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Abstract
Surface roughness, which has a significant influence on fatigue strength and wear resistance, is an important technical
parameter. In practical machining, it is unstable and may be larger than the acceptable surface roughness due to unstable
machining process. This will seriously deteriorate the surface performance of the workpieces. Therefore, an effective surface
roughness stabilization method is of great significance to improve machining efficiency and reduce machining cost. In this
paper, a surface roughness stabilization method is proposed and illustrated by taking five-axis machining as an example.
A self-learning surface roughness prediction model based on Pigeon-Inspired Optimization and Support Vector Machine
is firstly constructed and its prediction error is only 8.69% in the initial stage. This model has the self-learning ability
that the prediction accuracy can be improved with the increase of training data. Furthermore, a machining parameters self-
adaption adjustment method based on digital twin is proposed to make the machined surface quality stable. In this method,
considering the feasibility of practical machining operation, the cutter posture (i.e. lead angle and tilt angle in five-axis
machining) and spindle speed are selected as the adjustable parameters. When the predicted surface roughness doesn’t meet
the requirements, the Gradient Descent algorithm is applied to recalculate the new parameters for adjustment. According
to the experimental results, the proposed method can stabilize surface roughness and improve the surface quality, which is
vital for the precision manufacturing of complex workpiece. Meanwhile, it also greatly improves the intelligence level of
manufacturing and production.

Keywords Surface roughness stabilization · Pigeon-Inspired Optimization and Support Vector Machine (PIO–SVM) ·
Self-learning · Machining parameters self-adaption adjustment · Digital twin

Introduction

The surface quality usually directly affects the physical,
chemical and mechanical properties of the workpiece, such
as friction performance, fatigue resistance, wear resistance,
lubrication ability etc. Surface roughness, themost important
index to evaluate the surface quality, is therefore selected as
a key technology requirement for parts production (Liu et al.
2016). Although the usage of multi-material components is
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increased with the sustainable development of modern man-
ufacturing, the most parts are mono-material components
at present. In the machining of mono-material components,
arithmetic average height (Ra) is widely used as an important
technical index to characterize the surface roughness; while
in the machining of multi-material components, Ra cannot
fully represent the surface quality (Ullah et al. 2015). This
paper focuses on the surface roughness of mono-material
components, so the Ra can be used as an evaluation criterion.
The surface roughness is continually changing in practical
machining, and often has an increasing trend due to tool
vibration, tool wear and plastic deformation of workpiece
material. In consequence, an effective surface roughness sta-
bilizationmethod is needed to get better surface performance
of the workpiece. Meanwhile, the measurement of surface
roughness is a very time-consuming process. It should be
pointed out that surface roughness prediction model with
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high precision is not only the basis of controlling and stabi-
lizing surface roughness but also can avoid the high cost and
longtimemeasurement process. Over the past decades, many
researchers have been carried out for establishing surface
roughness prediction model, which can be approximately
fall into three categories: theoretical method, experimental
design method, and artificial intelligence (AI) method.

In the first category, based on the machining theory, sur-
face roughness prediction model (usually a mathematical
equation for machined surface) is established by consider-
ing cutter shape, workpiece material properties, installation
error, machining dynamics (Benardos and Vosniakos 2003).
Munoz-Escalona andMaropoulos (2015) proposed a surface
roughness prediction model based on cutter trail geometric
analysis for any combination of workpiece and tool. Simi-
larly, Lu et al. (2017) established a cutter flexible deformation
model based on cutting force, and uses this model to build a
surface topography simulation model for predicting surface
roughness. To reduce the non-uniformity of surface rough-
ness, Sun et al. (2018) proposed a relative standard deviation
of surface roughness (RSDS) method based on relative tool
sharpness to predict the surface non-uniformity. To predict
the in-process surface roughness during machining, Tangjit-
sitcharoen et al. (2017) developed a prediction model based
on the dynamic cutting force ratio. In this model, the effects
of spindle speed, feedrate cutter diameter, cutting depth and
dynamic cutting force ratio on surface roughness are con-
sidered simultaneously. Liang et al. (2017) analyzed the
influence of cutter path orientations on surface roughness and
found that the horizontal upward direction of cutter path was
beneficial to the surface quality. In addition, considering the
effect of machining parameters on surface roughness, Chen
et al. (2011) developed a new surface roughness prediction
model integrating path-interval and feed-interval scallops.

