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Abstract
Image fusion technology is the basis of computer vision task, but information is easily affected by noise during transmission. 
In this paper, an Improved Pigeon-Inspired Optimization (IPIO) is proposed, and used for multi-focus noisy image fusion by 
combining with the boundary handling of the convolutional sparse representation. By two-scale image decomposition, the 
input image is decomposed into base layer and detail layer. For the base layer, IPIO algorithm is used to obtain the optimized 
weights for fusion, whose value range is gained by fusing the edge information. Besides, the global information entropy is 
used as the fitness index of the IPIO, which has high efficiency especially for discrete optimization problems. For the detail 
layer, the fusion of its coefficients is completed by performing boundary processing when solving the convolution sparse 
representation in the frequency domain. The sum of the above base and detail layers is as the final fused image. Experimental 
results show that the proposed algorithm has a better fusion effect compared with the recent algorithms.

Keywords Improved pigeon-inspired optimization · Convolutional sparse representation · Noisy image fusion · Bionic 
algorithm

1 Introduction

In the process of taking photos, due to the movement of 
objects or cameras, different focal lengths will make the 
pictures blurry and poor registration, and it is difficult to 
focus on all objects in the picture under different depths 
of field [1]. These factors seriously reduce the fusion qual-
ity of multi-focus images and make it difficult to obtain 
complete information on all levels. Therefore, multi-focus 
image fusion can generate a multi-focus image using a set of 
images acquired with different focus. In the process of image 
acquisition, image fusion will result in noise accumulation, 

which will make the image quality descend after fusion. This 
makes multi-focus noise image fusion a very challenging 
task.

At present, most image fusion methods focus on pixel-
level fusion, which mainly include transform domain-based 
algorithms and spatial domain-based algorithms. Among 
them, methods based on multi-scale transform are widely 
discussed. They decompose the source image into multiple 
scales, mainly including base layer and detail layer, extract 
sub-band coefficients of different scales, and then fuse trans-
form coefficients according to different fusion rules, such as 
wavelet transform [2], gradient pyramid [3], contrast pyra-
mid [4], etc.. Since more spatial features can be extracted on 
different scales, image fusion can be effectively performed. 
However, there are still difficulties in their strong sensitivity 
to sensor noise.

The spatial domain-based methods directly fuse the input 
image to the pixel information, and they are classified as 
pixel-based, block-based, and region-based methods [5–7]. 
However, the images fused by these methods usually have 
problems such as loss of detail and texture information, 
reducing contrast, artifact and insufficient sharpness, which 
make them face huge challenges.
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Therefore, for overcoming the above shortcomings, many 
scholars have conducted different degrees of research based 
on the image fusion strategy of sparse representation (SR) 
[8–11]. Experiments have proved that compared with the 
MST-based algorithms, the SR-based method has splendid 
performance [12, 13]. Nevertheless, most SR-based meth-
ods always produce blocking effects. Therefore, a Convo-
lutional Sparse Representation (CSR) can be used instead 
of SR, which processes the whole image rather than local 
image blocks. CSR is essentially an image representa-
tion model of invariant displacement, which significantly 
improves the quality of fusion in areas of misalignment. 
However, the main drawback of the convolutional sparse 
coding method is the high computational complexity. Gen-
erally, CSR is a nonconvex problem and many existing 
methods provide little to no guarantees for global conver-
gence. Finding a solution to the convolutional sparse coding 
problem in a reasonable amount of time is not only chal-
lenging, but it is also difficult to find a good local minimum. 
The substantial computational cost of convolutional sparse 
coding problems has recently been shown to be significantly 
reduced by solving them in the frequency domain, but the 
periodic boundary conditions imposed by this approach 
can produce boundary artifacts. Therefore, it is also cru-
cial to propose a method to avoid these effects. In recent 
years, Deep learning (DL) has achieved great success in 
many computer vision and image processing problems. 
The application of deep learning technology in the field of 
pixel-level multi-source image fusion has become an active 
topic. Liu et al. first applied CNN technology in the field 
of multi-source image fusion. Specifically, a classification 
CNN based on the Siamese architecture is designed to learn 
the clarity of the relative position in each source image 
[14]. Amin-Naji et al. used ensemble Learning technology 
to improve the classification accuracy of the CNN model 
[15]. Tang et al. proposed a pixel-based CNN model, which 
divides the pixels in each source image into focused pixels, 
defocused pixels, and unknown pixels [16].

