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Abstract: This paper proposes two strategies that generate the entry trajectories using pigeon inspired optimization (PIO) for a lifting type
reentry vehicle. The obtained entry trajectory should be within the entry corridor formed by the specified upper bounds on heat rate, dynamic
pressure, and load factor. In both the approaches, bank angle which is parametrized to be a linear function of energy and angle of attack are
considered as the control variables. This paper presents a methodology that converts the path constraints to allowable bounds on the angle
of attack. The angle of attack at any instant is obtained by using the load factor constraint in the first approach and in the second approach, the
angle of attack is obtained using the heat rate and load factor constraints. Hence, the path constraints are satisfied by modulating the angle of
attack alone. In both cases, bank angle is suitably modulated to achieve the desired terminal range-to-go and also to maintain the equilibrium
glide condition. The terminal heading angle offset is minimized using traditional bank reversal logic. These two scrategies are simulated
for common aero vehicle (CAV-H) with a high lift to drag (L=D) ratio. Simulation results show that the entry trajectories obtained using
the PIO algorithm have satisfied the path constraints and achieved the terminal range-to-go accurately. DOI: 10.1061/(ASCE)AS.1943-
5525.0000929. © 2018 American Society of Civil Engineers.

Introduction

The reentry phase is very crucial for any spacecraft, reusable launch
vehicle, and hypersonic gliding vehicles, that are returning from the
space to the Earth. The common aero vehicle (CAV-H) is a hyper-
sonic glide vehicle with a high lift to drag ratio of 3.5; this feature
enables this vehicle to travel more than 10,000 km. The reentry
phase is the longest and most critical phase of the CAV-H. The
vehicle is unpowered in this phase, and, therefore, the trajectory is
governed by only gravity and aerodynamic forces. The energy dis-
sipation in this phase has to be carried out in a controlled way to
maintain the thermal load factor and dynamic pressure constraints
within the specified limits. This is achieved by modulating the bank
angle and/or angle of attack.

Entry vehicles rely on entry trajectories which are designed
using trajectory optimization techniques to reach the destination
safely. Designing the entry trajectories for the CAV-H is a challeng-
ing task because it has highly nonlinear entry dynamics, longer du-
ration of reentry phase, and its entry trajectory exhibits oscillations
which increase the integrated thermal and g-loads experienced by
the vehicle.

Designing entry trajectory for re-entry vehicles is basically
an optimal control problem whose solution is obtained numerically
through indirect or direct methods. Indirect methods are based on
the Pontryagin’s minimum principle (Pontryagin and Boltyanskii
1962) which leads to a two-point boundary value problem, whose
solution process involves choosing initial guesses for the costate

variables which is nonintuitive. On the other hand, direct methods
are based on discretizing control and/or state variable time histories,
and, thereby, transforming the optimal control problem to a non-
linear programming problem (NLP) which is relatively easier to
solve. The pseudospectral methods that fall under the category of
direct methods are used extensively to solve the trajectory optimi-
zation problems. Tian and Qun Zong (Bailing and Qun 2011) have
implemented the Legendre pseudospectral approach for solving
the entry trajectory optimization problem. The Chebyshev pseu-
dospectral method is applied for generating entry trajectories by
Wei (Cai et al. 2015). However, the basis functions and the number
of collocation points have to be selected carefully to avoid tuning
issues in these methods. The pseudospectral methods are also re-
ported to be sensitive to initial-guess values of the control and state
variables (Su and Wang 2015). A new approach for trajectory opti-
mization called model predictive static programming which com-
bines the philosophies of model predictive control and approximate
dynamic programming is brought into the framework of guidance
in Halbe et al. (2014). Unlike the two-point boundary value prob-
lems, this approach demands a static costate vector for updating the
control history and is proven to be computationally efficient for
solving the reentry guidance problem. Another promising approach
for solving the entry trajectory optimization problem is proposed by
Liu et al. (2016) which uses second-order cone programming
(SOCP). This SOCP problem is solved efficiently and reliably
by interior-point methods, which have only polynomial complexity
and do not require user-defined initial guesses. However, this ap-
proach requires considerable efforts to reformulate the original
problem into the framework of SOCP.

The metaheuristic algorithms fall under the category of direct
methods that mimic natural phenomena. They have gained popular-
ity because they have a simple solution mechanism without involv-
ing calculations of derivatives; they are flexible and can be applied
to various optimization problems pertaining to any domain. Few
metaheuristic algorithms are population driven algorithms; they have
the capacity to avoid falling into the trap of a local optimal solution.
Some of the population-based metaheuristic algorithms are par-
ticle swarm optimization (PSO), PIO, and genetic algorithm (GA).
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Optimal trajectories for a spacecraft are generated using PSO in
Rahimi et al. (2013). To overcome the issue of premature conver-
gence in the PSO algorithm, a stochastic gradient-based particle
swarm optimization is proposed in Li et al. (2018). Stochastic gra-
dient is calculated using the best positions in two adjacent iterations.
This method is applied to solve the entry trajectory optimization
problem by considering both angle of attack and bank angle as the
control variables. Artificial bee colony-based entry trajectory opti-
mization for the hypersonic vehicle is carried out in Duan and Li
(2015) where bank angle is considered to be the only control var-
iable. Naresh Kumar et al. (2018) has implemented a pattern search
algorithm for finding control variables that maximize the range trav-
elled by a hypersonic boost glide vehicle in Naresh Kumar et al.
(2018) and an additional constraint on minimum dynamic pressure
is considered to ensure controllability of the vehicles at higher alti-
tudes. In recent times, a metaheuristic algorithm named PIO that
mimics the homing behavior of pigeons is proposed by Duan and
Qjao (2014). Pigeons have special ability to sense the magnetic
field of the Earth and identify the altitude of the Sun. They can iden-
tify landmarks near the destination. They use these special abilities
to reach the destination. Zhao and Zhou (2015a, b) have imple-
mented PSO and PIO to generate entry trajectories for a hypersonic
gliding vehicle using a simple formulation. However, the control
formulation requires finding multiple parameters to get the complete
control profile. The PIO algorithm is used to generate the entry tra-
jectory for the CAV-H vehicle in Sushnigdha and Joshi (2017) with
only bank angle as the control variable. It is observed that conver-
gence of the PIO is faster than the PSO and gravitational search
algorithms (GSA).

