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A B S T R A C T   

Smart manufacturing (SM) enables production scheduling to automatically adjust the original plan to meet 
customer demands. The deep integration of advanced information technologies also makes SM systems prone to a 
wide range of possible attacks. However, rapid recovery in response to damage has not aroused enough 
recognition. This paper addresses the issue of resilience metrics and recovery optimization for SM systems. First, 
the characteristics of smart manufacturing scheduling (SMS), coupled with its execution, damage, and dual- 
strategy recovery behaviors, are analyzed. Afterward, a novel time-based resilience metric oriented toward 
the quantification of rapid recovery is proposed. Furthermore, a decision-making framework composed of a joint 
optimization model and a modified pigeon-inspired optimization algorithm with an enhanced learning strategy 
and crossover operator (PIOLC) is established. Last, a case study of a flexible job shop scheduling problem with 8 
jobs and 8 machines is conducted to verify the effectiveness of the work. Experimental results show that the 
proposed approach can achieve dual-strategy recovery optimization by increasing the system resilience to 86.2%.   

1. Introduction 

Developments in the integration of information technology, 
computing capacity, and artificial intelligence accelerate the digital 
transformation of manufacturing from a primarily physical process to 
smart manufacturing (SM) [1,2]. Production scheduling is an important 
operational activity with regard to the allocation of service resources 
that is required to minimize human involvement to meet customer de-
mands in a SM environment [3]. The characteristics of smart 
manufacturing scheduling (SMS) on levels of technical sophistication, 
integration and automation magnify its advantages of being efficient 
and autonomous, while also increasing the risk of being attacked, 
whether over network links or physical devices [4]. The threats facing 
large-scale deployment SMS systems are critical and with more incidents 
than equipment failures and production losses. The consequences extend 
well beyond harm to the industrial process. 

To response to damage and ensure on-time delivery after disruptions, 
efficient recovery policies need to be automatically generated in an 

acceptable timeframe to meet the requirements of practical production. 
Hence, to recover from disruptions and sustain production, a systematic 
scheme accompanied by: 1) an accurate performance measure, 2) a 
feasible decision-making framework, and 3) an effective optimization 
approach, is indispensable. This study investigates the problem of 
resilience metrics for SMS and its recovery optimization. 

Resilience is widely used to describe the capacity to adapt and 
recover from disruptions and has attracted attention in manufacturing 
systems in recent years. To this end, a number of authors have proposed 
research into investigations of how resilience can be developed to 
reduce the impact of threats [5–8]. In spite of this, the aforementioned 
studies pay more attention to resilient control methodologies rather than 
the design of a proper resilience metric. Although these indicators are 
basically obtained by performance losses or attribute-based methods 
[9], they are not necessarily applicable to a SM system. By introducing 
“Resilient Operator 5.0′′, the need for resilience was emphasized in [10], 
especially for SM systems, it would be upgraded to an agile and recon-
figurable pattern where advanced technologies were used to react and 

* Corresponding author. 
E-mail addresses: fengqiang@buaa.edu.cn (Q. Feng), haixingshuo@buaa.edu.cn (X. Hai), ZY2114124@buaa.edu.cn (M. Liu), dezhenyang@buaa.edu.cn (D. Yang), 

wzl@buaa.edu.cn (Z. Wang), renyi@buaa.edu.cn (Y. Ren), sunbo@buaa.edu.cn (B. Sun), caibaoping@upc.edu.cn (B. Cai).  

Contents lists available at ScienceDirect 

Journal of Manufacturing Systems 

journal homepage: www.elsevier.com/locate/jmansys 

https://doi.org/10.1016/j.jmsy.2022.08.010 
Received 16 May 2022; Received in revised form 30 July 2022; Accepted 29 August 2022   

mailto:fengqiang@buaa.edu.cn
mailto:haixingshuo@buaa.edu.cn
mailto:ZY2114124@buaa.edu.cn
mailto:dezhenyang@buaa.edu.cn
mailto:wzl@buaa.edu.cn
mailto:renyi@buaa.edu.cn
mailto:sunbo@buaa.edu.cn
mailto:caibaoping@upc.edu.cn
www.sciencedirect.com/science/journal/02786125
https://www.elsevier.com/locate/jmansys
https://doi.org/10.1016/j.jmsy.2022.08.010
https://doi.org/10.1016/j.jmsy.2022.08.010
https://doi.org/10.1016/j.jmsy.2022.08.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmsy.2022.08.010&domain=pdf


Journal of Manufacturing Systems 65 (2022) 486–497

487

recover from a disruption. Though delivering increased resilienc, there 
is presently a lack of empirical evidence showing indications of how it 
can be built in the digital era. Recent perspectives have concentrated on 
a quick recovery [11] and rapid changes [12] in existing organizational 
processes, which can be understood as positively adjusting to shocks as 
well as responding to the demand for on-time delivery. Accordingly, the 
resilience indices related to time have been put forward to assist systems 
to recover faster from a disruptive event. The recovery speed was 
considered as a metric in [13] where the performance in resilience 
measure was quantified based on the ability to meet end-user demands. 
In an attempt to be more focused, Carvalho et al. [14] introduced a 
resilience index of on-time delivery to two specific failure modes. 
Nevertheless, a simple aggregation method was unable to guarantee the 
independence between performance and time variables. Besides, an 
empirical-based approach with a special case showed a lack of gener-
ality. Before that, Henry et al. [15] proposed a generic resilience metric 
that was quantified as a function of time, whereas the rapid recovery was 
not easy to embody in such cases. According to Romero et al. [16], the 
build-up of manufacturing resilience required innovative combinations 
of adapting existing production capabilities and developing new ones by 
reframing current patterns. To the best of author’s knowledge, no study 
by far has proposed a unified metric considering both fully time-based 
variables and efficient practice that can quantify smart manufacturing 
resilience of rapid recovery. To fill the gap, we attempt to exploit the 
resilience metric and corresponding recovery strategies in the direction 
of production innovation based on the conceptual framework of 
manufacturing resilience engineering. 

