiver UAV have to
cooperate with each other. The controllers of tanker
aircraft and receiver UAV need to know the pose,
speed, and position information of the two aircrafts.

As shown in Figure 3, there are four important
procedures: data fusion, visual measurement, boom
control, and station-keeping control. The data of
global positioning system (GPS)24,25 and inertial navi-
gation system (INS) are fused to locate the positions
of aircrafts. However, the accurate poses of receptacle
cannot be supplied or estimated by GPS and INS.
Thus, binocular vision measurement is used to esti-
mate the accurate poses. Besides, the boom control
system is obbligato to complete the docking of
AAR. In order to realize the optimal nonlinear con-
trol, it is necessary to develop the model of atmos-
pheric turbulence and flying boom. The dynamic
model of flying boom can be developed using the

Receptacle

Boom

Camera

Tanker

Receiver UAV

Marker

Figure 1. The model of the AAR system.

UAV: unmanned aerial vehicle.

Figure 2. The formation flight.
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state-space approach. And the atmospheric turbu-
lence can be modeled as the Dryden model.
Moreover, once images are captured by the cameras,
the mission computer would implement marker detec-
tion, point matching, and pose estimation during the
docking. Marker detection is the premise of visual
measurement. And the detected markers must be
transformed from the camera coordinate to the air-
craft coordinate. Point matching is required to
associate the prior coordinates with the makers.
Furthermore, during the docking of AAR, the
tanker aircraft and receiver UAV have to keep an
appropriate position relation to avoid collision and
separation. A proportional guidance law with feedfor-
ward of velocities is designed to realize the station-
keeping control for AAR.

In the procedure of visual measurement, our pro-
posed LI-PIO method can accurately extract features
for image matching, which plays an important part
in AAR.

The pigeon-inspired
optimization algorithm

Pigeon is a popular kind of bird in the world. In
ancient China, pigeons were regarded as an important
communication tool, which can be applied not only to
the daily life, but also to the military situations.
During the First and Second World War, pigeons
played a critical role in seeding military intelligence
due to their concealment and veracity. Thus, extensive
research has been carried out on pigeons where it was
discovered that pigeons can easily find their destin-
ations by using three methods: magnetic field, sun,
and landmarks. Inspired by the homing pigeons,
Duan and Qiao21,26 firstly put forward the PIO

algorithm, which has been applied to the path plan-
ning of air robot and target detection.

The basic PIO includes two operators: map and
compass operator and landmark operator.21

The map and compass operator model is based on
the magnetic field and sun, while the landmark oper-
ator model is based on landmarks. Therefore, the pro-
cess of basic PIO is as follows.21

Map and compass operator. When the evolutionary
iteration is less than the operator’s maximum, the algo-
rithm relies on the map and compass operator as
shown in Figure 4, which means the pigeons are far
from the destination. Each pigeon has a position and a
velocity of evolution. Suppose the position and the vel-
ocity of pigeon i are Xi, Vi. For a n-dimension search
space, Xi ¼ x1i , x

2
i , . . . , xni

� �
, Vi ¼ ½v

1
i , v

2
i , . . . , vni �; in this

paper, it is a two-dimensional search problem for
image matching corresponding to the pixel’s position
ðm, nÞ. The new position Xi and velocity Vi of pigeon i
at the tth iteration are updated as follows21

Vi tð Þ ¼ Viðt� 1Þ � e�Rt þ rand � Xg � Xi t� 1ð Þ
� �

ð1Þ

Xi tð Þ ¼ Xi t� 1ð Þ þ Viðt� 1Þ ð2Þ

where R is the map and compass factor, which makes
the velocity of evolution slow down as the iteration
goes. rand is a rand number within ½0, 1�. Xg is the
global best position, which indicates the maximum
fitness value among all pigeons.

Landmark operator. In landmark operator, as
shown in Figure 5, pigeons would fly straight to
their destination if they are familiar with the land-
marks. With respect to the pigeons still far from the
destination, they are unfamiliar with the landmarks.
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Figure 3. The framework of AAR system.