In the literature Lu (2014) and Zhao and Zhou (2015a, b),
researchers have formulated entry guidance and trajectory optimi-
zation algorithms using a nominal angle of attack profile for
CAV-H and have considered the bank angle to be the only control
variable which is to be modulated to satisfy path and terminal
conditions. In general, the nominal angle of attack profile is chosen
based on the occurrence of maximum L=D so as to maximize the
downrange capabilities of the vehicle; this profile might not allow
the entry trajectory to satisfy the heat rate constraint. This leads to
the requirement of modulating the bank angle for satisfying the
path and terminal constraints. In Li et al. (2015), all path constraints
are converted to limits on the angle of attack, which forces the angle
of attack commands to be within these limits. The path constraints
are first converted to limits on altitude, using bounds on the angle of
attack that are contained in Zhu et al. (2015).

This paper presents a trajectory optimization algorithm based on
PIO where both the angle of attack and bank angle are the control
variables. Two cases that differ in the methodology of generating
angle of attack commands are discussed. In both the cases, the bank
angle that minimizes the terminal range-to-go error is obtained
using the PIO algorithm. This bank angle is further modified to
satisfy the equilibrium glide condition, while the angle of attack
commands are derived using the given path constraints, and it is
modulated accordingly to satisfy them. In the first case, the angle
of attack is obtained using only the load factor constraint. In the
second case, the angle of attack is initially derived from the heat
rate constraint and subsequently when the vehicle attains a speci-
fied Mach number Machshift, the angle of attack commands are
derived from the load factor constraint.

Mathematical Model for Reentry Vehicle

This section introduces the gliding vehicle CAV-H which is used
for the simulations and describes its equations of motion. It also

gives the details of gravity, atmospheric models, and terminal and
path constraints that are considered for simulations.

The common aero vehicle (CAV) is a concept which describes a
space reentry aeroshell launched into space on a suitable vehicle,
which then survives atmospheric re-entry, reduces its speed to low
Mach numbers and dispenses a cargo, payload, or weapons in the
atmosphere of the Earth (Phillips 2003). In this paper, CAV with a
high L=D ratio (CAV-H) is used for simulations.

Equations of Motion

The entry vehicle is considered to be a point mass, gliding over
a spherical rotating Earth. Its equations of motion in terms of
nondimensional variables are given as follows (Lu 2014)

ṙ ¼ V sin γ ð1Þ

V̇ ¼ −D −
�
sin γ
r2

�
þ Ω2r cosϕðsin γ cosϕ − cos γ sinϕ cosψÞ

ð2Þ

θ̇ ¼ V cos γ sinψ
r cosϕ

ð3Þ

ϕ̇ ¼ V cos γ cosψ
r

ð4Þ

γ̇ ¼ 1

V

�
L cosσ þ

�
V2 − 1

r

��
cos γ
r

�
þ 2 ΩV cosϕ sinψ

þ Ω2r cosϕðcos γ cosϕþ sin γ cosψ sinϕÞ
�

ð5Þ

ψ̇¼ 1

V

�
Lsinσ
cosγ

þV2

r
cosγ sinψ tanϕ−2ΩVðtanγ cosψcosϕ− sinϕÞ

þ Ω2r
cosγ

sinψsinϕcosϕ

�
ð6Þ

ṡ ¼ −V cos γ=r ð7Þ
In the literature (Vinh et al. 1980), all the variables in equa-

tions of motion are presented in dimensionless form to make them
applicable to any vehicle regardless of its weight, shape, and size,
entering an arbitrary planetary atmosphere. Therefore, all the var-
iables in the above- mentioned equations of motion are nondimen-
sional, and the derivatives are with respect to the dimensionless
time τ . The dimensional time t is obtained using t ¼ τ tscale, where

tscale ¼
ffiffiffiffi
R0

g0

q
. R0 = radius of Earth, g0 = acceleration due to gravity

on the surface of the Earth. r = nondimensional distance from the
Earth center to the point mass,O, that is normalized by the radius of
the Earth R0 ¼ 6,378.135 km. Normalized radial distance and
normalized time results in the normalized Earth-relative velocity V
which is nondimensional, and the normalizing factor is Vscale ¼ffiffiffiffiffiffiffiffiffiffi
R0g0

p
. Longitude and latitude are denoted by θ and ϕ, respectively.

