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Abstract
In this paper, a short-term wind speed prediction model, called CEEMDAN-SE-Improved PIO-GRNN, is proposed to
optimize the accuracy of the short-term wind speed forecast. This model is established on account of the optimized
General Regression Neural Network (GRNN) method optimized by three algorithms, which are Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Sample Entropy (SE), and Pigeon Inspired
Optimization (PIO), separately. Firstly, decomposing the original wind speed sequences into several subsequences with
different complexity by CEEMDAN. Then, the complexity of each subsequence is judged by SE and the similar subse-
quences are combined into a new sequence to reduce the scale of calculation. Afterwards, the GRNN model optimized
by improved PIO is used to predict each new sequence. Finally, the predicted results are superposed as the eventual pre-
dicted value. Implementing the prediction for the wind speed data of a wind field in north China within 30 days by apply-
ing the different prediction models, namely, GRNN, CEEMDAN-GRNN, Improved PIO-GRNN, and CEEMDAN-SE-
Improved PIO-GRNN which are proposed in this paper. Comparing the prediction curves of different models with the
fitting curve of the actual wind speed shows that the optimal fitting effect and minimum error value are included in
CEEMDAN-SE-Improved PIO-GRNN model. Specifically, the values of mean squared error (MSE), mean absolute error
(MAE) and weighted mean absolute percentage error (WMAPE) separately decrease by 0.6222, 0.3334, and 8.5766%,
which compare with the single prediction model GRNN. Meanwhile, diebold-mariano (DM) test shows that the predic-
tion ability of the two models is significantly different. The above statements indicate the proposed model does great
advance in the precision of short-term wind speed prediction.
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Introduction

Time in recent decade, with the rapid deterioration of
the global climate, the wind power, a kind of renewable
clean energy, is gradually developed and utilized in
many countries and cities because of its advantages of
abundant reserves and wide distribution region.1,2 By
the end of 2019, Europe’s cumulative installed capacity
of wind power is 205GW, accounting for 15% of
Europe’s electricity demand.3 China’s cumulative
installed capacity is 210GW, accounting for 32.3% of
the total global installed capacity (650GW). In the
same year, the wind power generation of China also
developed rapidly, with 26.2GW of new installed
capacity, accounting for 43.4% of the new global
installed capacity (60.4GW), ranking the first in the
world.

Wind speed is one of the most important factors for
wind power generation. Nevertheless, the fluctuation,
stochasticity, and uncontrollability of wind speed result
in the instability for wind power, the difficulties in grid
connection and wind turbines control problems, which
all will pose huge difficulty to the stable and safe opera-
tion for the power system. The precise short-term wind
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speed prediction can not only decrease some operation
cost for the power network, but also is beneficial for
power system departments to conduct power dispatch.4

In recent decades, physical methods5 and statistical
methods6 are mainly used to optimize the precision of
wind speed prediction. The physical method mainly
uses the numerical weather forecast data, establishes
the expression through the relation of wind speed and
air pressure, air density, air humidity, and so on.
Finally, the wind speed forecast is realized. However,
due to the high complexity of wind speed and regional
differences in wind location, it is difficult to establish
high-precision short-term prediction for different regions.
Comparatively, the mathematical model of the statistical
method involves time series analysis, which is more accu-
rate than the physical method to realize the short-term
wind speed forecast. Time series prediction method,
based on the time series of historical statistical data, pre-
dicts, and analyzes the future trend of change. This
method uses the historical data of wind speed to establish
the mapping relationship between the input and output
of the system, and predicts the future wind speed. This
modeling process is simple and feasible with low cost.7