UAV: unmanned aerial vehicle; INS: inertial navigation system; GPS: global positioning system.
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These pigeons far from the destination (pigeons out-
side the big black circle in Figure 5) would follow
those that are familiar with the landmarks. In land-
mark operator, half of the pigeons would regard the
center of the pigeons as their destination and they
would fly straight to the center, as the pigeons in the
big black circle in Figure 5. Thus, the number of

pigeons would be decreased by half in every iteration.
Let XcðtÞ be the center of some pigeons at the tth
iteration, the position of pigeon i at the tth iteration
can be calculated by the following equations14

NpðtÞ ¼
Npðt� 1Þ

2
ð3Þ

Xc(t)

Figure 5. The process of landmark operator evolution.

Xi (t-1)

Vi(t)

Xi(t)

Xg

Destination

 

Figure 4. The process of map and compass operator evolution.
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XcðtÞ ¼

P
Np Xi tð Þ � fitness Xi tð Þð ÞP

fitness Xi tð Þð Þ
ð4Þ

Xi tð Þ ¼ Xi t� 1ð Þ þ rand � X
c
tð Þ � Xi t� 1ð Þ

� �
ð5Þ

where fitnessðÞ is the fitness function, which can deter-
mine the quality of each pigeon.

The lateral inhibition mechanism

Lateral inhibition is a phenomenon, which a neuron
in the neural system that inhibits its neighbors to com-
pete with the other neurons. This phenomenon exists
in the visual cortex as well as auditory cortex. Though
lateral inhibition was realized for a long time, the
mechanism was not used to practical application.
Since Hartline27 and his research team carried out
an electrophysiology experiment on the eyes of lim-
ulus, the mechanism started to be applied to a lot of
fields, especially in the visual field.

Lateral inhibition has a great importance in the
pre-processing of images because of its effect on the
enhancement of the image’s edges or contours
between the regions of different intensities.
Moreover, the image matching is based on the differ-
ence of images. The more the gray levels in an image,
the more the noise levels in an image. Thus, in this
paper, we diminish the gray levels to two levels, which
can filter the image to decrease the noise. Besides, by
diminishing the gray levels, the computational com-
plexity can be decreased. In this way, when matching
all the possible positions in the original image, the
time cost will be decreased.

Neurons in the neural system are connected and
are as shown in Figure 6.28 There are overlaps of
receptive fields at input as well as at output. One neu-
ron’s output not only depends on its inputs, but on its
neighbors’ inputs and outputs. In terms of lateral
inhibition, the nearer the neurons, the larger will be
the inhibition of neurons. In addition, the inhibition
of two neurons is approximately linear.27

Hartline27 in his work took care of two micro-
phthalmias of limulus’ eyes separately similar to the
two neurons in the neural system, as shown in
Figure 7. In the retinal image, the excited receptors
in illuminated light areas inhibit those in dark areas

more strongly than the latter to the former. Thus, the
construct and the distortion of sensory information
are enhanced.

Supposing the excitatory stimuli of different fre-
quencies are input to the two mircophthalmias as
shown in Figure 7, the outputs are presented as the
following due to the lateral inhibition’s linear
property27

ri ¼ ei � ki,iþ1ðriþ1 � r0i,iþ1Þ

riþ1 ¼ eiþ1 � kiþ1,iðri � r0iþ1,iÞ

(
ð6Þ

where ri, riþ1 are the outputs of two units considering
the function of lateral inhibition. Ai, Aiþ1 are the sep-
arate inputs of the two units. ki,iþ1, kiþ1,i are the linear
coefficients of lateral inhibition, ki,iþ1ðriþ1 � r0i,iþ1Þ
equals ri,iþ1 in Figure 7 as well as riþ1,i. r

0
i,iþ1, r

0
iþ1,i

are the threshold values of linear lateral inhibition.
When all the microphthalmias (units) were taken

into account, Hartline and his colleagues put forward
the following classical lateral inhibition model

rp ¼ ep �
Xn
j¼1

kpjðrj � r0pjÞ p ¼ 1, 2, . . . , n ;

j ¼ 1, 2, . . . , n ; j 6¼ p

ð7Þ

where ep is the output of unit without lateral
inhibition; kpj denotes the linear coefficients; rp, rj rep-
resent the outputs of two units; r0pj is the threshold
value.