The flight-path angle γ is positive when V is above the horizontal
plane. ψ is the heading angle of the velocity vector, measured
clockwise in the local horizontal plane from the north as shown in
Fig. 1. The range-to-go s (in radians, normalized by R0) on the
surface of the spherical Earth along the great circle connecting the
current location of the vehicle and the site of the final destination
(Lu 2014). σ is the bank angle which is defined as clockwise pos-
itive rotation of the lift vector about the velocity vector. The dimen-
sionless angular velocity of the Earth is denoted by Ω. L and D are
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nondimensional aerodynamic lift and drag accelerations, respec-
tively, normalized with g0 ¼ 9.8 m=s2 and are defined as

L ¼ 1

2mg0
ρV2CLSref ð8Þ

D ¼ 1

2mg0
ρV2CDSref ð9Þ

where m = mass of the vehicle, Sref = surface area of the wing,
ρ = atmospheric density. CL and CD = aerodynamic lift and drag
coefficients, respectively, that are functions of angle of attack and
Mach number. For the CAV-H vehicle, the aerodynamic coefficient
details are given in Phillips (2003).

Independent Variable and Calculation of Final
Time of Flight t f

An energy like variable e defined as the negative of the specific
mechanical energy used in orbital mechanics is considered as the
independent variable for solving the trajectory optimization prob-
lem (Lu 2014)

e ¼ μ
r
− V2

2
ð10Þ

ė ¼ DV ð11Þ
where μ = gravitational parameter of the Earth, whose normalized
value is 1. Eq. (11) shows that e is a monotonically increasing var-
iable and is a function of radial distance and velocity. Therefore, the
choice of e as an independent variable helps in considering the ter-
minal conditions on r and V as a single constraint. The equations of
motion are rewritten considering e as an independent variable using

Eq. (11) as dr=de ¼ ṙ=ė. The equations of motion are integrated
from initial energy e0 to final energy ef. e0 and ef are calculated
using the initial and desired values of radial distances ri, r� and
velocities Vi, V� respectively. The final time of flight tf is obtained
as part of the solution by including dτ

de in the equations of motion
and integrating it from e0 to ef. The order of the system is reduced
by eliminating Eq. (2) while integrating the equations of motion.
By knowing r and e, velocity V is calculated using Eq. (10).

Gravity and Atmosphere Models

The acceleration due to gravity of the vehicle at a radial distance r
from the center of the Earth is given by Eq. (12)

g ¼ μ
r2

ð12Þ

The nondimensional value of gravitational parameter μ is 1.
This gravity model is considered in describing the equations of
motion. The U.S. Standard Atmosphere, 1976 is used to model
the atmospheric density (Anon 1976).

Path Constraints

In the entry phase, the vehicle has to travel within the entry corridor
formed by the specified upper limits on heat rate Q̇max, load factor
amax, and dynamic pressure qmax. These path constraints are given
by Eqs. (13)–(15)

Q̇ ¼ 9.4369 × 10−5 ffiffiffi
ρ

p
V3.15V3.15

scale ≤ Q̇max ð13Þ

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þD2

p
≤ amax ð14Þ

q ¼ ρV2V2
scale

2
≤ qmax ð15Þ

These path constraints are to be strictly satisfied. There is an-
other soft constraint called the equilibrium glide constraint. Entry
vehicles like CAV-H with a high L=D ratio exhibit oscillations in
their altitude profiles. These oscillations can be removed when the
vehicle is made to satisfy the equilibrium glide constraint. Equilib-
rium glide refers to the case where the aerodynamic lift force
balances the gravitational and centrifugal forces as given in
Eq. (16). This equation is obtained by making the derivative of
the flight-path angle zero and neglecting the Earth rotation terms

L cos σ ¼ ð1=r2Þ − ðV2=rÞ ð16Þ

In the equilibrium glide condition, the flight-path angle should
ideally be constant. However, it is slightly varying. Hence, it is
termed the quasi equilibrium glide condition (QEGC) by Lu
(2006). In this paper, heat rate and load factor constraints are con-
sidered explicitly. The constraint on dynamic pressure is implicitly
satisfied by satisfying the load factor constraint.

Terminal Constraints

At the end of the entry phase, the vehicle has to achieve a radial
distance r�, range-to-go s�, and velocity V� as per the requirement
of the terminal area energy management (TAEM) phase. The head-
ing angle offset Δψf at the end of the entry phase should be less
than the desired heading angle offset Δψ�

d. This constraint is
achieved using traditional bank reversal logic.

Fig. 1. Nomenclature used in the equations of motion. (Reprinted from
Engineering Applications of Artificial Intelligence, 69, G. Sushnigdha
and A. Joshi, “Evolutionary Method Based Integrated Guidance Strat-
egy for Reentry Vehicles,” 168–177, Copyright 2018, with permission
from Elsevier.)
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Trajectory Optimization Problem

Trajectory optimization of an entry vehicle involves finding the
control profiles such that the resulting entry trajectory satisfies the
path and terminal conditions. Two cases with both bank angle and
angle of attack as the control variables are discussed in this paper.
To solve this trajectory optimization problem, the bank angle is
parametrized with respect to energy e and the angle of attack is
obtained using load factor and heat rate constraints.