Literature8 applied WD (Wavelet Decomposition)
and AdaBoost neural network to implement wind
speed short-term prediction. However, the effect of
WD is influenced by the selection of wavelet base and
decomposition scale. Once determined, the result
obtained by decomposition is fixed frequency band,9

and the range of this frequency band is only related to
the sampling period. Hence, it does not have self-adapt-
ability. Compared with this defect, literature10 used
EMD and CNNSVM (Convolutional Support Vector
Machine) to conduct wind speed short-term prediction.
Specially, EMD was used to extract the fluctuation
characteristics of wind speed data and decompose the
time series of wind speed into several sub- sequences.
Although EMD has strong self-adaptability, there are
phenomena of modal aliasing, over-envelope and under
envelope. In order to suppress these, the hybrid model
including data processing, data clustering and data pre-
diction in literature11 was proposed to predict future
wind speed data. Among them, Kerny-based Fuzzy C-
means Clustering was applied in data clustering, data
prediction is applied in Wavelet Neural Networks, and
data processing is applied in EEMD. However, the
amplitude selection of this noise is very important. If it
is too low, modal aliasing cannot be suppressed; On
the contrary, calculation amount will be increased and
more pseudo-components will appear. In normal, the
amplitude is selected according to human experience,
which leads to certain errors in decomposition.

Compared with EEMD, the adaptive gaussian white
noise is appended in each stage through the
CEEMDAN.12–14 Each modal component is obtained
through operating the unique residual signal, which
effectively figures out the problem of low decomposi-
tion efficiency for EEMD and the difficulty of com-
pletely eliminating the noise.

The following contents are the contributions of this
paper:

1) In view of strong instability and volatility for the
original wind speed sequence, CEEMDAN is
employed to decompose it into a sequence of IMF
components with different complexity. However,
there are many similar complexity IMF compo-
nents. If a prediction model is established for each
IMF, it will not only increase the amount of mod-
eling and the time of prediction, but also accumu-
late errors in the final superposition process and
reduce the accuracy of prediction. Therefore, SE is
used to quantify the degree of irregularity of each
IMF component, and sequences with similar SE
values are combined to enhance the speed and pre-
cision for forecast.

2) GRNN model is used to predict the new combined
sequence, but traditional GRNN needed to be
tested and compared again and again to determine
the size of the smooth factor in the kernel function
of hidden regression unit. In this paper, the PIO
algorithm is introduced to automatically optimize
the smooth factor of GRNN.

3) The original PIO is prone to trap its result in a
local optimum, which is essential to be optimized.
A dynamic adaptive geomagnetic operator based
on an objective function is proposed to replace the
method of setting a fixed value of R for a geomag-
netic operator in the original method. The perfor-
mances of improved PIO, standard PIO and
standard PSO are respectively tested by four kinds
of nonlinear multi-peak function. By comparing
the algorithm optimization performance diagram,
optimal solutions, the worst values, the mean val-
ues, and the variance values, it shows that the
improvements of PIO algorithm can effectively
alleviate the issue which the algorithm is prone to
trap its result in a local optimum, and is able to
strengthen the optimization speed and accuracy for
the algorithm.

4) The prediction model is established based on
CEEMDAN-SE-Improved PIO-GRNN. The wind
speed data which derived from a power plant in
north China within 30 days is employed to imple-
ment the simulation experiment by the different
models, namely, GRNN, Improved PIO-GRNN,
CEEMDAN-GRNN, CEEMDAN-SE-GRNN,
and CEEMDAN-SE-Improved PIO-GRNN. The
comparison of the prediction curves, and following
error evaluation criteria, which is MSE, MAE and
WMAPE, certificates the proposed model pos-
sesses the superior prediction effect.

The following is the organization for the remaining
paper. The section 2 presents the wind speed data’s
source and the pretreatment and complexity analysis
method. The section 3 introduces the establishment of
the prediction model, including model establishment,
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model parameter optimization method and improve-
ment of the optimization method. The simulation anal-
ysis is implemented in the section 4. The section 5
summarizes the full text.