In the second category, the surface roughness model is
established in various machining by experimental design
method. The common experimental design methods include
Taguchi method, full factorial design method, response sur-
face methodology (RSM) and so on. Compared to other
methods, RSM is usually applied to surface roughness pre-
diction due to requiring only a small number of experiments.
Karkalos et al. (2016) researched the optimal machining
parameters ofTi-6Al-4V titaniumalloy forminimumsurface
roughness with RSM. Noordin et al. (2004) researched the
performance (mainly surface roughness and cutting force) of
tungsten carbide tool by RSM. The study find that the feed
speed is the main influence factor of surface roughness. Sim-
ilarly, under dry drilling condition, Cicek et al. (2015) used
RSM method to optimize drilling parameters to improve the
surface quality of holes.

In addition to the above two methods, AI method, a pow-
erful prediction tool with self-learning and self-adaption
ability, is also widely applied to predict surface roughness.

Ghosh et al. (2019a, b) proposed a surface roughness pre-
diction model in keyway milling based on artificial neural
network (ANN), and used genetic algorithm (GA) and par-
ticle swarm optimization (PSO) to find the optimal cutting
conditions. In grinding, Ullah et al. (2010) divides 3D sur-
face finish into three features (trend, irregularity, burst) and
models them with different mathematical procedure. Pan
et al. (2020) presented a surface roughnessmodellingmethod
based on back propagation neural network (BPNN) and
an activation function selection approach for grinding to
improve the prediction accuracy and efficiency. To achieve
the prediction and monitoring online of surface roughness,
Huang et al. (2017) establish a Grey online modeling surface
roughnessmonitoring (GOMSRM) systembased on theGrey
theory and bilateral best-fit method. In the high speedmilling
process, Xu et al. (2020) proposed a novel improved case
based reasoning method to predict the surface roughness.
Pimenov et al. (2018) applied random forest (RF), multi-
layer perceptron (MLP), regression tree (RT), radial basis
function (RBF) to establish the relationship between cutter
wear, cutting power and surface roughness, among which RF
has the highest prediction accuracy and followed by RT. To
improve the surface quality of workpiece in additive man-
ufacturing (AM), Li et al. (2019) introduced a data-driven
surface roughness predictionmethod. The implementation of
this method is by using ensemble learning algorithm to train
data extracted fromsensors. InRao andMurthy (2016),RSM,
support vector machine (SVM) and ANN are employed to
predict the surface roughness in steel boring. The machin-
ing parameters are optimized for minimal surface roughness
through multi response optimization approach. Ullah (2017)
used the improved Q-Sequence to build a surface roughness
prediction model, which could regenerate the surface height
(i.e., the surface contour).

Under the same machining conditions (including cutter,
workpiece, machining parameters etc.), the surface rough-
ness predicted by the above all models is constant value.
However, in practical machining, surface roughness of the
machined workpiece can’t be stable due to the influences
of tool wear, vibration, heterogeneity of material proper-
ties, stability of process system and other factors. Therefore,
dynamic factors should be considered to accurately predict
surface roughness. Cutting force is usually considered as one
of the most important dynamic factors that affect surface
roughness and machining accuracy (Geng et al. 2015). This
paper proposed a prediction model considering dynamic cut-
ting force and machining parameters, which can effectively
reflect the influence of geometry and machining dynamics
on surface roughness.