Bank angle Parametrization

The control variable, bank angle, is considered to be a linear func-
tion of current energy e as defined in Lu (2014), based on piecewise
linear approximation. Its magnitude is calculated from Eq. (17)

jσðeÞj ¼ σ0 þ
e − e0
ef − e0

ðσf − σ0Þ ð17Þ

where e0 and ef = energies at entry interface and terminal points,
respectively. σ0 ≥ 0 is the parameter to be found that minimizes the
given objective function. σf is the predefined terminal bank angle.
σf ¼ 60° is chosen for the simulations. The sign of the bank angle
is obtained from a bank reversal logic as described by Shen and
Lu (2004). The main aim of bank reversal logic is to reduce the
heading offset Δψ of the vehicle.

Converting the Path Constraints to Bounds on Angle
of Attack

This subsection describes a methodology that converts the path
constraints, heat rate, dynamic pressure, and load factor to allow-
able limits on the angle of attack α.

Angle of Attack Corresponding to Heat Rate Constraint
The atmospheric density that is required to make the vehicle expe-
rience the specified maximum heat rate Q̇max is denoted as ρQðVÞ
and is given by

ρQðVÞ ¼
Q̇2

max

k2qV6.3V6.3
scale

ð18Þ

By using the above expression for density, the normalized drag
acceleration that is needed to satisfy this Q̇max is calculated and is
given below

DQ̇ ¼ Q̇2
maxSrefCDQ

2mg0k2qV4.3V4.3
scale

ð19Þ

where CDQ = coefficient of drag corresponding to Q̇max and kq ¼
9.4369 × 10−5 as given in Eq. (13). At any given instant, the con-
dition on current drag acceleration, D, required to satisfy the heat
rate constraint is that

D ≤ DQ̇ ð20Þ

In the above equation, by considering only the equality con-
straint and on substituting the expression for current drag D given
in Eq. (9) into Eq. (20), the coefficient of drag, CDQ, needed to
satisfy the heat rate limit is found as given below

CDQðαQ;MÞ ¼ ρCDk2qV6.3V6.3
scale

Q̇2
max

¼ ρCD

ρQ
ð21Þ

where CD is coefficient of drag corresponding to current drag ac-
celerationD. In the above expression, CDQ is a function of angle of
attack, αQ, and Mach number. On obtaining CDQ from Eq. (21), the

angle of attack αQ for a specified heat rate constraint is calculated at
any given instant. To satisfy the heat rate constraint, the angle of
attack α at any given instant should satisfy the following condition

α ≥ αQ ð22Þ

Angle of Attack Corresponding to Dynamic Pressure
Constraint
By carrying out a similar procedure, the density, ρq, required to
make the vehicle fly at a specified dynamic pressure limit qmax is

ρq ¼
2qmax

V2V2
scale

ð23Þ

The normalized drag acceleration, Dq, is obtained using density
ρq given by

Dq ¼
qmaxSrefCDq

mg0
ð24Þ

At any instant, the condition on current drag acceleration D to
satisfy qmax is that

D ≤ Dq ð25Þ

On substituting the expression for current drag, D, given
in Eq. (9) into Eq. (25), by considering the equality condition in
the above equation and finding out coefficient of drag, CDq, results
in Eq. (26) as given below

CDqðαq;MÞ ¼ ρCDV2V2
scale

2qmax
¼ ρCD

ρq
ð26Þ

The angle of attack, αq, needed to make the vehicle fly at qmax is
obtained using the coefficient of drag, CDq, given in Eq. (26). The
angle of attack, α, at any instant should then satisfy the following
relation given in Eq. (27) to satisfy the dynamic pressure constraint

α ≥ αq ð27Þ

Angle of Attack Corresponding to Load Factor Constraint
By following the similar approach, the angle of attack, αl, required
to make the vehicle fly at a specified load factor, amax, is obtained
using the coefficient of drag, CDa, given in Eq. (28)

CDaðαl;MÞ ¼ ρCD

ρa
ð28Þ

The angle of attack, α, at any instant should then satisfy the
following equation to satisfy the load factor constraint

α ≥ αl ð29Þ
It is noted that the drag coefficient is normally a nonlinear func-

tion of the angle of attack and in the case of a CAV-H vehicle, upon
solving, two values of the angle of attack are obtained for a given
drag coefficient and Mach number. One of these values corresponds
to a negative angle of attack which is out of the angle of attack
bounds considered in this paper, and, therefore, it is ignored. Only
the positive angle of attack is to be considered. Therefore, the com-
manded angle of attack, α, profile should always be above the αQ,
αl, and αq profiles as given below

α ≥ maxfαQ;αl;αqg ð30Þ

Eq. (30) at any instant provides the lower limit on the angle of
attack which can be used to satisfy the path constraints.

© ASCE 04018104-4 J. Aerosp. Eng.
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Angle of Attack Commands

The angle of attack required to make the vehicle fly at load factor
amax is also obtained by solving Eq. (31)

ρV2V2
scaleSref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
La þ C2

Da

p
2mg0

¼ amax ð31Þ

where CLaðαa;MÞ and CDaðαa;MÞ are coefficients of lift and drag,
respectively, which are functions of the angle of attack and Mach
number corresponding to the given amax. At every instant, Eq. (31)
can be solved using the fsolve command in MATLAB for finding
αa which will make the entry trajectory satisfy the specified amax.