Preprocessing and complexity analysis of
wind speed data

The data sources

For wind speed prediction, total 2880 sets of wind
speed data, which were collected at 15-min sampling
intervals in January from a wind field of Zhangjiakou
city located between north China plain and inner
Mongolia plateau, were selected. Figure 1 shows the
sequence for the wind speed data.

It could be discovered in Figure 1 that the wind
speed sequence involves the feature of strongly instable
and fluctuant, which is the reason why it is difficult to
capture its characteristics with a single prediction
model, thereby affecting the prediction accuracy.

Complete ensemble empirical mode decomposition
with adaptive noise

Aiming at the problem of strong fluctuation of wind
speed data in north China wind field, Complete
Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN) algorithm15 was adopted to decompose
the wind speed sequence with strong instability into a
series of eigenmode functions to reduce its fluctuation.
It is widely used in processing nonlinear and nonsta-
tionary signals because it synchronously overcomes the
problem of EMD mode aliasing and the difficulty of
determining the amplitude of Gaussian white noise in
EEMD decomposition. Specially, it has a better effect
in the decomposition of wind speed sequence, so it has
a greater advantage. The principle of this algorithm is
as follows:

The white noise sequence vi(n) with standard normal
distribution is added to the original signal s(n). Then
the i-th signal sequence is si(n)= s(n)+ e0vi(n)
(i=1, 2, 3 � � � , I; I is the counts of added white noise),
where e0 is the amplitude of white noise. EK( � ) is
defined as the modal component of k-th stage gener-
ated by EMD decomposition, and the k-th modal com-
ponent decomposed by CEEMDAN method is set as
IMFk
���!

. The detailed procedures for CEEMDAN algo-
rithm are as follows:

1) Add white noise e0vi(n) to the original signal s(n).
EMD decomposition is used to obtain the first
modal component as follows:

IMF1(n)
�����!

=
1

I

XI
i=1

IMFi
1(n) ð1Þ

At this point, the residual signal r1(n)= s(n)� IMF1
���!

(n)
of first stage (k=1) can be figured out.

2) Add the IMF component e1E1½vi(n)� obtained from
white noise decomposed by EMD in r1(n), among
which, E1½vi(n)� is the first-order modal component
of white noise vi(n) which decomposed by EMD.
Then the new signal r1(n)+ e1E1½vi(n)� is formed
and decomposed to obtain the second modal com-
ponent as follows:

IMF2
���!

(n)=
1

I

XI
i=1

E1 r1(n)+ e1E1½vi(n)�
� �

ð2Þ

3) The k-th residual signal rk(t)= rk�1(t)� IMFk
���!

(t)
of the remaining stages (k=2, 3, � � � ,K) is simi-
larly calculated according to step 2). Then calculate
the (k + 1)-th modal component as follows:

IMFk+1
�����!

(t)=
1

I

XI
i=1

E1 rk(n)+ ekEk½vi(t)�
� �

ð3Þ
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Figure 1. Wind speed data sequence diagram.
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4) Repeat step 3 until the remaining components fail
to meet the decomposition conditions of EMD.
Eventually, the original signal is decomposed as
follows:

s(n)=
Xk
i=1

IMFi
���!

(n)+R(n) ð4Þ

Sample entropy calculation for each IMF component

To resolve the issue that many sequences with similar
complexity are produced after CEEMDAN decomposi-
tion, the Sample Entropy is applied to quantify the
complexity of each IMF component.

Sequences with similar SE values also include similar
complexity and wind speed characteristics. Hence, SE
values can be selected as indicators to classify IMF
components, and combine the sequences with similar
SE values. Consequently, it can avoid redundancy,
reduce error accumulation, and improve the prediction
speed and accuracy.

Sample Entropy (SE)16–18 is an improved method
for measuring the complexity of time series based on
Approximate Entropy (ApEn) proposed by Richman
et al. It is easy to calculate and extremely fast, which
has an excellent effect on the calculation of long data
series.