Turning image fusion problems into optimization prob-
lems has attracted attention in recent years. Optimization 
methods are used to optimize the parameters in the above 
methods, and the fusion weight is the most common opti-
mized parameter. Ref. [17] used genetic algorithms to find 
the best fusion weights in the wavelet domain and the eigens-
pace domain. Raghavendra et al. [18] used an improved 
particle swarm optimization to obtain the wavelet domain 
weights, both of which have certain effects, but they also 
expose the shortcomings of low efficiency and accuracy. In 
recent years, this type of method has been used in more 
fields. Zhao et al. [19] used the information entropy and 
gradient constraint of the fusion image as fitness evaluation 
indicators, and used the gradient descent method to optimize 
the fusion weight.

Although the fusion images of most optimized fusion 
algorithms can obtain better results in objective evaluation 
indicators, they assign too many weights to the irrelevant 
parts of the image. Fortunately, many efficient bio-inspired 
global search algorithms [20–24] are used to tackle this 
issue. These novel bio-inspired optimization algorithms 
usually have the feature of multiple structures. Hence, they 
complete the exploration and development tasks at dif-
ferent stages of the algorithm iteration. A large number 
of variants based on bio-inspired optimization algorithms 
have been proposed and applied in various fields. For 
example, Liu et al. proposed an improved PSO algorithm 
to solve the problems of multilevel thresholding [25]. Uros 
Mlakar et al. made improvements to the DE algorithm 
[26]. Gai et al. proposed an Improved Quantum-Behaved 
Particle Swarm Optimization (IQPSO) to solve the prob-
lems of image fusion [27]. Wang et al. used a coopera-
tive pigeon-inspired optimization algorithm with dynamic 
distance threshold (CPIOD) to obtain higher performance 
[28]. The Pigeon-Inspired Optimization (PIO) algorithm 
has been shown to have advantages over traditional algo-
rithms in standard function optimization [22].

In addition, when the source image is processed, noise 
will accumulate, resulting in a decrease in the quality of 
the fused image. Therefore, it matters that the image fusion 
can resist noise environment [29, 30]. However, the above 
method is mainly for the edge statistics of wavelet coeffi-
cients, and the noise reduction effect is not good.

To overcome the above shortcomings, we propose an 
improved PIO(IPIO) algorithm, and it is used to get the 
optimized weights for multi-focus noisy image fusion. The 
main contributions are as follows:

1. A novel improved PIO (IPIO) framework is proposed, 
and accordingly an effective image fusion method is pre-
sented for multi-focus noisy image. In the base layer, 
IOPO can get the optimized weights. In the detail layer, 
the detailed information can be handled well.

2. We provide a more accurate range for weights by fus-
ing edge features, and obtain better optimization results 
through pigeon-inspired optimization, using global 
information entropy as the fitness index of pigeon-
inspired optimization. It can effectively display impor-
tant areas, and can achieve decent results in global 
entropy and local entropy. Besides, the detailed infor-
mation can be transferred to the fusion image.

3. The proposed method introduces the boundary handling 
for convolutional sparse representation into multi-focus 
noisy image fusion, which is essentially an image rep-
resentation model with invariable displacement, it can 
significantly improve the fusion quality of mismatched 
regions. Simultaneously, boundary handling is used to 
avoid possible boundary artifacts.
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2  PIO Algorithm

Studies have shown that pigeons can easily return home 
through three guidance tools: geomagnetic field informa-
tion, sun altitude information and landmark information. 
Inspired by this phenomenon, Duan et al. proposed a pigeon 
flock optimization algorithm. It has been verified that the 
algorithm can effectively solve problems such as numerical 
design and parameter optimization [31].

2.1  Map and Compass Operator

The PIO algorithm runs through two operators: the map and 
compass operator and the landmark operator. Vi represent 
speed of the pigeon i in the iteration round of t. The follow-
ing equation gives the updated process [24].

In the formula, R is the factor of the map and compass opera-
tor, Xg is the best solution of the current pigeons in all loca-
tions, r is the size of the window. Xi represent the position 
of the pigeon i in the iteration round of t.

Figure 1 shows the map and compass operator. The flying 
pigeon will adjust its flying direction according to the posi-
tion of the best pigeon. The first part of Eq. (1) represents 
the current direction of the pigeon, and the second part rep-
resents the process of the pigeon following the best pigeon 
(the current best solution).

(1)Vi(t) = Vi(t − 1) × e−Rt + r ∗ (Xg − Xi(t − 1)).