Further, the surface roughness usually fluctuates in a very
short time, which may cause the machined workpiece to fail
to meet the actual needs, thus increasing the manufacturing
cost andmachining time. Therefore, a real-time and effective
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surface roughness control method is very important. Digital
twin, as an important approach to realize intelligent inter-
connection and interaction fusion of manufacturing physical
world and virtual information world, is an effective method
to solve this problem.Many scholars have explored the appli-
cation of digital twins in manufacturing industry. In previous
research, Tuegel et al. (2011) used digital twin to build virtual
aircraft models and combined physical data with virtual data
to predict fatigue life. To create virtual models in the digital
twin system, Ullah (2019) proposed a method of semantic
modeling, and took cutting force as an example to verify
the effectiveness of the method. Redelinghuys et al. (2019)
developed a six-layer architecture for the digital twin which
including physical twin, local data layer, IoT Gateway layer,
cloud-based databases layer and emulation and simulation.
To improve the efficiency and accuracy of prognostics and
health management (PHM), Tao et al. (2018) established a
5-dimension digital twin model for complex equipment. To
improve the intelligence of manufacturing, Tong et al. (2020)
presented a real-time machining data application and service
based on digital twin technique and take 5-axis machine tool
as example to build a twin model of dynamic characteris-
tics. Ghosh et al. (2020) proposed the definition of a digital
twin system, which consists of input, processing and out-
put components. Taking surface roughness as an example,
the process of modeling, simulation and verification in digi-
tal twin system is introduced in detail. In Lim et al. (2019),
the application of digital twin in different fields, the current
development bottleneck and future research perspectives are
introduced comprehensively.

Five-axis machining is one of the most widely used
machining approaches for sculpture surface due to its advan-
tages of flexibility, high efficiency and high quality (Liu
et al. 2018). Therefore, the proposed surface roughness sta-
bilization method based on digital twin is illustrated by the
case study in five-axis machining. The rest of this paper is
organized as follows. “Construction of self-learning surface
roughness prediction model based on PIO–SVM” section
proposes a self-learning surface roughness prediction model
based on Pigeon-Inspired Optimization and Support Vector
Machine (PIO–SVM). In “Experimental validation and dis-
cussions” section, the proposed predictionmodel is validated
by a series of experiments. “Digital twin-driven parameters
self-adaption adjustment method towards surface roughness
stabilization” section describes themethod of combining this
model with digital twin to maintain surface roughness sta-
ble. The conclusion of this paper is described in “Conclusion”
section.

Construction of self-learning surface
roughness predictionmodel based
on PIO–SVM

In this section, a self-learning surface roughness prediction
model based on PIO–SVM is developed. The basic principle
of SVM is briefly introduced, which is the basis for the estab-
lishment of surface roughness prediction model. To improve
the prediction accuracy, PIO algorithm is applied to optimize
the parameters of SVM model.

The basic theory of SVM

Support vectormachine (SVM) is amachine learningmethod
based on structural risk minimization principle proposed by
Vapnik (2000) using statistic studying theory.Comparedwith
the traditional machine learning approaches represented by
neural network, SVM has obvious advantages in theoreti-
cal basis, training process, node number, weight vector and
global optimal solution (Vapnik 1999). The basic idea of
SVM is to simplify searching the optimal linear hyperplane
to a convex programming problem. The sample space is
nonlinear mapped to a feature space with high- or infinite-
dimension. In this way, the linear learning machine can be
applied to solve the nonlinear problems (including classifi-
cation and regression) in high-dimensional feature space.

Its regression function can be written as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f (x) �
N∑

i�1
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∗
i ≤ C
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i

)
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where αi and α∗
i are Lagrangian multipliers, C is penalty

factor and its role is to adjust the error of model, K(
xi , x j

)
is kernel function, xi , x j are arbitrary support vec-

tors corresponding to
(
αi − α∗

i

) �� 0 and
(
α j − α∗

j

)
�� 0,

respectively.