Objective Function

In the PIO based trajectory optimization methodology, two ap-
proaches for modulating the angle of attack are considered. In both
the cases, the decision variable to be found is bank angle. The ob-
jective function for both the cases is given below: the trajectory
optimization problem is stated as, to find the decision variables σ0

that minimize terminal error in range-to-go, altitude, and velocity as
described in J

MinJ ¼ jsðefÞ − s�j × R0

1.852 × 105
þ jrðefÞ − r�j × R0

1000

þ jVðefÞ − V�j × Vscale

100
ð32Þ

subject to dynamic equations, Eqs. (13) and (14).
In the objective function, “*” indicates the desired terminal

states as defined by the TAEM phase. The terms in the objective
function in Eq. (32) are dimensional, the range-to-go term is in nmi,
the radial distance term is in km and velocity in m=s, and they are
multiplied with some weights to bring them to the same order in
magnitude.

Procedure for Calculating Angle of Attack

Angle of Attack in Case 1

The angle of attack, α, command at any instant is obtained by solv-
ing Eq. (31) for a specified upper bound on load factor amax. The
following is the logic for obtaining the commanded angle of attack,
α, at every instant:
• Find the intermediate angle of attack variable, α1, using the

equation given below

α1 ¼ minfαmax;αag ð33Þ
• Using α1, find the required angle of attack command α

α ¼ maxfαmin;α1g ð34Þ
where αmax and αmin = specified upper and lower bounds on the
angle of attack for a given vehicle. In this case, the angle of
attack commands are obtained using above-mentioned logic,
and the bank angle that minimizes the objective function is
determined using the PIO algorithm.

Angle of Attack in Case 2

The angle of attack profile generated in Case 1 can lead to errors in
the terminal altitude for certain specified load factor upper bounds.
Due to the angle of attack profile obtained in Case 1, the resulting
peak heat rate is much lesser than the specified peak heat rate. This

indicates that excess control effort is being used, and to overcome
these issues a different approach of finding angle of attack profiles
is presented in Case 2.

In this case, the commanded angle of attack, α, is initially
derived using the heat rate constraint limit using Eq. (21) and sub-
sequently uses the load factor constraint equation [Eq. (31)]. The
logic for generating α at every instant is given as follows:
• At the first instant, an initial guess for the angle of attack which

is within its bounds is chosen. By using that initial guess, the
coefficient of drag, CD, is calculated.

• This coefficient of drag, CD, is used to calculate the coefficient
of drag, CDQ, corresponding to the heat rate constraint using
Eq. (21).

• Using the calculated CDQ, the angle of attack, αQ, is calculated
for a given Mach number

αi ¼ minfαmax;αQg ð35Þ

α ¼ maxfαmin;αig ð36Þ
• This α, along with the bank angle σ are used to integrate the

equations of motion.
• In the next instant, the angle of attack at the previous instant is

used to calculate the coefficient of drag, CD. On using this CDQ,
αQ is subsequently calculated. This process of calculating angle
of attack commands using the heat rate constraint is repeated
until the vehicle attains certain Mach number Machshift.

• After attaining a particular Machshift, the angle of attack is
obtained by solving the load factor constraint given in Eq. (31)
as described in Case 1

α1 ¼ minfαmax;αag ð37Þ

α ¼ maxfαmin;α1g ð38Þ

This shift in the angle of attack from αQ to αa should be smooth
considering the angle of attack rate and acceleration limits. Using
this approach of modulating the angle of attack, the peak heat rate
achieved in this case is nearly the same as the desired peak heat rate
Q̇max. As the longitudinal dynamics are coupled with the angle of
attack, shifting it from αQ to αa at the appropriate Mach number,
Machshift, that affects terminal velocity, which in return affects ter-
minal altitude. Therefore, the choice of Mach number, Machshift,
plays a significant role in achieving the desired final altitude. This
switch over helps in better management of the path constraints such
as the heat rate and load factor. Few subcases with different choices
of Machshift are discussed in the “Simulation Results” section.
Though using the αQ in the initial phase of entry reduces the con-
trol effort, it can make the load factor constraint active which may
lead to the violation of the heat rate constraint. The steps involved
in calculating α for this case are discussed in Fig. 2.

Pigeon Inspired Optimization

The PIO algorithm has successfully solved the entry trajectory
optimization problem, and it converges in less number of iterations
compared with PSO and gravitational search algorithm (GSA) as
shown in Sushnigdha and Joshi (2017). Pigeons can locate them-
selves relative to their destination by being able to sense the mag-
netic field of the Earth. This process is termed as map operator.
They adjust their flying direction using altitude of the Sun, which
is regarded as the compass operator. The basic algorithm is evolved
as follows.
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Let the total population of the pigeons be N. Set the maximum
number of iterations to kmax. Define the dimension of the problem
based on the number of decision variables to be found. Let D
denote the dimension of the problem. Define the search range
for each dimension. The initial set of pigeons is randomly gener-
ated in the given search range. The position of the pigeon i is given
by Eq. (39)

Xi ¼ ½xi1; xi2; : : : ; xiD� where i ¼ 1; 2; 3 : : :N ð39Þ

The velocity of the pigeon i is given by Eq. (40)