Popular recovery strategies in response to disruptions, rescheduling 
and maintenance have attracted many researchers to assign 
manufacturing scheduling. The former minimizes the adverse effect by 
updating an existing schedule and planning activities for the next time 
period [17], while the latter is carried out to respond to damage and 
rectify faults [18]. For this reason, both rescheduling and maintenance 
deal with not only the response to disruptions [19,20], but also the 
optimization of performances in production [21,22]. However, in most 
of the literature, these two items have been employed separately, which 
limits the acquisition of high-quality solutions, particularly under 
inevitable dynamic events [23]. 

To balance trade-offs between the two parts, the integrated optimi-
zation of maintenance and scheduling has received more attention in 
recent years. To minimize the expected make-span, Hu et al. [24] pro-
posed a joint decision-making strategy combining job scheduling and 
preventive maintenance for a two-machine flow shop problem. Simi-
larly, Yang et al. [25] formulated the integrated optimization problem as 
Markov decision process where a learning-based algorithm was used to 
find the optimal production policy. By integrating a flexible job shop 
problem into a mixed-integer programming model, Ghaleb et al. [26] 
considered the real-time joint optimization of maintenance and sched-
uling to address a series of uncertainties in a SM system. To fully 
consider production efficiency and machine reliability, Chen et al. [27] 
established an integrated multiobjective optimization model with flex-
ible scheduling and accurate maintenance. According to the conducted 
literature, the addressed criteria mainly concern with make-span, costs, 
tardiness and reliability of machines. Additionally, there is a lack of a 
unified decision-making framework on the integration of rescheduling 
with maintenance by addressing the issue of resilience-oriented recov-
ery optimization. In fact, when regarding rescheduling as an automatic 
process while performing maintenance by human operators, this inte-
gration will become a necessity to build SM resilience which can be 
explained based on the data analysis in [28]. Specifically, the coopera-
tion ensures the optimal operation of a SM system [10]. Consequently, 
formulating SM resilience into a unified dual-strategy optimization 
model by simultaneously considering rescheduling and maintenance 
policies deserves more attention. The focus in this paper is on extending 
the current work by developing a new scheme in this area. 

As a bioinspired swarm intelligence algorithm, pigeon-inspired 

optimization (PIO) and its variants were proven competitive in the 
quick speed of convergence and superior optimal solutions[29–31]. 
Unlike other heuristic approaches widely implemented for rescheduling 
and maintenance optimization problems, little work has been conducted 
in manufacturing using this new optimizer. While Wu et al. [32] and Fu 
et al. [33] extended PIO to multiobjective cases and developed hybrid 
methods to solve production scheduling problems, the objectives were 
similar to other research studies. In addition, the lack of population 
diversity of the original algorithm limits its potential in complex prob-
lems [34]. Thus, in this research, a PIO algorithm that introduces an 
enhanced learning strategy and crossover operator is utilized to achieve 
resilience-oriented dual-strategy optimization. 

Despite numerous research studies, it is still challenging to elaborate 
unified and integrated approaches able to quantify and optimize the 
resilience of a SMS to identify the optimal decision-making. Thus, this 
research is devoted to providing an overall solution to address the above 
issues. The unique contributions of this paper include: 1) A novel time- 
based resilience metric is given for SMS systems. By utilizing the resil-
ience triangle as the underlying rationale, this proposed resilience 
metric considers both fully time-based variables and efficient strategies 
that can quantify smart manufacturing resilience of rapid recovery; 2) A 
solution framework is established based on a joint optimization model 
considering maintenance and rescheduling strategies simultaneously. As 
a unified decision-making scheme, it is applicable to help management 
make well-informed decisions to fulfil production demand; 3) A new 
variant of the PIO algorithm with an enhanced learning strategy and a 
crossover operator is proposed where the learning strategy, a parameter 
updating mechanism and population diversity are promoted to support 
the resilience optimization with dual-strategy recovery. 

The remainder of this paper is organized as follows: Section 2 is 
devoted to a description of the problem. The characteristics of SMS, 
attack-oriented recovery policies and a graph-based dual-strategy rep-
resentation are detailed in this section. Section 3 introduces the time- 
based resilience metric. The solution framework is established in Sec-
tion 4 where a joint optimization model and the proposed PIOLC algo-
rithm are given. A case study for a flexible job shop scheduling problem 
is presented in Section 5. Finally, Section 6 concludes the paper and 
gives suggestions for future research. 