Set a time series consisted of N points, which can be
defined as x(n)f g= x(1), x(2), � � � x(N). The calcula-
tion procedures of SE are as follows:

1) (N-m+1) m-dimensional vector xm(i) composed
of the original sequence is shown as follows:

xm(i)= x(i), x(i+1), � � � x(i+m� 1)f g ð5Þ

where i=1, 2, � � � ,N�m+1.

2) d½xm(i), xm(j)� is the distance between the vectors
xm(i) and xm(j), which is defined as follows:

dm½xm(i),xm(j)�= max½ x(i+ k)� x(j+ k)j j� ð6Þ

3) Given a threshold r. Record the amount of j when
dm½xm(i), xm(j)�\ r. When 14j4N�m and j 6¼ i, j
is denoted as Bi, the ratio of Bi and (N�m+1) is
defined as follows:

Bm
i =

1

N�m+1
Bi ð7Þ

4) Take the mean value for all Bm
i , it can be obtained

by the following equation:

Bm(r)=
1

N�m

XN�m
i=1

Bm
i (r) ð8Þ

5) Increase the dimension by 1. That is, when dimen-
sion is m+1, repeat the preceding steps to get
Am

i (r), which is expressed as follows:

Am
i (r)=

1

N�m+1
Ai ð9Þ

where Ai is the times counts when dm½xm(i), xm(j)�\ r
under the constraints of 14j4N�m and j 6¼ i. Then,
the following equation is defined as mean value of
Am

i (r):

Am(r)=
1

N�m

XN�m
i=1

Am
i (r) ð10Þ

6) Therefore, when the threshold r is similar, Bm(r)
and Am(r) are the matching probabilities of m and
m + 1points for the sequences, respectively. Then,
the SE is defined as follows:

SampleEn(m, r)= lim
N!‘

� ln½A
m(r)

Bm(r)
�

� �
ð11Þ

When N is set as a finite value, the estimated value of
SE is as equation (12):

SampleEn(m, r,N)= � ln½A
m(r)

Bm(r)
� ð12Þ

For each IMF component, SE is used to quantify the
clutter degree to provide theoretical basis for the combi-
nation of IMF components and simplification of model
in subsequent steps. Specifically, the larger the SE val-
ues, the stronger the randomness of the sequences, and
vice versa.19

Establishment of PIO-GRNN prediction
model

General regression neural network

In this paper, General Regression Neural Network
(GRNN) is used to predict the above combined IMF
sequences. GRNN20,21 is an improved radial basis
neural network. Compared with other traditional
neural networks, GRNN is more suitable for predicting
nonlinear and nonstationary sequences with the advan-
tages of faster computation speed, greater fault toler-
ance and better robustness.

In Figure 2, it could found that the GRNN is simply
consisted of four layers, namely, the input layer, the
pattern layer, the summation layer, and the output
layer X= ½x1, x2, :::, xr�T and Y= ½y1, y2, :::, yk�T are
the input and output for the corresponding neural net-
work, respectively.

Input layer. In the learning sample, the counts of the
input layer’s neurons are equivalent to the input vec-
tor’s dimension. For each neuron, the input variable is
directly passed to the pattern layer as a simple distribu-
tion unit.22,23

Pattern layer. The counts of pattern layer’s neurons are
equivalent to the counts of learning samples n.
Specifically, each neuron corresponds to diverse
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samples. The transfer function for i-th pattern layer’s
neuron is as follows24:

pi = exp½� (x� xi)
T(x� xi)

2s2
� ð13Þ

where i=1, 2, 3::::, n, x is GRNN’s input variable, xi
represents the learning sample’s i-th neuron, and s is
defined as the smoothing factor.