In order to apply this mechanism to image pro-
cessing, equation (7) is transformed to a two-dimen-
sional and gray form. Through the effect of lateral
inhibition, the output gray Pðm, nÞ is given as
follows29

Pðm, nÞ ¼ f

� XM
i¼�M

XN
j¼�N

�i,jI0ðmþ i, nþ j Þ

�

¼ f ½R0ðm, nÞ� ð8Þ

where �i,j is the lateral inhibition coefficient of
pixel(m,n) to the central pixel. I0ðm, nÞ is the original
gray value of pixel(m,n). Pðm, nÞ is the gray
value of pixel(m,n) processed by lateral inhibition.

i-1 i i+1

Ai-3 Ai-2 Ai-1 Ai Ai+1 Ai+2 Ai+3

ri-1 ri ri+1

ri,i-1

ri-1,i

ri+1,i

ri,i+1

Figure 6. The lateral inhibition in neural system.

i i+1

ri+1

Ai Ai+1

ri,i+1

ri+1,i

ri

Figure 7. The lateral inhibition between two units.
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R0ðm, nÞ denotes the lateral inhibition competing coef-
ficient of the pixel(m,n). f represents the inhibition
competing relation function between the output and
input. ð2Mþ 1Þ � ð2Nþ 1Þ is the receptive field.

In the vision nerve system, one nerve cell is fairly
stable and consistent with its surrounding nerve cells.
The input image is not constrained to directions.
Thus, the weight values are mutually symmetric
according to the center. The size of the receptive
field can be 3�3, 5�5, 7�7 and we choose 5�5 in
this paper. Then, the competing coefficient of the
lateral inhibition network is as follows

R0ðm,nÞ ¼ �00 � I0ðm, nÞ

þ �1
X1
i¼�1

X1
j¼�1

I0ðmþ i, nþ jÞ � I
:0ðm, nÞ

" #

þ �2
X2
i¼�2

X2
j¼�2

I0ðmþ i, nþ jÞ

"

�
X1
i¼�1

X1
j¼�1

I0ðmþ i, nþ jÞ

#
ð9Þ

where �00 denotes the weight value of the center, �1 is
the surrounding weight value of the center, and �2
represents the peripheral weight value.

And the lateral inhibition coefficient satisfies

�00 þ 8�1 þ 16�2 ¼ 0 ð10Þ

In this paper, we choose �00 ¼ 1, �1 ¼ �0:075, and
�2 ¼ �0:025. Then, equation (9) can be described as
follows

R0ðm, nÞ ¼I0ðm, nÞ �Q ð11Þ

Q¼

�0:025 �0:025 �0:025 �0:025 �0:025

�0:025 �0:075 �0:075 �0:075 �0:025

�0:025 �0:075 1 �0:075 �0:025

�0:025 �0:075 �0:075 �0:075 �0:025

�0:025 �0:025 �0:025 �0:025 �0:025

2
6666664

3
7777775

ð12Þ

where � denotes the convolution operation, Q repre-
sents the lateral inhibition matrix of 5�5 receptive
field.

After combining the modulus template Q with
equation (9), a new gray scale of the image can be
obtained, which is R0ðm, nÞ. Finally, the image’s
edges are extracted by the following equation

Pðm, nÞ ¼
255 . . . . . . . . . :R0ðm, nÞ5T

0 . . . . . . . . . . . . ::R0ðm, nÞ5T

�
ð13Þ

where T is a user-defined threshold value, which is
different in different practical situations. Pðm, nÞ is
the gray value of the original gray value pixel(m,n)
processed by the lateral inhibition.

Figure 8. Illustration of LI-PIO for image matching. The

template image T is in the top right corner; the yellow box A

denotes the search box, which searches along the green arrow

in the full image I by LI-PIO algorithm; finally, the best matching

result would be obtained inside the red box B.