Vi ¼ ½vi1; vi2; : : : ; viD� where i ¼ 1; 2; 3 : : :N ð40Þ

Each pigeons position represents a possible solution and corre-
sponds to an objective function given in Eq. (32). In this operator,
all the pigeons adjust their position and will try to follow the pigeon
that corresponds to the best objective function value, i.e., minimum
objective function. The position and velocities of the pigeons are
updated in each iteration k as per the following update logic

ViðkÞ ¼ Viðk − 1Þ:e−Rk þ rand:ðGðk − 1Þ − Xiðk − 1ÞÞ ð41Þ

XiðkÞ ¼ Xiðk − 1Þ þ ViðkÞ ð42Þ
where Gðk − 1Þ = position of the pigeon corresponding to the best
objective function achieved so far. rand is a random number in
[0,1]. R = map and compass operator which is treated to be a con-
stant in this study. The term Viðk − 1Þ:e−Rk gives the pigeons for-
mer flying direction. As pigeons approach their destination, they
use a landmark operator. Few pigeons can identify the landmarks
and can fly directly to their destinations. The remaining pigeons
follow them and reach the destination.

Let kc be the iteration number that indicates the shift in the op-
erator. kc is chosen to be 75% of kmax as per (Duan and Qjao 2014).
When the current iteration k becomes equal to kc, the landmark
operator is initiated. In this operator, half of the pigeons with posi-
tions nearer to Gðk − 1Þ are selected. The center of these pigeons is
found using Eq. (43)

XcðkÞ ¼
P

NpðkÞ Xiðk − 1Þ:fitnessðXiðk − 1ÞÞ
NpðkÞ

P
NpðkÞ fitnessðXiðk − 1ÞÞ ð43Þ

where fitnessðÞ = objective function value corresponding to the
given position of the pigeon, and Np is the current reduced
population as given below

NpðkÞ ¼
Npðk − 1Þ

2
ð44Þ

Using XcðkÞ, the positions of the pigeons is updated as follows

XiðkÞ ¼ Xiðk − 1Þ þ rand:½XcðkÞ − Xiðk − 1Þ� ð45Þ

In the landmark operator, pigeons that are not familiar with
the landmarks, adjust their positions and follow the center of the
pigeons that are familiar with the landmarks. Finally, at the end
of iterations, the pigeon corresponding to the minimum objective
function value will be the pigeon with the best position. The PIO
algorithm as applied to the current problem with equilibrium glide
constraint is presented in the next subsection.

Comparison of PIO with PSO Algorithm
• The map and compass operator of the PIO algorithm has an

exponential e−Rk weighting factor associated with the previous
velocity of pigeons as given in Eq. (41), whereas the PSO
algorithm has a weight w which is either constant or linearly
varying. As a result of this difference, with the increase in
the number of iterations, this weighing factor in the PIO reduces
the influence of the pigeons’ previous velocity on the current
velocity and hence allows the PIO algorithm to converge at a
faster rate to the optimal value when compared with the PSO
algorithm.

• In the landmark operator of the PIO algorithm, the update of the
pigeons’ position is performed by considering the fitness values

Fig. 2. Steps involved for finding angle of attack in Case 2.
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of each pigeon, whereas the PSO algorithm does not consider
the quality of its particles.

• In the updated equations, the PSO algorithm requires usage of
the best position that the particle has achieved so far. Therefore,
it requires memory, whereas the PIO algorithm is independent
of this aspect. Both the algorithms require memory to keep track
of the global best position.

Incorporating Quasi Equilibrium Glide Constraint

The entry trajectory of a CAV-H vehicle exhibits oscillations as
seen in the simulation results of Sushnigdha and Joshi (2017), and
these oscillations result in peak heat rates and g-loads. This section
presents a methodology to eliminate these oscillations by utilizing
the slope of the altitude limit curve corresponding to a equilibrium
glide condition in velocity-altitude space and by modulating the
vertical component of lift accordingly so that the vehicle satisfies
this constraint. This equilibrium glide condition is obtained by
making γ̇ ¼ 0 in Eq. (5) and ignoring the terms related to the ro-
tation of the Earth. The obtained equation is further simplified by
choosing σ to be 0, r≈ 1, and γ ≈ 0. In this simplified equation,
the altitude required to fly at the equilibrium glide condition for a
given velocity is obtained by substituting the lift acceleration ex-
pression Eq. (8) and by expressing density as a function of altitude
using the exponential density model. The resulting relationship be-
tween altitude and velocity is given below

req ¼ 1þ 1

β
log

�
V2
scaleV

2ρ0SrefCL

2mg0ð1 − V2Þ
�

ð46Þ

where β ¼ 920 is nondimensional scale height which is normalized
with the radius of the Earth. Eq. (46), gives the altitude required to
satisfy the equilibrium glide condition at any given velocity. On
differentiating the above equation with respect to velocity and
equating it with the ratio of Eqs. (1) and (2), results in a equation
using the flight-path angle required to fly the vehicle at equilibrium
glide condition can be obtained as

sinγQEGC ¼ −D
βV3ð1 − V2Þ þ ð1=r2Þ ð47Þ

The above expression for γQEGC can be used to find the altitude

variation with respect to energy drQEGC

de ¼ sinγQEGC

D required to fly the
vehicle in QEGC. The current variation of altitude with respect to
energy is given by dr

de ¼ sinγ
D . The vertical component of lift force is

modulated by using the altitude compensation term kðdrde − drQEGC

de Þ
as described in Lu (2014), given in Eq. (48)

L cos σcmd ¼ L cos σbase − k2

�
dr
de

− drQEGC

de

�
ð48Þ

where σbase = bank angle at the current energy obtained using
Eq. (17). k2 ¼ 10 is a constant gain used for simulations. Bank
angle σcmd is used to integrate the equations of motion, and the
objective function is evaluated. This bank angle σcmd eliminates the
oscillations observed in the altitude profile of high L=D vehicles.