Establishment of surface roughness prediction
model based on SVM

The selection of training set and test set

The training set is used to describe how the influencing fac-
tors affect surface roughness and established the decision
function. The test set is used to evaluate the accuracy of
decision function established by the training set. In this paper,
lead angle (L), tilt angle (T ), cuttingdepth (ap), spindle speed
(n), feedrate ( f ) and average cutting force (F̄) are consid-
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ered as the influencing factors. Please refer to Wang (2015)
for the detailed descriptions of these factors.

Data pre-processing (normalization)

In order to shorten the training time and improve the pre-
diction accuracy of regression model, the training sample
set need to be normalized. In this paper, the training set is
normalized into [0, 1]. Its calculation formula is as follows:

x ′
i � xi − xmin

i

xmax
i − xmin

i

(2)

where x ′
i and xi are the sample data before and after normal-

ization, respectively; xmax
i and xmin

i are the maximum and
minimum of the influencing factor i of surface roughness.

The selection of kernel function

Kernel function is an important part of establishing regres-
sion prediction model in SVM, and its reasonable selection
is helpful to improve the accuracy of prediction model. The
function of kernel function is to transform the problem of lin-
ear inseparability in low-dimension space into the problem
of linear separability and linear regression in high-dimension
space. The radial basis kernel function (RBF) has a rela-
tively simple calculation formwith less input parameters and
stronger learning ability (Shamshirband et al. 2016). There-
fore, the RBF should be selected as the kernel function of
regression prediction model and can be described as follows:

K
(
xi , x j

) � exp
{
−g

∣
∣xi − x j

∣
∣2

}
, (g > 0) (3)

The optimization for parameters C and g of the SVM
using PIO

The selection of parameter C penalty factor and parameter g
kernel bandwidth has important influence on the accuracy of
regression prediction model. Compared with PSO algorithm
and GA algorithm, PIO has faster convergence speed, higher
accuracy and stability (Qiu and Duan 2020). Hence, it is used
to select the best C and g in this paper.

Duan and Qiao (2014) first proposed the PIO algorithm,
inspired by the navigation behavior of the pigeon. In PIO,
each pigeon is a solution to a problem and the optimal
solution is the pigeon with the highest fitness value. This
algorithm consists of two parts: Map and compass operator
and Landmark operator. The mathematical models for each
part are described as follows:

Map and compass operator

The pigeons use their field-sensing abilities to form maps
in their brains and then sense the earth’s magnetic field.
Meanwhile, they adjust their flight direction according to
the altitude of the sun. As the pigeons get closer to their des-
tinations, they become less dependent on the sun and earth’s
magnetic field. The pigeon population is Ng and the number
of iterations for map and compass operator is Nt,1. Define
pigeon i with its location Li � [li,1, li,2, . . . , li,n] and veloc-
ity Vi � [vi,1, vi,2, . . . , vi,n], where n is the dimension of
search space. In map and compass operator, the new location
Li and velocity Vi of each pigeon can be updated according
to the following rules:

Vi (k) � Vi (k − 1) · e− f k + rand · (Lb − Li (k − 1))

Li (k) � Li (k − 1) + Vi (k) (4)

where k represents the number of iterations and k ∈ [
1, Nt,1

]
,

f is the map and compass factor, and rand is a random
value in [0, 1], and Lb represents the optimal solution for the
current iterations.

Landmark operator

When the pigeons are near their destination, they switch from
relying on the sun and earth’s magnetic field to relying on
nearby landmarks. If they know well nearby landmarks, they
would fly directly to their destination. Otherwise, the unfa-
miliar pigeons will follow the familiar pigeons familiar with
landmarks to their destination. In this process, the number
of pigeons decreased by half in each iteration and the num-
ber of iterations for landmark operator is Nt,2. Similarly, the
location and velocity of the pigeons are calculated by the
following equations:

Ng � Ng

2
, k ∈ (

Nt,1, Nt,2
]