Table 2. The parameters of LI-PIO algorithm.

Parameter Description Value

n Number of pigeons 200

NCmax Maximum times of iteration 150

NC1max The iteration of map and

compass operator

100

NC2max The iteration of landmark operator 50

R The map and compass factor 0.2

D Dimensions of the search problem 2

T The threshold of lateral inhibition 115

Table 1. The image matching method, fitness() function.

Begin

fitness¼ 0;

for i¼ 0:M� 1

for j¼ 0:N� 1

if Pðx0 þ i, y0 þ j Þ ¼ Ptði, j Þ then

fitness¼ fitnessþ 1;

end if

end for

end for

End

1576 Proc IMechE Part G: J Aerospace Engineering 232(8)



Hybrid PIO and lateral inhibition

The fitness function of LI-PIO

In order to evaluate the quality of each pigeon (solu-
tion), the fitness function is often defined. Pigeon at
the better position has the bigger fitness value. And
pigeons with little fitness value fly to those with bigger
fitness value. In addition, all the pigeons fly to the
position that has the maximum fitness value. The
larger the fitness value, better will be the template
image matching. In this paper, the fitness function is

chosen as follows, which is simple and easy to
program.

fitnessðtÞ ¼ fitnessðt� 1Þ þ 1 ð14Þ

As presented in Table 1, M�N is the size of the
template image. Pðx0, y0Þ is the gray value of the ori-
ginal image. Suppose the size of original image is
A� B, the searching ranges of x0 and y0 are 04
x0 5A�Mþ 1, 04y0 5B�Nþ 1. Pðx0 þ i, y0 þ j Þ
is the gray value of the pixel in the original image.

Start

Get  the  image  and  the 
template

Convert  the  images  into 
the  grayscale  format

Filtration

Save the 
new image

NC<NC1max or 
0<NC-NC1max<NC2max?

Update  the  velocity  and  position of  
pigeons  using  the  landmark 

operator,  Eq. (4),  Eq. (5)

Find  the  maximum  fitness 
and  the  best  position

Calculate  fitness  of 
all  pigeons

Update  the  velocity  and  position of  
pigeons using  the  map  and compass  

operator,  Eq. (1),  Eq. (2)

NC>NCmax?

End

Image  pre-processing  with 
lateral  inhibition

Initialize  pigeons  and 
parameters

Calculate  fitness  of 
all  pigeons 

NC=1

NC=NC+1

N

Y

NC<NC1max 0<NC-NC1max<NC2max

Output  the  results

Figure 9. Detailed flow chart of LI-PIO for image matching.
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Ptði, j Þ is the gray value of the pixel in the template,
04i4M� 1, 04j4N� 1. In one loop, if
Pðx0 þ i, y0 þ j Þ ¼ Ptði, j Þ is satisfied, the fitness value
is calculated by equation (14).

The procedure of the LI-PIO for image matching

LI-PIO combines the PIO algorithm and lateral inhib-
ition to solve the template matching problem of AAR,
as shown in Figure 8. Our proposed method has
better properties with high accuracy and efficiency,
compared with PSO, LI-PSO, PIO in the subsequent
section.

The procedure of LI-PIO for image matching is
described as follows.

Step 1: Image pre-processing.

Obtain the original image and the template image,
and convert them into gray scale format. Filter images
to remove the noise. Then set different thresholds for
different situations in order to pre-process the images
by lateral inhibition. And save the new matrices of the
images.

Step 2: Initialization of the pigeons and parameters.

Initialize pigeon’s positions, velocities, and the par-
ameters of this algorithm as shown in Table 2.

Step 3: Calculate each pigeon’s fitness value according
to Table 1.

Step 4: Update the pigeons.

When NC4NC1max, update the pigeons using the
map and compass operator. The velocity and position
of each pigeon are computed by equations (1) and (2).
When 05NC�NC1max4NC2max, update the
pigeons using the landmark operator. The velocity
and position of each pigeon are computed by equa-
tions (3) to (5).

Step 5: Calculate each pigeon’s fitness value according
to Table 1. And find out the maximum fitness and
the best position for the image matching.