Summation layer. In the summation layer, two kinds of
neurons are involved. For one kind of neuron, the
transfer function can be shown as follows:

SD =
Xn
i=1

pi ð14Þ

For output of each neuron in the pattern layer, con-
ducting the arithmetic sum. For another kind of neu-
ron, the transfer function is shown as follows:

SNj =
Xn
i=1

yijpi ð15Þ

where j=1, 2, :::k.
For the outputs of pattern layer’s each neuron, they

are weighted and summed by using the equation (15),
where yij is the weight of the i-th and the j-th neuron in
the pattern layer and summation layer.

Output layer. The counts of output layer’s neurons are
equivalent to the output vector’s dimension in the learn-
ing sample. The output result is the quotient of the
results obtained by the two kinds of summation meth-
ods in the summation layer, namely:

yi =
SNj

SD
, j=1, 2, :::k ð16Þ

Parameters optimization for GRNN based on pigeon
inspired optimization

Standard pigeon inspired optimization. By studying the
model of GRNN can be found that there are relatively
few factors that need manual adjustment. However, the
value of the smoothing factor s, or called expansion

coefficient, in the implicit regression element kernel
function has a huge impact on the network. With the
tinier value of s, the approximation of the function will
be more precise; The bigger the value of s is, the larger
the approximation error is. Traditional GRNN needs
to be tested again and again to determine how large the
value s is. The proposal to introduce the PIO algo-
rithm is to automatically optimize the smooth factor s

of GRNN.
Pigeon Inspired Optimization (PIO)25,26 was pro-

posed by professor Duane Haibin in 2014. This algo-
rithm derives from simulating the homing behavior of
pigeons. The pigeons determine the general direction
through the geomagnetic field in priority. Then the
actual direction is corrected according to the practical
geomorphic landscape. Eventually, they can accurately
locate the nest location. The specific steps are as
follows:

1) Initialize spatial dimension D, population scale Np,
map and compass operator R and two iterative
operators T1 and T2.

2) Set the random speed and route for each pigeon.
Then implement the operation of the fitness value
for each pigeon to find the best route.

3) Determine the approximate flight direction accord-
ing to the geomagnetic field. Update the speed and
route of each pigeon based on the following formu-
las. After calculating the updated pigeon’s fitness
value, the best novel route can be searched.

Vi(t)=Vi(t� 1) � e�Rt + rand � (Xg � Xi(t� 1))

ð17Þ
Xi tð Þ=Xi(t� 1)+Vi(t) ð18Þ

where t is the counts of current iteration, R is geo-
magnetic operator, Xg presents the current global
optimal value.

4) If t.T1, stop searching the geomagnetic and pass
to the next step to search landscapes. Otherwise,
return to step 3).

5) Firstly, sorting the fitness values of the pigeons by
descending order. Then, halving the pigeons with
low fitness according to equation (19). Moreover,
finding the center of the remaining pigeons,
namely, the ideal destination, according to the
equation (20). Eventually, adjusting the specific
flight direction according to the equation (21)
when all pigeons arrive at the destination.

Np =
Np(t� 1)

2
ð19Þ

Xc(t)=

P
Xi(t) � fitness(Xi(t))

Np �
P

fitness(Xi(t))
ð20Þ

Xi(t)=Xi(t� 1)+ rand � (Xc(t)� Xi(t� 1)) ð21Þ
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Figure 2. The structure of GRNN.
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6) If t.T2, stop searching landscape and export
results. Otherwise, return to the step 5).

Improved pigeon inspired optimization. Compared with
other swarm intelligence optimization algorithms, the
PIO includes the advantages of concise principle, strong
robustness, fewer parameters to tune, easily implement-
ing and rapid convergence speed. However, there may
be still some problems with this algorithm, such as, low
convergence accuracy, easily falling into local opti-
mum,27 and relatively poor stability. Therefore, the
adaptive geomagnetic operator is proposed for optimiz-
ing PIO.