LC (k) �
∑

Li (k) · f i tness(Li (k))

Ng · ∑
f i tness(Li (k))

Li (k) � Li (k − 1) + rand · (LC (k) − Li (k − 1)) (5)

where f i tness is a function of each solution’s quality, and
this function represents the mean square error (MSE) cor-
responding to each parameter C, g. When dealing with a
minimization problem, the f i tness(Li (k)) can be expressed

as 1
f i t(Li (k))

; When dealing with a maximization problem,

the f i tness(Li (k)) can be expressed as f i t(Li (k)). Each
pigeon’s optimal location at the kth iteration can be denoted
as Lo � min

(
Li,1, Li,2, . . . , Li,k

)
.

The complete flowchart of the SVM model parameters
optimized by PIO is shown in Fig. 1. The experimental data
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Fig. 1 The complete flowchart of PIO–SVM

isfirstly normalized.Then, the prediction accuracy is selected
as the fitness function and the training data is input into the
PIO algorithm to obtain the optimal C and g, which is used
for the construction of surface roughness prediction model.

Experimental validation and discussions

The experiment design

In experiments, the workpiece material is AL7075 which is
usually used in aerospace industry. The 5-axis machine tool
is Mazak INTEGREX e-1060 V/8 S. The cutting force is
measured using a Kistler 9139A dynamometer (see Fig. 2a).
AMitsubishi carbide ball-end cutter (helix angle: 30°; diam-
eter: 10 mm) is used for slot milling. Surface roughness Ra

is measured by FTS Intra (see Fig. 2b). In order to reduce
the measurement error as much as possible, Ra is the mean
value of five evenly distributed measured points whose mea-
surement positions are marked by a marker-pen. Meanwhile,
each experiment (including the training and test set) is carried
out twice repeatedly.

The experiment results and discussion

For each group of experiments, the Ra are basically the
same in the two repeated experiments. The final Ra is the
mean value of two experiment results. To build the predic-
tion model, a total of 50 experiments were designed and
conducted, including two sets of two-factor four-level full
factorial experiments, and two sets of three-factor three-
level orthogonal experiments. 40 experiments are randomly
selected as the training set, and the remaining 10 experi-
ments are selected as the test set. The training set are shown
in Table 1. The initial parameters of PIO algorithm are set
as: Ng � 100, n � 2, f � 0.3, Nt,1 � 100, Nt,2 � 150.
The optimal C and g are 0.5 and 1 respectively.

The machining parameters and predicted results of test set
are shown in Table 2. The column below Rpre−P

a represents
the predicted surface roughness calculated by the proposed
model, while the column below Ra is the measured surface

Fig. 2 The experimental details.
a 5-axis machine tool, b surface
roughness measuring instrument

Cutter

Dynamometer

Workpiece

Fixtures

(a) (b)
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Table 1 Experimental results of
the training set No. L

(◦)
T
(◦)

ap
(mm)

f
(mm/min)

n
(rpm)

F̄
(N)

Ra(µm)