(2)Xi(t) = Xi(t − 1) + Vi(t).

2.2  Landmark Operator

In the landmark operator, all the pigeons will be sorted 
according to their fitness. The first half of the pigeons in 
the ranking will calculate the position of the center pigeon 
according to Eq. (3). This position is regarded as a landmark, 
and the remaining half of the pigeons will update their posi-
tion based on this landmark, as shown in Eq. (4).

where Xc is the position of the center pigeon (landmark), 
Xi is the current position of all the pigeons, fitness reflects 
the quality of the pigeon individual, and Np(t) is the number 
representing the pigeons, r2 is the size of the window.

Figure 2 is a schematic diagram of the landmark opera-
tor. In the process of algorithm simulation, the pigeons with 
low fitness are considered to be unfamiliar with the land-
marks, and they must follow the pigeons with high fitness. 
The number of pigeons in the circle is half of the number of 
pigeons calculated according to formula (5).

(3)Xc(t) =

∑
Np
Xi(t) fitness (Xi(t))∑
Np

fitness (Xi(t))
,

(4)Xi(t) = Xi(t − 1) + r2(Xc(t) − Xi(t − 1)),

(5)Np =
Np(t − 1)

2
,

Fig. 1  Compass and map operator
Fig. 2  Landmark operator
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3  The Improved Pigeon‑Inspired 
Optimization (IPIO) Algorithm

This paper considers a new bio-inspired swarm intellect 
optimizer PIO to obtain �⃗Xbest.

First, the pixel weight range is determined with the help 
of edge information, and then the fitness function is deter-
mined under the fusion framework and the pigeon-inspired 
optimization is used to obtain the pixel weight.

3.1  Determination of the Weight Range

Most optimization algorithms do not consider the range 
of optimization weights. Too much weight is assigned to 
irrelevant parts of the image, resulting in too much useless 
information, making the target not be accurately expressed. 
Thus, we use the fused edge information to determine the 
range of weight.

Many researchers have integrated edge information into 
image fusion [21]. And it is effective to use edge information 
to determine the range of weight wij . So Canny algorithm is 
used to extract the edge binary image EA and EB , and obtain 
complementary edges EA , EB using Eq. (6):

where ⊕ indicates XOR operation; ∧ indicates AND opera-
tion. EA , EB can effectively represent the unique and effec-
tive detail information of the image. This paper considers 
that giving higher weights to the corresponding position of 
the weight matrix can obtain a better fused image, wlp

ij
 , wup

ij
 , 

respectively, indicate the upper and lower limits of the 
weight wij at the position (i, j) , that is wup

ij
 , wlp

ij
 satisfy Eq. (7):

where �up , �lp and � are all parameters.

3.2  Design of the Loss Function

The source image is decomposed into �b
k
 and �d

f
 , and the final 

fused image If  is the fusion of �b
k
 and �d

f
 . The result depends 

on the pixel weight �⃗X . Therefore, this paper hopes to obtain 
a better fused image with appropriate pixel weight �⃗X . 

(6)

{
EA(i, j) = EA(i, j)⊕ EB(i, j) ∧ EA(i, j)

EB(i, j) = EB(i, j)⊕ EB(i, j) ∧ EA(i, j)
,

(7)

⎧⎪⎨⎪⎩

w
up

ij
= �up + �EA(i, j) − �EB(i, j)

w
lp

ij
= �lp − �EA(i, j) + �EB(i, j)

,

However, there is no optimal fusion image for the image 
fusion problem, so an objective index is used to evaluate the 
pros and cons of the fusion result. Information Entropy (IE) 
is a commonly used objective index [21], such as the Eq. (8):

g represents the total number of gray levels, where g = 256

,pF =
{
pF(1),… , pF(g)

}
 represents the probability of each 

gray level in F. A higher IE means that the image has more 
information, so the fusion quality can be evaluated by IE.
Regarding IE as the fitness, the function of fitness Y with 
respect to the pixel weight �⃗X can be obtained by Eqs. (7) and 
(8), as in Eq. (9):

Then the optimal pixel weight �⃗Xbest can be expressed as 
Eq. (10):

4  Method

To obtain excellent fusion for multi-focus noisy images, 
we present a multi-focus noise image fusion method based 
on the improved pigeon-inspired optimization bionic algo-
rithm. The proposed fusion algorithm framework is shown in 
Fig. 3. The detailed fusion algorithm includes the following 
four steps.