The decision variable to be found using the PIO algorithm is the
bank angle σ0 as in Eq. (17). This bank angle σ0 is utilized to cal-
culate the bank angle σbase at each instant from Eq. (17). At each
instant, this bank angle is further modified to σcmd using Eq. (48) to
satisfy the equilibrium glide constraint. The angle of attack control
commands at each instant are obtained as discussed in the previous
section. With these two control variables, equations of motion are
integrated from the initial energy e0 to ef. After attaining the final

energy ef, the objective function is evaluated. The flowchart of the
PIO based trajectory optimization algorithm is given in Fig. 3.

Simulation Results

In this section, simulation results are demonstrated for the CAV-H
vehicle. The PIO algorithm is used to find the bank angle that min-
imizes the terminal range-to-go error and that ensures the equilib-
rium glide condition. Another control variable, angle of attack, is
modulated to satisfy heat rate and load factor constraints. Thus,
the obtained entry trajectory satisfies the path and terminal con-
straints. The initial conditions and terminal conditions used for both
the cases are given in Sushnigdha and Joshi (2017). Various cases
with Machshift ¼ 20; 16; 10 are considered as part of Case 2. The
parameters required for simulating the PIO algorithm are set as
N ¼ 10, kmax ¼ 20, kc ¼ 14, and R ¼ 0.2. The dimension of the
problem is D ¼ 1, as bank angle, σ0 is the parameter to be found.
For comparing the performance of the PIO algorithm with the
PSO algorithm, the same parameters such as population size and
maximum number of iterations are chosen. Additional parameters
c1 ¼ 1.4, c2 ¼ 2.6, wmax ¼ 1, and wmin¼0.4, linearly decreasing
weighing factor w are considered in the PSO algorithm. In both
the algorithms, the range of search space for σ0 is given as
jσminj¼ 0° and jσmaxj ¼ 89°. The upper and lower bounds of the
angle of attack are considered to be 20° and 10°, respectively.
The entry corridor is obtained using constraint limits on heat rate
Q̇max ¼ 6MW=m2, load factor amax ¼ 2 g, and dynamic pressure
qmax ¼ 6 × 104 Pa. The additional constraints on the angle of attack
rate 4°=s and acceleration 8°=s are considered in the simulations.

The values of bank angle σ0 obtained using the PIO are 58.89°,
59.684°, 65.08°, and 67.563° in Case 1, Case 2 with Machshift ¼
20 and remaining subcases, respectively. It is observed that the PIO
algorithm converges to the minimum objective function value in
nine iterations which indicates that the solution has converged even
before the landmark operator of the PIO algorithm is initiated.

The performance of the PIO is compared with PSO algorithms
for Case 1; each algorithm is executed five times, and the results are
tabulated in Table 1. It is evident from Table 1 and Fig. 4 that the
PIO algorithm has taken fewer iterations to converge to the mini-
mum objective function value compared with the PSO algorithm.
It is seen that the PIO algorithm has converged to the mean objec-
tive function value of 0.3783 with a standard deviation of 4.1593 ×
10−4 which is less than the converged value of the PSO algorithm.
The average iterations taken by the PIO algorithm to converge to
the obtained minimum objective function value is 11.8 with a stan-
dard deviation of 4.1473 which are less than the average iterations
taken by the PSO algorithm. This faster convergence of the PIO
algorithm could be attributed to the exponential weighing factor
present in the velocity update equation.

The path constraints, load factor, and heat rate constraints are
strictly satisfied in Case 1 and in Case 2 with Machshift ¼ 20
as shown in Figs. 5 and 6, respectively. The constraint on final
range-to-go is satisfied in all the cases, whereas an error of
350 m is observed in the final altitude of Case 1. This error in
the final altitude might be higher or lower according to the specified
load factor constraint amax. In Case 1, as the vehicle is flying at a
high angle of attack of 20°, the peak heat rate experienced by the
vehicle is as low as 3.83 × 106 W=m2 which is much lower than
the specified Q̇max as shown in Fig. 6. In the second case with
Machshift ¼ 20, initially, the vehicle flies at an angle of attack de-
rived from the heat rate constraint. Therefore, theobserved peak
heat rate 6.06 × 106 W=m2 as seen in Fig. 6 is almost the same
as Q̇max. This method of flying at an angle of attack derived from

© ASCE 04018104-7 J. Aerosp. Eng.
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Table 1. Statistical performance comparison of PIO and PSO algorithms with five runs for Case 1

Algorithms Mean iterations Standard of iterations Mean objective function value Standard of objective function value