The standard PIO possesses the advantages of less
arguments and easily implementing. Meanwhile, the
algorithm still contains the disadvantages of poor con-
vergence precision and easily trapping in the local opti-
mum. To get rid of the local optimum, it is vital to
select the geomagnetic operator R. The value of e�Rt

will increase while the value of R gradually decreases,
which means the flight speed of a pigeon also will gra-
dually accelerate. It is helpful for the pigeons to search
more carefully in the whole situation and finally avoid
the local optimum.

In this paper, the method of setting fixed value for
the geomagnetic operator R in the original method is
abandoned. Instead, a dynamic adaptive geomagnetic
operator based on objective function is proposed. In
priority, l(t) can be calculated as the following equa-
tion (22):

l(t)= f(SMi(t))� f(SMbest(t)j j, t=1, 2, 3 � � �
f(SMi(t))= f(smi, 1(t), smi, 2, smi, 3 � � � smi,D(t))
f(SMbest(t))= min f(SMi(t)), i=1, 2, 3 � � � ,N

8<
:

ð22Þ

where the iterations times of the pigeons is expressed as
t. f(SMi(t)) represents the corresponding goal function
for the i-th pigeon at t-th iteration. The value of the
goal function corresponding to the optimal pigeon at t-
th iteration can be defined as f(SMbest(t)).

What’s more, the geomagnetic operator R can be
calculated by the equation (23).

R=
l(t+1)

l(t)
ð23Þ

where l(0)=0:9. Then, the magnetic operator R can
be obtained.

Equation (23) is used to calculate the geomagnetic
operator, which results in the change of geomagnetic
operator is relatively smooth and varies within the
range of [0,1]. As the value of l(t) changes with the
value of the goal function, the value of the geomagnetic
operator R changes dynamically with the value of the
goal function when the positions are updated each
time. Thereby, the blindness of setting the fixed value
for the geomagnetic operator is reduced. The goal func-
tion’s information is fully used for the geomagnetic

operator, which makes the search direction of the algo-
rithm oriented. In the process of optimization, the
larger the difference of the corresponding objective
function between individuals of the pigeon flock, the
faster the l(t) decrease; The smaller the value of R, the
larger the value of e�Rt, namely, the search speed of the
pigeons become faster, which results in the faster speed
to get the global optimum point. When the search
results are close to the extremum, the value difference
of the objective function is relatively small while the
change of l(t) is also tiny. At the same time, the value
of R increases, the value of e�Rt decreases, namely, the
speed of the pigeons decreases, and the pigeons gather
near the theoretical optimal solution. Consequently,
the algorithm is effectively prevented from falling into
local optimum.

Forecasting process. To validate the availability of the
model, a wind speed prediction model based on
CEEMDAN-SE-Improved PIO-GRNN is established.
Under situation m4n, the process is shown in Figure 3.

The specific implementation steps are as follows:

1) To carry out the stabilization of the wind speed
sequence, the original wind speed sequence is
decomposed by CEEMDAN technology to gener-
ate a series of IMF components with disparate
characteristic scales.

2) Furthermore, calculating the SE of each IMF com-
ponent. Then, the IMF components with similar
entropy are combined to form a new component,
which reduces the calculation scale of the predic-
tion model and the error accumulation.

Start

Original wind speed sequence

CEEMDAN decomposition

IMF1 IMF2 IMF3 IMFn...

SE

NIMF1 NIMF2 NIMFn...

PIO-GRNN1 PIO-GRNN2 ...

Merge overlay

Wind speed prediction results

End

PIO-GRNNn

Figure 3. Wind speed prediction flow chart based on
CEEMDAN-SE-Improved PIO-GRNN.
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3) In addition, the smoothing factor of GRNN is
optimized with improved PIO algorithm. Assuming
that the summation of output error’s absolute
value from GRNN model’s training data is set as
fitness function. Next, operating the Improved
PIO-GRNN prediction for each new component.

4) Each new component’s predicted values are
weighted and combined to achieve the result of the
original wind speed prediction.