2. Problem descriptions 

2.1. Characteristics of scheduling in the SM environment 

In the SM environment, the scheduling problem is generally 
considered a system with both self-management capabilities and the 
mechanism of human-technology integration [35,36]. As a typical task 
of SMS, job-shop scheduling considers a set of n jobs {J=J1,J2,…,Jn} are 
processed on a set of m machines {M=M1,M2,…,Mm} at the beginning of 

Fig. 1. A conceptual diagram of the smart manufacturing job shop sched-
uling procedure. 
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the schedule. During the production process, each job Ji, i = 1,2,…,n 
contains a predetermined sequence of operations {Oi,1,Oi,2,…,Oi,ki}, 
where ki represents the total number of operations of Ji. Note that each 
operation Oi,j, j = 1,2,…,ki can be executed by a set of candidate ma-
chines M(Oi,j)⊆M, with the processing time of the same operation 
varying on different machines, which is denoted by pijk. 

On this basis, a conceptual diagram (see Fig. 1.) of the procedure is 
given with the main characteristics:  

1) The workshop is characterized by large-scale, distributed 
deployment;  

2) The communication and data transmission between devices are 
realized through high-speed mobile internet;  

3) The functions of the control center include receiving orders, online 
monitoring, real-time decision-making, and service assessment;  

4) There is always an interaction of humans and technology in the 
scheduling process. 

2.2. Recovery policies 

During the whole production scheduling period, random attacks can 
inevitably occur and cause damage to the machine. To cope with dis-
ruptions, two widely used recovery policies are investigated where 
random attacks arrive following a nonhomogeneous Poisson process 
[37]. 

2.2.1. Rescheduling strategy 
In response to changes during production, rescheduling generates a 

new intersected schedule that changes the scheme of initial operations. 
In this work, a total rescheduling method, called regeneration [17], is 
adopted that reschedules the entire set of operations not processed 
whether they were affected or not. Accordingly, it is a concrete policy 
produced by a designed algorithm to determine how the remaining 
operations are rearranged. Thus, a rescheduling strategy involves 1) 
updating an existing schedule and 2) generating a new schedule that 
consists of assigning both a set of machines M(Oi,j) and a start time ts(i,j) to 
each unfinished operation in the set O= ∪1≤i≤nOi. Note that 
decision-making is instantaneous, and a rescheduling point is a disrup-
tive time. 

2.2.2. Maintenance strategy 
As another recovery strategy to cope with disruptions, the mainte-

nance strategy is applied to restore the system to an as-good-as-new state 
by directly repairing damaged machines or replacing failed components 
[38]. Despite various types of maintenance policies, not all of them are 
suitable for handling emergencies since unintended events will inevi-
tably take place. As emphasized in [10], one of the stops on the road to 
failure of any system is failing to anticipate a problem before it has 
arrived. Additionally, considering the need of low-cost and time-saving, 
a widely used corrective maintenance (CM) strategy is adopted in this 
work. 

By describing a SM system as the marriage of information, technol-
ogy, and human ingenuity [10], human operators are capable of finding 
solutions to problems without obvious tools and provide the highest 
contribution to the system resilience when adapting to an unexpected 
change. With that in mind, the specific implementations of a CM strat-
egy, involving repairing a faulty machine or replacing a failure 
component with another new one, are achieved by human operators. As 
a result, the interrupted machine(s) resumes its initial state, after per-
forming CM for a period of time. It should be noted that the 
decision-making time is negligible; hence, the strategy can be expressed 
by the average maintenance time. 

Suppose an attack occurs at time td, causing damage to m machines 
denoted by M1,M2,…,Mm, respectively. For any machine Mk, k = 1,2,…, 
m, the average maintenance time required to perform a maintenance 
strategy ATk is a constant value depending only on the machine itself. 

2.3. A graph-based dual-strategy representation 

Despite the popularity of rescheduling and maintenance in dealing 
with disruptions, the two strategies are independently carried out during 
a manufacturing process; however, there are two sides to their imple-
mentation due to the uncertainty of attacks and the degree of product 
completion. 

In this study, rescheduling and maintenance strategies are integrated 
into a directed graph (see Fig. 2, where the vertices in the same column 
correspond to the alternative machines of an operation, while the arc of 
the graph represents the schedule of an operation. As shown in Fig. 2, a 
feasible solution of any job Ji, i = 1,2,…,n processing on different ma-
chines can be viewed as a full path from the dummy start node Si to the 
dummy end node Ei. In the meantime, each machine Mk has three status 
including “idle”, “unavailable” and “occupied” that can be converted to 
each other, where the value Sk=0 stands for an idle state (no operation 
processed, colored in green), Sk= − 1 represents an unavailable state 
(machine breakdown, colored in red), and Sk= 1 represents an occupied 
state (in operation, colored in yellow). Only when the machine is idle 
can an operation be processed on it; otherwise, it will either wait or be 
replaced with a new route. 

It should be noted that the processing routes of operations through 
the machines are dynamically generated during the production phase, 
with the aim being, to find an optimal order such that the objectives are 
optimized. In particular, with disruptions incorporated, production 
scheduling requires that optimize rescheduling and maintenance jointly, 
in practice, to obtain satisfactory solutions. Thus, according to the 
definition in Section 2.2 and the graph-based method, the rescheduling 
strategy can be viewed as choosing another available node to relink the 
path (the arc colored in red), while maintenance is expressed by waiting 
in place (the arc colored in green) until the status changes from Sk= − 1 
to Sk= 0. 