Step 1 Two-scale image decomposition: the source 
image is decomposed into base layer �b

k
 and detail layer �d

k
 

using the discrete gradient operator.
Step 2 Base layer fusion: the IPIO method is used to 

fuse the base layer.
Step 3 Detail layer fusion: the detail layer is fused by the 

boundary handling for CSR method.
Step 4 Two-scale image reconstruction: the fused base 

layer �b
k
 and the detail layer �d

k
 are through the superposition 

to obtain the final fused image.

4.1  Image Decomposition

First, the source image �k is decomposed into base layer �b
k
 

and detail layer �d
k
 by the discrete gradient operator. �b

k
 is 

acquired by the following optimization process:

(8)IE(F) = −

L−1∑
i=0

pF(g) log2 pF(g),

(9)Y = Y
(
�⃗X
)
= IE = IE

(
F
(
�⃗X
))

.

(10)
�⃗Xbest = argmax

�⃗X

Y( �⃗X).
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It is a common Tikhonov regularization problem, which can 
be solved by fast Fourier transformation, where gx = [ −1 1] 
and gy = [ −1 1]T are the row and column gradient filters. 
The value of the regularization parameter η is 5.

The formula (12) is a problem of quadratic optimization. 
The standard approach is the least squares linear regression. 
However, if no �b

k
 satisfies (12) or more than one �b

k
 do, that 

is, the solution is not unique. This type of convex optimi-
zation problem can be converted into a dual problem, all 
of its local optimal solutions are global optimal solutions, 
and because the derivative of 0 is a necessary condition for 
the function to take the extreme value, the solution of this 
type of problem can directly set the partial derivative be 0 
to obtain the global optimal solution. Therefore, to solve 
the above optimization problems, it should solve the partial 
derivative of �b

k
 set to 0:

(11)argmin
Ib
k

||Ik − I
b
k
||2
F
+ �

(||gx × I
b
k
||2
F
+ ||gy × I

b
k
||2
F

)
.

(12)argmin
Ib
k

||Ik − I
b
k
||2
F
+ �

(||GXI
b
k
||2
F
+ ||GYI

b
k
||2
F

)
.

(13)I
b
k
=

Ik

1 + �
(
G2

X
+ G2

Y

) .

The inverse frequency Fourier transform is performed by 
(13) to obtain the base layer component �b

k
 , and the detail 

layer component �d
k
 can be obtained by subtracting the base 

layer component from the source image �k.

4.2  Base Layer Fusion Rule Based on IPIO

The fusion strategy for base layer bands also has a sig-
nificant impact on the final fusion quality. The conven-
tional averaging-based low-frequency fusion rule tends to 
cause the loss of energy in the fused image. To address 
this issue, we use the fusion edge feature to provide a more 
accurate range for the weight, and use the global informa-
tion entropy as the fitness index of the pigeon-inspired 
optimization, and obtain a better optimization effect.

This paper uses pixel weight 
{
wij

}
 for the base layer to 

perform fusion according to the following formula (15), wij 
represents the fusion weight on the pixel (i, j) , which is used 
to calculate the value of �b

f
 , and 

{
wij

}
 will be expressed as 

the pixel weight X⃗ according to Eq. (16). The use of pixel 
weight facilitates the use of optimization algorithms to 
improve the fusion effect, and the optimized weights can 

(14)I
d
k
= Ik − I

b
k
,

Fig. 3  The algorithm flow
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effectively enhance the image quality and are suitable for 
real-time calculation:

4.3  Detail Layers Fusion Rule Based on Boundary 
Handling CSR

The detail layer reflects features such as details and textures 
of the image, for each detail layer Ik

d
 , its sparse coefficient 

maps Cm
k

 , m ∈ {1,⋯ ,M} are obtained by solving the CSR 
model with the method in [32]:

Since this method is solved in the DFT domain, it implicitly 
imposing periodic boundary conditions. One possible solution 
is to mask the boundary of the fill estimation through a bound-
ary spatial mask [33].

Defining

The corresponding ADMM iterations are

The functional minimized in (20) can be expanded as

(15)�
b
f
(i, j) = wijAh(i, j) +

(
1 − wij

)
Bh(i, j),

(16)
{

Xd = wij, d = i + j(i − 1)

�⃗X =
{
Xd, d = 1,… , i × j

} .

(17)argmin
{�k,m}

1

2
||

M∑
m=1

�m × �k,m − �
d
k
||2
2
+ �

M∑
m=1

||�k,m||1.