Step 6: Terminate if the current number of iterations
NC reaches the NCmax, output the results.
Otherwise, go to step 4.

The algorithm flow for image matching is shown in
Figure 9.

Comparative experimental analysis

In this section, series of experiments are given to
verify the feasibility and effectiveness of our proposed
LI-PIO for image matching. Besides, the results of
LI-PIO, PSO, LI-PSO, and PIO are implemented as
contrastive experiments. The parameters of LI-PIO
are presented in Table 2. And the basic parameters

Figure 10. Matching results for case 1: (a) template image (451�436); (b) template image processed by lateral inhibition; (c) original

image (2901�1901); (d) original image processed by lateral inhibition; (e) matching result by LI-PIO.
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of PSO, LI-PSO, and PIO are the same as those of
LI-PIO. All the experiments are implemented in
MATLAB 7.14.0(R2012a) on an i7 3.60GHz com-
puter with 4GB RAM.

For case 1, the results of LI-PIO are shown in
Figure 10. The template image (451�436) and original
image (2901�1901) are respectively shown in
Figure 10(a) and (c). The template and original
images processed by lateral inhibition are given in
Figure 10(b) and (d). Eventually, we present the
matching results obtained by LI-PIO in Figure
10(e). Another complex case is shown in Figure 11
to verify the function of the LI-PIO algorithm. The
images of case 2 are acquired when we take outfield

experiment, whose spatial resolution is a little lower to
satisfy the requirement of the real timing.

From the results shown in Figures 10 and 11, it is
obvious that lateral inhibition enhances the edges of

Figure 11. Matching results for case 2: (a) template image (131�141); (b) template image processed by lateral inhibition; (c) original

image (964�1292); (d) original image processed by lateral inhibition; (e) matching result by LI-PIO.

Table 3. The contrast values of experimental images.

Images

Contrast

values Images

Contrast

values

Figure 10(a) 0.0723 Figure 11(a) 0.2540

Figure 10(b) 0.1135 Figure 11(b) 0.4448

Figure 10(c) 0.0999 Figure 11(c) 0.1608

Figure 10(d) 0.1103 Figure 11(d) 0.3625
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Figure 12. Comparative experiments for case 1: (a) independent 10 evolutionary curves of PSO; (b) independent 10 evolutionary

curves of LI-PSO; (c) independent 10 evolutionary curves of PIO; (d) independent 10 evolutionary curves of LI-PIO; (e) evolutionary

curves in comparison.

PSO: particle swarm optimization; PIO: pigeon-inspired optimization; LI: lateral inhibition.

Table 4. The average cost time of algorithms.

Algorithm Cases Time/s (150 iterations)

PSO Case 1 716.0168

Case 2 13.2352

LI-PSO Case 1 1074.7

Case 2 16.1668

(continued)

Table 4. Continued

Algorithm Cases Time/s (150 iterations)

PIO Case 1 389.7384

Case 2 5.9832

LI-PIO Case 1 534.3799

Case 2 8.2239

PSO: particle swarm optimization; PIO: pigeon-inspired optimization;

LI: lateral inhibition.
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template and original images. Especially for case 2,
the spatial resolution of the images is stressed to
resolve the blurry problem. And the saliency of tem-
plate image is improved as well. Supposing we calcu-
late the ratio of image’s standard deviation and
average to present the contrast, the contrasts of the

images are obviously enhanced as shown in Table 3.
Due to the function of lateral inhibition, all the con-
trastive values increase extensively. Especially, the
contrastive values of the template images improve
by a large proportion, which is meaningful for obtain-
ing the best matching result in the original image.
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Figure 13. Comparative experiments for case 2: (a) independent 10 evolutionary curves of PSO; (b) independent 10 evolutionary

curves of LI-PSO; (c) independent 10 evolutionary curves of PIO; (d) independent ten evolutionary curves of LI-PIO; (e) evolutionary

curves in comparison.