3. Time-based resilience metric 

In this section, the proposed resilience metric based on completion 

Fig. 2. Directed graph representing feasible solutions of each job.  

Fig. 3. Time axis of a scheduling system with disruptions.  
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time for a SMS system is introduced. Then, the supplementary element 
needed for its computation is detailed, thereby developing a thorough 
and inclusive system of resilience. 

3.1. Resilience metric based on completion time 

Resilience is considered an inherent attribute of an engineering 
system covering time-related properties that is determined by mainte-
nance resources [39,40]. The required resources are sufficiently pro-
vided with the continuous improvement of productivity under the 
background of SM. Therefore, the time factor itself becomes one of the 
critical performance criteria for a scheduling system whether disrup-
tions occur or not. 

Considering the time of a scheduling procedure as illustrated in  
Fig. 3, the task starts from the initial time t0 to the completion time t2 of 
the last finished operation. The duration of the process without dis-
ruptions t2 − t0 is denoted by Δtn which is also recognized as a common 
criterion “make-span” in scheduling problems. Suppose a disruptive 
event occurs at time t1(t1 < t2), resulting in machine breakdowns and the 
interruption of ongoing operations. Recovery actions, including main-
tenance and rescheduling, will be carried out instantaneously until all 
remaining operations are completed at t3. Thus, the total completion 
time is extended to t3 − t0, in which Δts= t1 − t0 and Δtr= t3 − t1 indicate 
the execution time before and after the disruption, respectively. 

According to previous descriptions, the ability of the system to 
respond to failures is related to the duration of recovery strategies Δtr. 
However, the external disruptions should not be involved in the quan-
tification; thus, a ratio of delay Δts+Δtr − Δtn

Δtn 
is used as a substitute to pre-

cisely eliminate randomness. On this basis, the time-based resilience ρ(t) 
proposed in this study can be defined as “the efficiency of accurately 
completing the schedule of a set of jobs” via the following equation: 

ρ(t) = e−
Δts+Δtr − Δtn

Δtn (1)  

where ρ is a real number within (0,1] and the natural exponential 
function e(.) is used to balance the change effect of ρ and make it easy to 
integrate. It is obvious that the value of resilience ρ increases, with 
decreasing recovery duration. 

3.2. Integrity-based correction factor 

Based on the previous definition, the proposed resilience metric is a 
completely time-based function, which benefits from the viability and 
sustainability of production in SM environment. However, the rise of the 
Industrial 4.0 has always brought about increased risks [41], such as a 
pandemic, severe demographic challenges, local war, etc. To further 
perfect the metric and provide a more comprehensive quantification, an 
integrity coefficient κ, κ∈(0,1] is detailed in this part. It should be noted 
that the integrity coefficient is used simply as a correction factor and is 
not always incorporated in the formulation. For example, when re-
sources are limited, it can be regarded as a factor to ensure the 
completion of scheduling. 

The integrity coefficient reflects the degree of the resources available 
in a scheduling process. In this proposed formula, it is also employed as a 
correction factor of resilience and is quantified by the changes in system 
resources before and after adopting recovery strategies, which can be 
mathematically shown as follows: 

κ = e
−

∑
kini −

∑
kin

′

i∑
kini (2)  

where ni∈R denotes the available quantity of scheduling products of type 
i∈N * under normal conditions, and ki denotes the corresponding 
importance correction factors. On this basis, ni

’ and ki
’ represent the 

available machines and corresponding importance correction factor, 
respectively, at the end of recovery. 

Let ρ’(t) be the resilience of a scheduling system at time t. In its basic 
form, ρ’(t) describes the efficiency of the scheduling completion, as 
considered to be the product of two components in the following 
equation: 

ρ′(t) = κ • ρ(t) (3) 

Evidently, the value of resilience ρ’ is within (0,1] and increases with 
the increase in ρ when κ remains constant. 

4. Solution framework and method 

To address the issues previously described, this section introduces 
the modeling of the joint optimization problem, the solution framework, 

Fig. 4. Solution framework of the proposed method.  
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and the proposed approach. The framework incorporates maintenance 
with rescheduling by merging and simplification of node status, which 
allows a more flexible and efficient dual-strategy method compared with 
any single strategy. As a result, the enhanced PIO algorithm can be 
implemented on the joint optimization model. 

4.1. Solution framework 

The purpose of the optimization is to produce a sequence of opera-
tions to be processed on each machine with their processing start times 
in such a way that the given resilience metric is maximized and the 
problem constraints are satisfied. According to the definitions in Section 
3.1, the proposed resilience is only related to the recovery policies; thus, 
Eq. (1) can be further written as: 

ρ(φ) = e−
Δts (φ)+Δtr (φ)− Δtn

Δtn (4)  

where φ consists of rescheduling φres and maintenance φrep which is 
expressed by φ = φrep∪φres. 