PIO 11.8000 4.1473 0.3783 4.1593 × 10−4
PSO 12.6000 5.94 0.4530 0.0415

Fig. 3. Flowchart of the PIO algorithm for solving entry trajectory optimization problem.
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the given heat rate constraint and subsequently shifting to an angle
of attack derived from the load factor constraint reduces the control
effort and the error in terminal altitude to some extent. The error in
terminal altitude for this case is 180 m which is less than Case 1. In
Case 2 with Machshift ¼ 16, the load factor constraint becomes
active in the initial phase of re-entry as shown in Fig. 5. Therefore,
the angle of attack αa is considered, which led to the violation of
the heat rate constraint. The peak heat rate of 6.29 × 106 W=m2 is
observed in Fig. 6, whereas the peak load factor is satisfied in Fig. 5.
The error in terminal altitude is about 610 m. Similar to this case,
Case 2 with Machshift ¼ 10 also has violated the heat rate con-
straint as seen in Fig. 6. The error in terminal altitude is 4.57 km,
which is not desired. Towards the end of entry phase, ithe load fac-
tor constraint is also violated because the angle of attack required
to maintain 2 g is less than its specified lower bound 10°. From the
above considered cases, it is clear that constraint limits have to be
compromised, i.e., by increasing/decreasing their values, the entry
trajectory will be able to satisfy both the path and terminal con-
straints. A careful choice of Machshift can also enable entry tra-
jectory to satisfy all the constraints. Overall, Case 2 has a lower
angle of attack control effort as observed from Fig. 7 compared
with Case 1. Case 2 withMachshift ¼ 20 also has less final altitude
error compared with other cases, and it also satisfies all the path
constraints.

Fig. 8 shows the bank angle profile for all the cases. The bank
angle magnitude is zero initially until the vehicle attains sufficient
dynamic pressure. After this phase, the magnitude of the bank angle
decreases suddenly and gradually increases to make the vehicle
satisfy QEGC. The sign of the bank angle changes based on the
heading error corridor.

The angle of attack profiles for all the cases is given in Fig. 7.
In Case 1, the initial angle of attack obtained using the load factor
constraint is greater than the specified upper bound of the angle of
attack, i.e., 20°. Therefore, the angle of attack is at 20° until the load
factor constraint is active, and subsequently the angle of attack
gradually decreases to make the vehicle fly at 2 g. In Case 2 with
Machshift ¼ 20, an angle of attack is obtained from the heat
rate constraint initially until Mach > 20. In the beginning of the
entry trajectory, the angle of attack demanded by the heat rate
constraint is less than the specified lower bound of the angle of
attack; therefore, the angle of attack is maintained at 10°. Once the
vehicle attains Mach < 20, the angle of attack gradually increases
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to 20° until the load factor constraint becomes active. A gradual
increase in the flight-path angle is observed in Fig. 9, whenever
there is a shift in the angle of attack at different Mach numbers.
This makes the vehicle fly at higher altitude after Mach < 20,
Mach < 16 as seen in Fig. 10. The variation of altitude with velocity
is shown in Fig. 11. The terminal constraint on range-to-go is sat-
isfied in all the cases. The variation of dynamic pressure is seen in
Fig. 12. Whenever the load factor constraint is satisfied, the con-
straint on dynamic pressure is implicitly satisfied, except for the last
case where Machshift ¼ 10, the load factor and dynamic pressure
constraints are violated towards the end of the trajectory.

Fig. 13 shows that the angle of attack profile corresponding to
Case 2 with Machshift ¼ 20 lies above or on the profiles αQ and
αq. It is also observed from the Fig. 13, that the angle of attack
obtained from the heat rate constraint is positive and active until
1,100 s, after which, the angle of attack obtained from the heat rate
constraint is 10° as per Eq. (36) until the Mach numberMachshift is
attained by the vehicle. After which, the angle of attack is derived
from the load factor constraint.
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Conclusion

The entry trajectory obtained using the PIO algorithm with pro-
posed schemes of generating angle of attack commands satisfies
the path constraints and the terminal range-to-go constraint accu-
rately. In Case 1, the vehicle flies at a high angle of attack, and the
peak heat rate has reduced considerably which eventually led to
usage of more control effort and can also lead to a large error in
terminal altitude for some specified load factor constraint limit
amax. In Case 2, angle of attack commands derived from the heat
rate constraint is used until the vehicle attainsMachshift ¼ 20 after
which angle of attack commands derived using the load factor con-
straint are used in generating the entry trajectory. The obtained
entry trajectory has satisfied the path and terminal constraints ac-
curately with reduced control effort in the angle of attack as com-
pared with Case 1. Various subcases with different Machshift are
considered, it is observed that flying with an angle of attack derived
from the heat rate constraint has also led to increasing g-load in
the initial phase of the entry trajectory, and a suitable choice of
Machshift can reduce the error in terminal altitude. Though Case 2
reduces the angle of attack control effort, the load factor constraint
becomes active in the initial descent. Hence, a trade off between
control effort requirement and limits on g-loads should be made
based on the mission requirements. In both cases, the bank angle
is modulated to achieve the desired range-to-go. The two methods
proposed in this paper have both the angle of attack and the bank
angle as the control variables, unlike many methods in the literature
which modulate only the bank angle to satisfy all the path and
terminal constraints. This paper also derives the lower bound on
the angle of attack, i.e., the angle of attack control profile of an
entry trajectory should always be above the angle of attack profiles
obtained using the path constraints to ensure that the entry trajec-
tory is within the entry corridor. Future work would involve deriv-
ing an analytic approach for finding Machshift to achieve the
desired final altitude.
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