1 0 0 1.5 600 4800 155.00 0.2906

2 15 0 1.5 600 4800 149.51 0.1794

3 30 0 1.5 600 4800 121.23 0.3855

4 45 0 1.5 600 4800 93.85 0.2553

5 0 15 1.5 600 4800 104.75 1.3363

6 15 15 1.5 600 4800 93.64 0.3695

7 30 15 1.5 600 4800 85.25 1.6502

8 45 15 1.5 600 4800 75.51 1.1773

9 0 30 1.5 600 4800 78.80 1.9792

10 15 30 1.5 600 4800 77.71 0.9771

11 30 30 1.5 600 4800 71.85 1.1421

12 45 30 1.5 600 4800 68.82 1.3591

13 0 45 1.5 600 4800 71.33 1.4831

14 15 45 1.5 600 4800 71.13 1.2840

15 30 45 1.5 600 4800 80.04 1.0445

16 15 0 2.5 800 6000 190.99 0.2591

17 30 0 2.5 800 6000 186.25 0.7390

18 45 0 2.5 800 6000 177.34 2.7680

19 0 15 2.5 800 6000 171.56 1.5793

20 30 15 2.5 800 6000 154.12 1.1183

21 0 30 2.5 800 6000 152.23 0.5848

22 15 30 2.5 800 6000 138.09 0.3905

23 30 30 2.5 800 6000 132.64 1.3162

24 45 30 2.5 800 6000 158.68 2.3047

25 15 45 2.5 800 6000 130.45 0.5599

26 30 45 2.5 800 6000 131.75 0.5207

27 45 45 2.5 800 6000 148.41 0.8290

28 0 0 1.25 800 6000 143.60 0.1748

29 0 0 1.5 600 6000 139.14 0.1832

30 0 0 1.5 800 7200 158.46 0.2331

31 0 0 1.5 1000 4800 219.31 0.4342

32 0 0 1.75 600 7200 144.30 0.5604

33 30 30 1.25 600 4800 144.30 0.7357

34 30 30 1.25 800 6000 98.17 1.5216

35 30 30 1.25 1000 7200 68.71 2.2689

36 30 30 1.5 600 6000 57.03 1.1494

37 30 30 1.5 800 7200 57.16 0.3273

38 30 30 1.5 1000 4800 154.00 0.9971

39 30 30 1.75 600 7200 108.65 2.1557

40 30 30 1.75 1000 6000 130.19 2.0400

roughness. To testify the validation of the proposed model,
the Prediction Error (Pe) of each set of experiments is calcu-
lated with the formula as follows:

Pe �
∣
∣
∣R

pre−P
a − Ra

∣
∣
∣

Ra
(6)

It can be seen that the predicted Rpre
a is basically con-

sistent with the actual measured Ra . The average prediction
error (APE) is only 8.69%, which has a high prediction accu-
racy at the initial stage. Comparedwith the traditional surface
roughness prediction model, the proposed model considers
the influence of cutter posture (i.e. lead angle and tilt angle)
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Table 2 Comparison between the measured and predicted Ra

No. L
(◦)

T
(◦)

ap
(mm)

f
(mm/min)

n
(rpm)

F̄
(N)

Ra

(µm)
Rpre−P
a

(µm)
Pe (%) APE Rpre−G

a

(µm)
Pe (%) APE

1 45 45 1.5 600 4800 88.61 1.0260 1.1921 16.18 8.69% 1.0432 1.68 11.65%

2 0 0 2.5 800 6000 199.06 0.4451 0.4647 4.40 0.5096 14.49

3 15 15 2.5 800 6000 159.59 0.6131 0.6879 12.20 0.7209 17.58

4 45 15 2.5 800 6000 174.38 1.2759 1.1685 8.41 1.3560 6.27

5 0 45 2.5 800 6000 136.62 0.6304 0.6169 2.14 0.5618 10.88

6 0 0 1.25 600 4800 140.44 0.3496 0.3793 8.49 0.3536 1.15

7 0 0 1.25 1000 7200 138.74 0.6980 0.5963 14.57 0.5656 18.97

8 0 0 1.75 800 4800 218.54 0.2914 0.2679 8.06 0.3577 22.77

9 0 0 1.75 1000 6000 194.07 0.3820 0.3848 0.74 0.4371 14.42

10 30 30 1.75 800 4800 107.11 0.9923 1.1084 11.70 1.0750 8.33

and dynamic cutting force on surface roughness. There are
two reasons for this consideration. On the one hand, in our
previous research (Zhao et al. 2019), it is found that cut-
ter posture changes the distribution of cutting force and thus
affects surface roughness.On the other hand, the cutting force
is unstable due to cutter vibration and the heterogeneity of
material, which will lead to poor surface quality (Wang et al.
2015). Meanwhile, on-line measurement of cutting forces
is very easy. Therefore, surface roughness can be predicted
online by inputting real-time data of cutting forces into the
proposed prediction model. In addition, this model also has
the ability of self-learning. Parameters C, g of the model
will be updated continuously with the increase of the training
data to improve the prediction performance. Compared with
Grid Search (GS) technology, the prediction performance of
C and g obtained by PIO is better. To prove this, with the
same training data, the C and g obtained by GS is 0.45 and
1.9 respectively. Its predicted results are shown at the col-
umn below Rpre−G