Based on the graph-based representation method, we can further 
analyze the two strategies from the system level, that is, once the 
maintenance is conducted, there is no difference between the current 
unavailable status and the occupied status of a machine. To simplify the 
problem, maintenance can be regarded as a special occupancy state; 
thus, there will be two states of the machine, in which Sk= 1 indicates an 
occupancy, Sk= 0 denotes an idle state. The rescheduling strategy in-
volves determining the machine-operation allocation, as well as the 
scheduled start time of each remaining unprocessed or unfinished 
operation. The maintenance process can be considered as a special kind 
of operation with a certain period of processing time MTk. 

In order to further clarify the solution of dual-strategy recovery in 
this work, a framework can be established, which is shown in Fig. 4. 

4.2. Modeling of the joint optimization problem 

4.2.1. Notations for variables 
When the system is set for maintenance at the end of the current 

mission, a component can be either in a functioning state or in a failed 
state. Hence, two decision variables are used to describe the status of an 
operation Oi,j at the beginning of a scheduling and a rescheduling 
process: 

x(i,j,k) =
{

1
0

}

(5)  

y(i,j,k*) =

{
1
0

}

(6)  

where x(i,j,k) and y(i,j,k*) are both binary and determine whether machine 
Mk(Mk*) processes operation Oi,j, where 1 means processed and 0 means 
unprocessed. 

4.2.2. Objective function and constraints 
Based on the recovery of a scheduling system and the objective 

functions, the optimization model is as follows: 

maxρ = max{e−
Δts (φ)+Δtr (φ)− Δtn

Δtn } (7) 

subject to the following constraints:  

1) Only one machine can be selected for each operation at a time: 

∑m

k=1
x(i,j,k) = 1,∀i, j (8)  

∑m

k*=1

y(i,j,k*) = 1,∀i, j (9)  

where x(i,j,k)+ y(i,j,k*)= 1 should be satisfied.  
2) The processing duration of Oi,j, on machine Mk, denoted by pd(i,j,k), is 

determined by its start time ts(i,j,k) and completion time tc(i,j,k): 

ts
(i,j,k) + x(i,j,k)pd(i,j,k) = tc

(i,j,k) (10)    

3) The time constraints between the two adjacent operations (Oi,j and 
Oi,j+1) of the same job: 

{
tc
(i,j,k) − tc

(i,j,k*) − pd(i,j+1,k) ≥ 0
ts
(i,j,k) − tc

(i,j,k*) ≥ 0 , k ∕= k*, j ≤ j + 1

}

(11)  

4.3. Enhanced pigeon-inspired optimization 

Despite the promising results in different aspects of practical issues, 
PIO still suffers from premature convergence of local optima. Consid-
ering the limitations of the algorithm mainly depend on the coefficient 
and learning mechanism [34], we introduce a hybrid strategy to 
strengthen the performance of the algorithm and apply it to the joint 
optimization problem. 

4.3.1. Flowchart 
In the basic PIO algorithm, each pigeon i (1 ≤ i ≤ N) has the position 

vector Xi
iter and the velocity vector Vi

iter, which are updated following the 
map and compass operator and the landmark operator [29] in each 

Fig. 5. Flowchart of PIOLC.  

Q. Feng et al.                                                                                                                                                                                                                                    



Journal of Manufacturing Systems 65 (2022) 486–497

491

iteration iter. In the first stage, the pigeons fly through the D-dimensional 
solution space under the guidance of their own global best position 
Xgbest, while the second stage is implemented depending on the central 
position of the selected individuals Xcenter. In this work, the improve-
ments are summarized as follows:  

1) The learning strategy is enhanced to make full use of the knowledge 
of all pigeons to regulate the motion scheme;  

2) A reasonable parameter updating mechanism is introduced to 
improve the flexibility of the algorithm for various problems; 

3) A new arithmetic crossover operator is utilized to increase the pop-
ulation diversity during the search process. 

On this basis, the flowchart of the PIOLC algorithm can be illustrated 
in Fig. 5. 

4.3.2. The learning strategy and parameter updating mechanism 
Based on the analysis in [34], the proper learning strength from the 

global best position Xgbest and the center Xcenter is important to improve 
algorithm performance. Accordingly, in our proposed scheme, each pi-
geon takes advantage of the experiences of the population, i.e., the 
global best position and the center of all pigeons contribute to Vi

iter and 
Xi

iter. Thus, the social learning components of Vi
iter and Xi

iter comprise 
terms of form (Xgbest− Xi

iter) and (Xcenter− Xi
iter). The important concern in 

this regard is to define proper coefficients for the mentioned terms. 
In the first stage, the map and compass operator provide navigation 

cues for each pigeon. The more capable pigeons play more important 
roles in the optimization. Therefore, the coefficient is defined to be 
proportional to the fitness of the global best position of the pigeons. To 
avoid a local optimum, randomness is included in our design. Moreover, 
a separate social learning coefficient for each pigeon is also given to 
improve the search ability. From the foregoing, the social learning co-
efficient of the map and compass operator Miter= [m1

iter,m2
iter,…,mN

iter] is 
computed as: 

Miter = Fiter • Randiter (12)  

where Fiter= [f1iter,f2iter,…,fNiter] denotes the normalized fitness values of the 
pigeons and Rand represents a normalized nonnegative random matrix 
of dimensions N × N whose elements rji

iter are chosen within the range of 
[0,1]. More precisely, fiiter is calculated as: 

f iter
i =

Xiter
i • fit(Xiter

i )