PSO: particle swarm optimization; PIO: pigeon-inspired optimization; LI: lateral inhibition.
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Besides, the value of Figure 11(d) is raised twice than
in Figure 11(c), which reveals that the lateral inhib-
ition is quite appropriate for the real experimental
case. In addition, lateral inhibition filters the images
to remove the noise.

To compare the feasibility and effectiveness, the
evolutionary curves of PSO, LI-PSO, PIO, and
LI-PIO are given in Figure 12. Furthermore, the
cost time of all the algorithms are shown in Table 4,
where the cost time is the average of 10 independent
experiments.

In Figures 12 and 13, the evolutionary curves of
PSO, LI-PSO, PIO, and LI-PIO are all presented. For
contrastive purpose, the fitness values of different
methods are normalized. It can be seen from
Figures 12 and 13 that PSO acquires the best position
and maximum fitness value at about the 100th iter-
ation. Comparatively, the best position and maximum
fitness value of PIO can be obtained at about 10th
iteration. Moreover, owing to the function of lateral
inhibition, LI-PSO and LI-PIO obtain larger fitness
values from the beginning with the cost of a little time,
which is conducive to promote the convergence of
algorithms and find the best matching results.
Furthermore, as presented in Table 4, LI-PIO can
shorten about a half time per 150 iterations compared
with LI-PSO for both the two cases. Therefore, it can
be concluded that PIO converges much faster than
PSO and the lateral inhibition mechanism plays an
essential part in avoiding the local optimization to
acquire the best fitness values. Thus, the combination
of the LI and PIO balance the time costing and opti-
mal matching results. For image matching problem of
AAR, our proposed LI-PIO is reliable, feasible, and
effective.

Conclusions

This paper presents a hybrid algorithm of the pigeon-
inspired optimization and lateral inhibition for the
image matching problem of AAR. PIO algorithm is
a novel bio-inspired swarm intelligent algorithm,
which can converge much faster than PSO. And the
lateral inhibition mechanism is applied to enhance the
edges and contrast of the images for pro-processing.
The hybrid of PIO and LI inherits both advantages.
The results of the comparative experiments indicate
that our proposed LI-PIO method can not only
obtain the optimal matching results but also shorten
the time costing. Therefore, it can be concluded that
LI-PIO is a more reliable, feasible, and effective
image matching method with fast convergence rate.
However, the effect of image matching depends a
little on the threshold of LI, which means that impro-
per thresholds lead to wrong results. But, the thresh-
old can take an arbitrary value of a numerical range,
which is easy to determine. Future work will focus on
developing an adaptive algorithm to find the opti-
mal thresholds of different experimental scenes.

Besides, we will apply the LI-PIO algorithm to more
complicated scenes in the complicated noisy environ-
ments. The LI-PIO algorithm will be an important
bio-inspired swarm intelligent algorithm for image
matching problem of AAR with extensive application
prospects.
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Appendix

Notation

Ai, Aiþ1 inputs of the two units
D dimensions of the search problem
ep output of unit without lateral inhibition
fitnessðÞ fitness function
I0ðm, nÞ original gray value of pixel(m,n)
kpj linear coefficients
ki,iþ1, kiþ1,i linear coefficients of lateral inhibition
n number of pigeons
NpðtÞ number of pigeons at tth iteration
NCmax maximum times of iteration
NC1max iteration of map and compass operator
NC2max iteration of landmark operator
Pðm, nÞ gray value of pixel(m,n) processed by

lateral inhibition
rand a rand number
Q lateral inhibition matrix of 5�5 recep-

tive field
r0pj threshold value
rp, rj outputs of two units
ri, riþ1 outputs of two units with lateral

inhibition
r0i,iþ1, r

0
iþ1,i threshold values of liner lateral

inhibition
R map and compass factor
R0ðm, nÞ lateral inhibition competing coefficient

of the pixel(m,n)
T user-defined threshold of lateral

inhibition
Xg global best position
XcðtÞ center of pigeons at the tth iteration
Xi, Vi position and the velocity of pigeon i
�00 weight value of the center
�1 surrounding weight value of the center
�2 peripheral weight value
�i,j lateral inhibition coefficient of

pixel(m,n) to the central pixel
� convolution operation
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