a in Table 2. It can be observed that the
maximum Pe and APE predicted by GS method are 22.77%
and 11.65% respectively, which are much larger than that
of the PIO. This fully proves that the proposed model can
predict surface roughness effectively and quickly when the
machining parameters and dynamic average cutting force are
known.

In addition, surface roughness of the machined workpiece
is unstable due to instability of the cutting force. As a result,
under the given the machining parameters (obtained by the
workers’ machining experience), surface roughness may not
meet the technology requirements. According to our pre-
diction model, the variation trend of surface roughness can
be monitored online to judge its stability. Meanwhile, the
spindle speed and cutter posture can be adjusted online in
machining considering the machine tool’s operational fea-
sibility. So, the surface roughness can be stabilized and
controlled by adjusting spindle speed and cutter posture. In
order to prove the effectiveness of this method, a set of sim-

Table 3 Comparison of experimental results under different adjustable
parameters

No. L
(◦)

T
(◦)

ap
(mm)

f
(mm/min)

n
(rpm)

F̄
(N)

Ra

(µm)

1 0 0 1.0 600 7200 107.49 0.4882

2 0 0 1.0 600 5200 118.84 0.3692

3 5 0 1.0 600 7200 105.73 0.4760

4 5 0 1.0 600 4400 129.49 0.3346

5 15 0 1.0 600 4400 122.32 0.2995

6 15 5 1.0 600 4400 108.85 0.4341

ulation results is carried out. The simulation is selected for
two reasons: (1) The proposed prediction model is accurate
enough to take the predicted surface roughness as the actual
value; (2) The simulation can reduce the machining cost and
save the machining time. The simulation results are shown
in Table 3.

According to the experimental results, the surface rough-
ness decreased markedly from 0.4882 µm to 0.2995 µm by
adjusting the adjustable parameters (cutter posture and spin-
dle speed). This means that the workpiece only needs to be
machined once to obtain the desired surface quality, which
greatly improves the machining efficiency and reduces the
machining cost.

However, it is possible to obtain satisfactory surface
roughness with many adjustable parameter combinations,
which means that the optimal one needs to be selected effec-
tively and simply. Therefore, a parameter adjustment strategy
basedonGradientDescent (GD) is proposed.When the initial
machining parameters (obtained by the manual of machin-
ing process and worker’s machining experiences) can’t meet
the machining requirements, the GD is used to identify
the optimal parameter adjustment steps and output the new
adjustable machining parameters to ensure surface rough-
ness stability. The complete parameters adjustment strategy
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Fig. 3 The parameter adjustment strategy based on GD

is shown in Fig. 3. It should be noted that if the current surface
roughness is still larger than the acceptable surface roughness
after 4 times adjustment, this indicates that only adjusting the
cutter posture and spindle speed cannot meet the machining
requirements, and other parameters (the cutting depth, fee-
drate, etc.) also need to be adjusted.