∑N

j=1
Xiter

j • fit(Xiter
j )

(13)  

where fit(⋅) represents the fitness of a given position. Using Eq. (12), 
mi

iter∈[0,1] is derived as: 

miter
i = f iter

1 • riter
1i +⋯+ f iter

N • riter
Ni =

∑N

j=1
f iter

j • riter
ji (14) 

In the second stage, pigeons unfamiliar with landmarks are aban-
doned, and the remaining pigeons dominate the direction of the algo-
rithm. Compared with the global best position Xgbest, the center Xcenter 
has a stronger effect on escaping from a local optimum. As a result, the 
coefficient of the term (Xcenter− Xi

iter) should be greater than the 
component in the first stage, which is defined as: 

liter = max{miter
i } (15)  

where liter will be within the range of [0,1]. 
The last parameter, representing individual inertia, is the map and 

compass factor R, which is set to a constant value in PIO and most of its 
variants. In this work, R is decreased over iterations using the following 
equation: 

Riter+1 = ω • Riter (16)  

where ω is a damping factor that is set to 0.87 and the initial value of R is 
set to 1. 

4.3.3. The crossover operator 
To increase the diversity of the population, the crossover operator is 

conducted between a selected pigeon ps and a random pigeon pr with 
probability Pc

iter. In our design, the offspring is created by: 

Xiter
i = Xiter

i + μiter • Xr (17)  

where μiter denotes the weight parameter and Xr is the position of pr. On 
this basis, the offspring substitutes for the original pigeon. 

Clearly, the diversity of the population can be increased by using the 
crossover operator. However, for a production scheduling optimization 
problem, the convergence speed and accuracy should be more consid-
ered. Thus, to further facilitate the convergence performance, two 
damping parameters λP and λμ are applied to Pc

iter and μ, respectively, 
which can be computed as 

Fig. 6. Encoding scheme of a pigeon.  
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Piter+1
c = λP•Piter

c (18)  

μiter+1 = λμ•μiter (19)  

where the initial values of λP and λμare set to 1. 

4.3.4. Encoding and decoding mechanism 
In our proposed algorithm, two vectors are included in each pigeon: 

the operation scheduling vector and machine assignment vector, which 
are represented by XO and XM, respectively. The dimension D of each 
vector is equal to the number of all operations in the scheduling, 
rescheduling jobs. As shown in Fig. 6, the encoding scheme is given by 
an operation-based representation method. In the row of operation 
scheduling vectors, each number corresponds to a job and is distin-
guished by various colors. In the row of machine assignment vectors, the 
number represents the index of the machine in an available machine set 
M of each operation. Details of this example with 8 jobs and 8 machines 
are listed in Table 1. Thus, the operation scheduling vector XO= [1, 3, 3, 
1, 1, 4, 4, 6, 5, 6, 2, 2, 4, 1, 2, 5], where the first element 1 denotes the 
first operation of J1, and the last element 5, which appears twice, in-
dicates the second operation of J5. The machine assignment vector 
XM= [2, 3, 5, 1, 1, 2, 3, 1, 1, 4, 2, 4, 2, 3, 4, 2], where the third element 5 
indicates that O3,2 is processed on a machine with an index value of 5 
from the available machine set {M1,M3,M4,M5,M6}, which is denoted by 
M6. 

Since decoding can be interpreted as the reverse of encoding, it is 
executed by returning the two vectors back into the solutions with 
considerations of constraints (1), (2) and (3). 

5. Case study 

To evaluate the effectiveness of the proposed method and the per-
formance of the PIOLC algorithm, an example of a flexible job shop 
scheduling problem with 8 jobs and 8 machines is investigated as the 
case study. 

5.1. Implementation and parameter settings 

The PIOLC is written and implemented in MATLAB R2018b on an 
Intel (R) Core (TM) i5–6200 personal computer running on a 2.30 GHz 
processor with 8 G RAM memory. The detailed processing time of op-
erations is listed in Table 1. 

Table 1 
Processing time of operations (minutes).  

Job Operation Processing duration (min)   