Simulation analysis

To validate the rationality for the proposed model, the
actual measured historical data mentioned in section I
are applied for simulation experiment. Total 2880 sets
of windspeed data collected at 15-min sampling inter-
vals are selected to establish the prediction model. Data
from days 1 to 29, namely, 2784 sets of data, are applied
to train models, and the remaining 96 sets of data are

utilized to forecast the wind speed in coming day.
Specially, the simulation is carried out on MATLAB
2016a platform.

The actually measured wind speed data shown in
Figure 1 are highly nonlinear and volatile. For the pur-
pose of fully grasping the variation characteristics of the
original wind speed sequences, the wind speed sequences
are decomposed by CEEMDAN. The added white noise
can be set as follows: the noise amplitude is 0.2 times of
the standard deviation for the sequences which waiting
to be decomposed, the number of white noise additions
is 100, and the number of iterations is 1000. The white
noise added in the second and third decomposition is
shown in Figures 4 and 5, and the residual generated by
each decomposition is shown in Figure 6.

The original wind speed sequence is decomposed by
CEEMDAN to generate a series of IMF components
with different complexity, which are displayed in the
Figure 7.
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Figure 4. The white noise added during the second decomposition.
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Figure 5. The white noise added during the third decomposition.
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Nevertheless, it could be discovered from Figure 7
that the wind speed sequence obviously retains non-sta-
tionary, including many IMF components, among
which IMF1 can be characterized by the highest fre-
quency, the strongest randomness of the sequences and
the maximum complexity; Relatively, IMF12 can be
characterized by the lowest frequency, the strongest
regularity of the sequences, and the minimum

complexity. It would increase the superposition of
errors if each component is predicted directly and the
predicted results are superposed. To reduce the scale of
modeling and the accumulation of errors, SE is intro-
duced. After decomposing each modal component by
CEEMDAN, each decomposed component is calcu-
lated to obtain the SE values and analyzed the com-
plexity. Then, the sequences with similar SE values are
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Figure 6. The residual diagram of each order decomposition.
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Figure 7. CEEMDAN decomposition diagram.
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merged into new sequences. Eventually, implementing
the wind speed prediction by the proposed model.

It can be seen from the flow of SE algorithm that
two important parameters directly affect the calculation
results, namely, similar tolerance r and embedding
dimension m.28 The greater the value of m,the greater
the probability of the wind speed sequence and dynamic
reconstruction of the value r. However, if the value of r
is out of range, the information will be lost, and the
details of information will difficultly be presented;
Correspondingly, the extremely tiny value of r will
result in the unsatisfactory estimated statistical proper-
ties.29 According to correlational researches,30 the cal-
culated SE will be obtained with reasonable statistical
characteristics if the value of m is confirmed as 1 or 2,
and the value of r can be determined as 0.1–0.25 std (std
is the standard deviation of the original wind speed
data). To affirm the appropriate parameters, the SE
value of 12 modal functions is operated by using four
sets of diverse values of m and r. The obtained results
are as Figure 8.

As is revealed in the Figure 8, when m=2 and
r=0:2�std, the differences in the complexity of each
component can be best reflected. At the same time, the
general variation trend of SE is not influenced by the
value of m and r. The SE value of each IMF component
decreases as the frequency of each IMF component
decreases, namely, the complexity of IMF component
with high frequency is higher than that of the low fre-
quency IMF component.

Under the situation m=2 and r=0:2�std, the SE
values of the 12 modal components are displayed in the
Table 1.

The larger the SE value, the greater the complexity
of the corresponding sequence. The closer the SE

values are, the closer the corresponding subsequences’
complexities are. As is shown in the Table 1, IMF1
possesses the maximum SE value, and IMF12 possesses
the minimum one. This is consistent with the result
obtained by observing the complexity of the modal
components in Figure 4.