(18)

argmin
C,y0,y1

1

2
||Wy1 − Id

k
||2
2
+ �||y0||1

s.t.

(
C

DC

)
−

(
y0
y1

)
= 0

.

(19)A =

(
I

D

)
y =

(
y0
y1

)
u =

(
u0
u1

)
.

(20)C(j+1) = argmin
C

�

2
||AC − y(j) + u(j)||2

2
,

(21)

y(j+1) = argmin
y

1

2
||Wy1 − Id

k
||2
2
+ �||y0||1 + �

2
||AC(j+1) − y + u(j)||2

2
,

(22)u(j+1) = u(j) + AC(j+1) − y(j+1).

The functional minimized in (21) can be expanded as

Since the y0 and y1 components of y are decoupled, minimi-
zation with respect to y can be achieved by the independent 
minimizations.

The solution to (25) is just soft thresholding, and the solu-
tion to (26) is given by

Then, we obtain �k,1∶M(x, y) , �k,1∶M(x, y) is a vector with 
M-dimensional, representing the position of �k,m in the spa-
tial domain (x, y) , and ||�k,1∶M(x, y)||1 indicates the activ-
ity level of the source image. Thus, the activity level map 
�k(x, y) can be generated by

To enhance the noise robustness of the algorithm, a 
window-based averaging strategy is applied in �k(x, y) to 
achieve the final activity level map:

where r is the size of the window, and r = 9 . Then the fused 
coefficient maps are obtained through the “choose-max” 
strategy:

Accordingly, the detail layer can be fused as

(23)

�

2
||AC − y + u||2

2
=

�

2
||
(

C

DC

)
−

(
y0
y1

)
+

(
u0
u1

)
||2
2

=
�

2
||DC −

(
y1 − u1

)||2
2
+

�

2
||C −

(
y0 − u0

)||2
2
.

(24)

1

2
||Wy1 − I

d
k
||2
2
+ �||y0||1 + �

2
||y1 −

(
DC + u1

)||2
2
+

�

2
||y0 −

(
C + u0

)||2
2
.

(25)y
(j+1)

0
= argmin

y0

�||y0||1 + �

2
||y0 −

(
C + u0

)||2
2
,

(26)

y
(j+1)

1
= argmin

y1

1

2
||Wy1 − Id

k
||2
2
+

�

2
||y1 −

(
DC + u1

)||2
2
,

(27)
(
WTW + �I

)
y1 = WT Id

k
+ �

(
DC + u1

)
.

(28)�k(x, y) = ||�k,1∶M(x, y)||1.

(29)Āk(x, y) =

∑r

p=−r

∑r

q=−r
Ak(x + p, y + q)

(2r + 1)2

(30)�f ,1∶M(x, y) = �k∗,1∶M(x, y), k
∗ = argmax

k

(
�k(x, y)

)
.
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Finally, through the coefficient �b
f
 of the base layer and �d

f
 of 

the detail layer, the fused image can be reconstructed as (32)

5  Experimental Results and Comparison

To show the performance of the method, we use the widely 
used 14-pair multi-focus images as the testing dataset, a por-
tion is as shown in Fig. 4.

5.1  Measurement

The following four objective metrics are selected to verify 
the performance of our algorithm:

The phase congruency based fusion metric ( QP ) [34], the 
mutual information-based fusion metric (MI) [35], the edge 
similarity measure ( QAB∕F ) [36], and the fusion measure of 
image distortion ( Q0 ) [37]. The larger the value, the better 
the performance.

5.2  Comparison Algorithm and Parameter Settings

We select the following five fusion algorithms ASR [38], 
NSCT [39], CS-MCA [40], NSST-PAPCNN [41], DWT-SR 
[10],which are more advanced in recent years, to conduct 
comparative experiments.

(31)�
d
f
=

M∑
m=1

�m × �f ,m.

(32)�f = �
d
f
+ �

b
f
.

The parameter settings of the proposed fusion method 
are: convolution sparse representation: � = 0.01 , and a dic-
tionary filter of 12 × 12 × 36 is selected.

We use the commonly used multi-focus image database 
for experiments, all images are grayscale images, and their 
size is 256 × 256.

5.3  Comparative Analysis of Experimental Results

For the testing images, Gaussian noise (� = 0, � = 0.0005,

0.001, 0.005, 0.01) , salt and pepper noise (with density of 
0.01 and 0.02) and Poisson noise are added, respectively.