Digital twin-driven parameters self-adaption
adjustment method towards surface
roughness stabilization

Based on the above prediction model, the surface rough-
ness can be accurately predicted in real time and its stability
trend can be monitored. The simulation results in Table 3 has

proved the effectiveness of the surface roughness stabiliza-
tion method, that is, the surface roughness can be reduced
obviously by adjusting the adjustable parameters. This is of
great significance for the control of surface roughness. If the
surface roughness is larger than a preset threshold (Rmax

a ,
the acceptable surface roughness), the adjustable machin-
ing parameters (cutter posture and spindle speed) need to
be adjusted to reduce surface roughness to an acceptable
criteria. This is a very complex dynamic change problem,
which involves the real-time interaction and fusion of var-
ious machining information. Therefore, new and effective
approaches are need to solve the problem. Digital twin is
a simulation process that reflects the whole life cycle pro-
cess of physical equipment by using physical model, sensor
update and operation history data (Lu et al. 2020). With the
help of digital twin, it can be realized that surface rough-
ness can be predicted online based on the real-time input
data and the parameters of machine tool can be adjusted
simultaneously based on the feedback information of predic-
tion model and parameter adjustment strategy. Therefore, a
novel surface roughness stabilizationmethod based on digital
twin-driven parameters self-adaption adjustment is proposed
in this paper. The traditional digital twin system structure
usually includes modeling, simulation, verification and other
steps (Ghosh et al. 2019a, b). As the surface roughness pre-
diction model has been established and its accuracy has been
verified by experiments, it only needs to be embedded into
the digital twin system and conduct online prediction based
on real-time data. The driving mode of digital twins is shown
in Fig. 4. The models and data are the core of digital twins.
The data is the foundation of the model, and the model is
the embodiment of the data. In this paper, data are divided
into two categories: (1) static data: geometric dimensions
of workpiece, material properties, cutter parameters, etc.;

Fig. 4 Surface roughness
stabilization method based on
digital twin
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(2) dynamic data: machining parameters, cutting force, etc.
These data are used for modeling and prediction of surface
roughness in digital world. Meanwhile, the adjusted param-
eters need be fed back to the machine tool in the physical
world for adjustment.

The complete optimization method as follows:

(1) The initial machining parameters should be determined
firstly.

(2) The cutting force is measured in real time and the aver-
age cutting force over a period is calculated. The surface
roughness is then calculated based on the proposed pre-
diction model.

(3) If surface roughness is a stable trend (i.e., Ra ≤ Rmax
a ),

it is proved that the current machining parameters meet
the machining demands; Otherwise, it is necessary to
recalculate the machining parameters through parame-
ter adjustment strategy and feedback it to the machine
tool.

(4) The whole process is repeated until the end of the
machining.

Conclusion

In this paper, a surface roughness stabilization method based
on digital twin-driven machining parameters self-adaption
adjustment is proposed to obtain stable surface quality in
five-axismachining. Some significant conclusions are shown
as follows:

(1) A novel self-learning surface roughness prediction
model based on Pigeon-Inspired Optimization and Sup-
port Vector Machine (PIO–SVM) is proposed, which
takes the influence of cutter posture and cutting force
on surface roughness into consideration. The average
prediction error of the proposed model is only 8.69%
at the initial moment. In addition, the model will be
updated automatically with the increased training data
to enhance the accuracy of prediction.

(2) A parameter adjustment strategy based on Gradient
Descent (GD) for surface roughness stability is pro-
posed. Considering the feasibility of practical operation,
the cutter posture (i.e. lead angle and tilt angle in five-
axis machining) and spindle speed are considered as the
adjustable parameters. Based on GD method, the rea-
sonable parameters are selected to adjust to meet the
machining requirements.

(3) To make the whole machined surface meet the surface
roughness technology requirements, a surface rough-
ness stabilization method combining the proposed pre-
diction model and digital twin technology is proposed.
In this method, the adjustable parameters are adjusted

automatically in real time to keep the surface rough-
ness stable according to the trend of surface roughness,
which is very important to improve the intelligence level
of the whole machining system.

Using the proposed method, the surface roughness of the
workpiece is stable and meets the final machining require-
ments, which is greatly to improve the machined surface
properties, machining efficiency and reduce manufacturing
cost. This is of crucial importance for the machining of com-
plicated and precise workpiece with sculptured surfaces. In
the future work, the idea of surface roughness stabilization
method will be applied to other machining technology.
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