M1 M2 M3 M4 M5 M6 M7 M8 

J1 O1,1 5 6 9 4 7 8 7 –  
O1,2 7 – 9 6 5 10 – 6  
O1,3 4 5 – 7 6 3 5 –  
O1,4 – 2 3 – 5 4 8 6 

J2 O2,1 5 6 8 9 – 10 7 –  
O1,1          

O1,1          

O2,2 9 8 7 – 4 – 7 5  
O2,3 3 – 6 8 – 2 4 7  
O2,4 10 8 9 6 4 7 – – 

J3 O3,1 5 8 9 11 6 7 4 –  
O1,1          

O1,1          

O3,2 9 – 8 6 12 15 10 7  
O3,3 2 4 5 6 – 10 – –  
O3,4 9 9 – 8 5 6 7 3 

J4 O4,1 11 12 9 14 – 10 8 –  
O1,1          

O4,2 7 – 5 – 6 – 9 –  
O4,3 – 10 – 7 8 11 9 –  
O4,4 5 8 5 9 – 7 – 10 

J5 O5,1 5 6 7 8 9 – 10 –  
O1,1          

O5,2 10 – 7 4 9 8 6 –  
O5,3 – 9 8 7 4 5 7 –  
O5,4 9 9 – 6 7 5 4 6 

J6 O6,1 6 7 5 4 6 9 – 3  
O1,1          

O1,1          

O6,2 11 – 9 9 9 7 6 4  
O6,3 10 8 9 10 11 – 10 –  
O6,4 – – 9 10 11 8 9 10 

J7 O7,1 5 4 7 6 7 – 10 –  
O7,2 – 9 – – 11 7 – –  
O7,3 – 8 9 3 8 6 – 10  
O7,4 7 8 9 3 8 6 10 2 

J8 O8,1 2 6 5 9 – 4 – 7  
O8,2 7 4 7 8 9 – 10 –  
O8,3 5 5 – 8 5 6 7 4  
O8,4 3 5 – – 8 7 – – 

Processing time of operations (minute). 

Fig. 7. Gantt chart for the original scheduled in a nondestructive mode.  
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5.2. Computational results 

5.2.1. Scheduling solution found by PIOLC 
In this subsection, the effectiveness of the proposed PIOLC algorithm 

is initially evaluated. As illustrated in Fig. 7, the optimal solution and 
operations sequence found by PIOLC for the 8 × 8 problem can be ob-
tained. Specifically, the make-span value is “35′′, which means that all 
scheduled jobs will be completed and all candidate machines are 

available at t = 35 when attacks do not launch throughout the entire 
schedule period. 

For the above production scheduling process, assume that an attack 
launches at t = 8, causing damage to machines 1 and 8, and the corre-
sponding operations are interrupted. Then, the current status of the 
system can be shown in Fig. 8, where four operations are finished (green 
box), one operation is interrupted (red box with red edge), six operations 
are affected (red box with black edge), and the remaining 20 operations 

Fig. 8. Schematic diagram of the impact when an attack arrives resulting in 2 machines damage.  

Fig. 9. Gantt chart of the recovery process under different strategies: (a) results under dual-strategy with maintenance on M1 and rescheduling on M8; (b) results 
under dual-strategy with maintenance on M8 and rescheduling on M1; (c) results under maintenance strategy; (d) results under rescheduling strategy. 

Q. Feng et al.                                                                                                                                                                                                                                    



Journal of Manufacturing Systems 65 (2022) 486–497

494

are unaffected (white box). 
According to this design, recovery policies immediately executed to 

resume production when an attack arrives. As can be seen from Fig. 9(a)- 
(d), the 27 unfinished operations have been completed based on 
different strategies and the corresponding Gant charts of the recovery 
process are given. Fig. 9(a) indicates that all rest scheduled jobs are 
completed at t = 45, where maintenance strategy is applied to the ma-
chine M1 while the 2 operations originally processed on M8 are reas-
signed to other available machines. The result of the opposite strategy is 

given in Fig. 9(b) with a completion time t = 42. Since M8 did not un-
dertake too many tasks at first, some operations involved in reschedul-
ing are arranged on it after the maintenance. Fig. 9(c) and (d) represent 
the results under maintenance and rescheduling strategies, respectively. 
In terms of the rescheduling strategy, the recovery time is reduced so 
that the last operation ends at t = 39. This shows the effectiveness of our 
proposed method in rapid recovery to a certain extent. 

5.2.2. Analysis of resilience evolution 
To further demonstrate the overall superiority and effectiveness of 

our proposed method, the resilience evolution process of the above case 
is analyzed in this subsection. The convergence trends of recovery 
strategies on resilience optimization are shown in Fig. 10 (a)-(c). In each 
case, the recovery strategies are composed of maintenance, reschedul-
ing, and a dual-strategy method. About parameter settings, we set the 
number of iterations to 1000, population size to 100, and each instance 
is performed for ten counts of experiments. Obviously, the resilience 
optimization can be realized based on our proposed PIOLC algorithm. It 
can be seen that the dual-strategy occupies a competitive achievement 
for reaching the maximum resilience value of 0.862. While maintenance 
holds the lowest terminate value among the three strategies and its 
optimal value is merely close to the worst value of the dual-strategy. 

The comparisons of mean convergence curves are given in Fig. 10 (d) 
which implies overall recovery capabilities of the strategies. Clearly, the 
dual-strategy considering both rescheduling and maintenance obtains 
the best recovery results and shows a superiority of convergence rate. As 

Fig. 10. The convergence curves of resilience: (a) results under the maintenance strategy; (b) results under the rescheduling strategy; (c) results under the dual- 
strategy; (d) comparison of mean convergence curves. 

Table 2 
Resilience convergence values under different number of machine damage.  

Strategies Descriptive statistics Number of machine damage 

2 3 4 5 

Maintenance Best 0.6376 0.8425 0.9179 0.6897 
Worst 0.5688 0.5315 0.4690 0.6153 
Mean 0.6234 0.6585 0.6635 0.6569 
Std Dev 0.0255 0.0966 0.1617 0.0334 

Rescheduling Best O1,1 

O1,1 

0.7034 0.5437 0.4860 0.4328 

Worst 0.5759 0.4713 0.3652 0.3927 
Mean 0.6271 0.4980 0.4086 0.4128 
Std Dev 0.0418 0.0210 0.0378 0.0212 

Dual-strategy Best 0.8619 0.7688 0.6664 0.4591 
Worst 0.6294 0.5759 0.4990 0.4194 
Mean 0.7119 0.6547 0. 5997 0. 4333 
Std Dev 0.0650 0.0559 0.0558 0.0183  
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a result, we can conclude that the proposed framework perfectly bal-
ances the strategy’s exploitation and exploration process to significantly 
enhance PIOLC’s search capabilities and recovery effect. 