In Fig.  5, the fusion results obtained by NSST-
PAPCNN and ASR are relatively low, lose a lot of detail 
and cannot provide clear visual effect. The detailed infor-
mation above the number "11" on the right dial is rela-
tively fuzzy, and the black dot on the right is not clear. By 
CS-MCA, the collar of the character is relatively blurred, 
and there are artifacts in the upper left corner of the clock 
dial. By DWT-SR, the scale on the upper right of the 
dial is not clear, and there are artifacts on the face. By 
NSCT, the letter part of the clock has no detailed infor-
mation and the border of the human head is blurred. And 
the above fusion results also have some spatial discon-
tinuities. In contrast, the fusion image generated by our 
algorithm has higher definition and the details are clearly 
distinguishable.

In Fig. 6, the NSST-PAPCNN and ASR method scenes 
are relatively blurry, and the fusion result has block 
effects. The detail information on the lower left part of 

Fig. 4  A portion of multi-focus images used in our experiments
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the large bottle body is not obvious and there are arti-
facts on the inner edge of the gear, indicating that there 
are misclassified pixels. The fusion results of NSCT and 
DWT-SR all have spatial discontinuities, which affect the 
overall fusion effect. The pendant on the large bottle of 
the DWT-SR method has artifacts and the upper edge is 
not clear.

In the NSCT method, the edge of the table in the lower 
left corner is blurred and has artifacts. In the fusion results 
obtained by the CS-MCA method and the method in this 
paper, the scene detail information is retained better and 
the overall effect is better. However, in CS-MCA, there 
are still some details that are not completely extracted, 
the upper right part of the gear and the pendant on the 
large bottle are both blurred. In contrast, the fusion result 

of our method has higher contrast and is more clearly 
distinguishable.

To further illustrate the robustness of the algorithm, 
the objective evaluation indicators are analyzed. Sta-
tistical results in Table 1 are the average values of all 
methods in the same dataset and among the maximum 
is bolded.

The data in Table 1 show that DWT-SR and ASR are 
low in QP and QAB∕F , indicating that they cannot well 
retain the structural information and edge information 
of the source image. And the NSST-PAPCNN, DWT-
SR, and NSCT algorithms are also low in Q0 . The above 
results indicate that there are defects in the reservation 
of its details, which is consistent with subjective vision. 
The NSST-PAPCNN, DWT-SR, and NSCT algorithms 

Guassian noise
(μ=0,б=0.001)

Guassian noise
(μ=0,б=0.0005)

Guassian noise
(μ=0,б=0.01)

Salt&pepper
noise

(d=0.01)

Salt&pepper
noise

(d=0.02)

Poisson noise

Image A Image B
NSST-

PAPCNN CSMCA
DWT-
SR ASR NSCT

Guassian noise
(μ=0,б=0.005)

proposed

Fig. 5  The first pair of image fusion results
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are also low in MI, which indicates that the fused images 
retain less the original information of the source image, 
resulting in poor fusion effect. Our method performs bet-
ter than other methods in distortion and detail preser-
vation. Because its detail structure is clearer, and more 
rich detail information is preserved. It can be seen from 
Table 1 that except for salt and pepper noise, our method 
has higher value for each index, and the quality of fusion 
is better.

6  Conclusion

In this study, an improved pigeon-inspired optimization 
bionic algorithm is proposed for multi-focus noisy image 
fusion. First, by two-scale image decomposition, the 

source image containing noise is decomposed into base 
layer and detail layer. The detail layer is fused by boundary 
handling for convolution sparse representation to complete 
the fusion of the detail layer coefficients. Based on the con-
volutional sparse representation for image fusion greatly 
reduces the time complexity by solving in the frequency 
domain, and at the same time avoids possible boundary 
artifacts through effective boundary handling. The base 
layer image is fused with optimized weight obtained 
through pigeon-inspired optimization, and the range of the 
optimized weight is determined by complementary edges, 
which can effectively strengthen target information and 
edge information. Finally, the final fusion image is gener-
ated by the superposing the base layer and the detail layer. 
The experimental results show that our method has better 
performance in fusion effect and noise robustness.

NSST-
PAPCNN CSMCA
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SR ASR NSCTImage A Image B

Guassian noise
(μ=0,б=0.0005)

Guassian noise
(μ=0,б=0.001)
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Salt&pepper
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Poisson noise
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Fig. 6  The second pair of image fusion results
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