5.3. Discussion 

Uncertainty management is a crucial part of any systems to achieve 
controllable behavior. To observe the effect of external attacks on the 
results, this stage of the computational study investigates the distribu-
tion of solutions under the situation of different degree of damage. 
Another aspect involving the arrival time of an attack will be discussed 
in the future work. 

5.3.1. Effect of damage degree 
In this subsection, we investigate the performances of the above 

strategies on resilience optimization problems with the number of ma-
chine damages is 2, 3, 4, and 5 respectively. Based on statistical data 
tested for 10 times, the detailed information of the convergence value is 
listed in Table 2. 

To intuitively observe the performances of different strategies, the 
solutions are compared in Fig. 11, and the followings have been found. 

For the resilience objective, all of the policies make production 
recover effectively, proving the competitiveness of the proposed 
approach. Benefiting from its more diversely solution combination, the 
dual-strategy covers a larger proportion of ideal solutions that the other 
two methods when the number of damages is small. From the average 
and the best results compared in Fig. 11 (a) and (b), we can see that 
resilience values applying rescheduling strategy and dual-strategy 
decrease as the number of machine damages increases, while the 
maintenance has the opposite trend. As shown in Fig. 11 (c), the worst 
value of each strategy decreases with the aggravation of damages. 
Although the advantages of maintenance strategy are becoming more 
and more obvious, it is also becoming more and more unstable until the 

number of damages reach 5 (see Fig. 11 (d)). 

5.3.2. Distribution of solutions in a dual-strategy method 
To effectively support decision-making, this section further studies 

the distribution of solutions in a dual-strategy method. In this regard, the 
resilience convergence values obtained based on the combination of 
different strategies in the above dual-strategy method are statistically 
analyzed. The distributions of resilience convergence values for each 
condition are available in Fig. 12 by quartile graphs and the top and 
bottom of the blue box correspond to the upper and lower quartile lines, 
while the values beyond the two short black lines are extreme outliers 
(shown as red star signs). 

Fig. 12 (a) shows that the unfinished operations processed on M1 are 
involved in rescheduling, and the maintenance strategy is conducted on 
M8 can make the system recover better after the two machines are 
damaged. From Fig. 12 (b)-(d), an obvious trend shows that with the 
increase of the number of machine damage, the proportion of mainte-
nance strategy in a dual-strategy method is gradually increasing for a 
better resilience. 

In general, the experimental results are reasonable, which indicates 
that our proposed method can initially provide an accurate scheme for 
decision-making. 

6. Conclusion 

In this paper, a novel resilience metric for SMS systems is proposed 
from the perspective of recovery oriented to time. The corresponding 
PIOLC optimization method is developed based on a dual-strategy re-
covery framework. A flexible job shop scheduling problem with 8 ma-
chines and 8 jobs is used to demonstrate the application of the metric 
and its corresponding dual-strategy recovery methodology. The exper-
imental results show that the resilience metric is reasonable and that the 
corresponding optimization is efficient. 

Fig. 11. Comparison of solutions under different strategies.  
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The proposed time-based resilience metric is different from the 
traditional quantifiable approaches where the quantification only in-
volves the time factor, which represents the most common but also the 
most critical component of SMS. This is also the main reason why it has a 
concise form and is easy to employ. The solution framework accompa-
nied by a graph-based dual-strategy representation and a joint optimi-
zation model provides the possibility for the implementations and trade- 
offs of rescheduling and maintenance. Owing to the enhanced PIO al-
gorithm, where global search capabilities are strengthened by the 
learning strategy and parameter updating mechanism, and the diversity 
of the population is increased by an additional crossover operator, the 
optimal solution of dual-strategy recovery can be realized through 
resilience optimization in an acceptable way. For the case of resilience 
optimization, the proposed systematic framework is general and thus 
can be applied to the design and analysis of SMS systems for any re-
covery process with uncertainties causing damage to machines. 

Although our proposed method showed prominent performances, 
simulation results based on a single case study with specific conditions 
can have some limitations. Due to mathematical combinations, selection 
of parameters, and data sources, the proposed resilience metric may 
have some deficiencies in scalability and flexibility. In practical appli-
cation, a disruptive event can eventually cause absolute or partial 
damages of both production and machines. Degradation failure and 
human factors are also important aspects that deserve consideration. 

For future research, other rescheduling and maintenance policies can 
be investigated to deal with real-time attacks. An integrated paradigm 
considering sustainability, resilience, and lean practices accompanied 

with multiobjective optimization approach can be further studied. 
Comparisons among PIOLC, data-driven methods, and AI-based tech-
niques are necessary. Uncertainties can be extended to arrival time and 
different failure modes. Human factors need to be precisely modeled in 
the proposed decision-making scheme. Another promising direction 
would be the investigation of similarities and differences between our 
proposed work and the concept of “Maintenance-free Factory” as well as 
reconfigurable manufacturing systems. 
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