IMF1, IMF2, and IMF3 are characterized by high
complexity, strong randomness for sequences, and sig-
nificantly higher entropy values than other compo-
nents. Therefore, they can be restructured as
component NIMF1. The waveforms of IMF4, IMF5,
IMF6, and IMF7 reveal the certain randomness, and
their entropy values are similar, which can be merged
into component NIMF2. The waveforms of IMF8 and
IMF9 show the regularity, and their entropy values are
relatively similar with each other. Therefore, they are
restructured as component NIMF3. The waveforms of
IMF10, IMF11, and IMF12 tend to be gentle, and the
entropy value approaches 0, so they can be reconsti-
tuted into component NIMF4.

After the decomposition by CEEMDAN, modal
components are recombined with better stability and
smoothness. And it is also more convenient to extract
the variation rules of the wind speed sequences.

Improved PIO algorithm

In this paper, the smoothing factor of GRNN is
enhanced by the improved PIO. For the sake of verify-
ing the advantages of improved PIO algorithm, four
diverse classical test functions are selected to be simu-
lated and tested by improved PIO, standard PIO, and
standard PSO, separately. 50 times independent experi-
ments should be operated for each algorithm. The four
kinds of test functions totally are complicated non-
linear multi-peak functions, which are equipped with a
mass of multiple local optimal solutions, and the capa-
bility of effectively checking global search for the algo-
rithm and getting rid of the local optimal.

The expressions, range of variables, and ideal opti-
mal values are shown in the Table 2.

The four test functions will be separately operated
50 times independent experiments. In each independent
experiment, the population number is 20 and cycle
times are 200. Then, the optimal population solutions
are achieved and shown in Figure 9, in which the x-axis
presents the experiments’ counts, and the y-axis denotes
the optimal solution. It is prone to obtain that the

Figure 8. The SE of the IMF.

Table 1. The SE values of 12 modal components.

Sequence IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

SE values 1.5694 1.3674 1.2131 0.6297 0.5160 0.4173

Sequence IMF7 IMF8 IMF9 IMF10 IMF11 IMF12

SE values 0.2967 0.0827 0.0354 0.0138 0.0074 0.0045
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optimum curve of improved PIO closely approaches to
the optimal solution. In detail, the minimum number of
results trapped in the local optimum occurs in the
improved PIO, which indicating that the improved PIO
algorithm is easier to avoid the local optimum.

To further evaluate the performance of the improved
PIO, each test function is independently operated for 50
times to obtain the optimum solution, the worst solu-
tion, mean value, and the variance from the optimized
results. The algorithm performances for PSO, PIO, and
improved PIO are compared and displayed in Table 3,
where the optimum results of each function are high-
lighted in bold.

With regard to the four multimodal functions f1;f4,
both the optimum solution with lowest variance
and the solution with the highest accuracy can be
searched by the improved PIO algorithm. Specially, the
optimization solutions for the functions f1 and f4

are much better than that of other algorithms. It
reveals that the improved PIO algorithm has obvious
progress in convergence accuracy and optimization
stability.

According to the above diagrams, it can be learned
that the optimization accuracy and stability of the PIO
can be enhanced through improved PIO algorithm, and
prevent the algorithm from being trapped in the local
optimum. In sum, the improved PIO algorithm is effec-
tive and applicable for the complex function optimiza-
tion problem.

The wind speed prediction based on
CEEMDAN-Se-improved-PIO-GRNN

The Improved PIO-GRNN models are established for
four new modal components to implement the forecast-
ing. After the prediction, the each NIMF component’s

Table 2. Experimental parameters of classic test functions.

Function Expression Variable range Theoretical optimal value

Shubert
f1 = (

P5
i = 1

i cos½(i + 1)x + i�)3(
P5
i = 1

i cos½(i + 1)y + i�)
[210,10] 2186.7309

Schaffer
f2 = 0:5 +

( sin
ffiffiffiffiffiffiffiffiffiffi
x2

1
+ x2

2

p
)
2
�0:5

(1 + 0:001(x2
1

+ x2
2
))2

[210,10] 21

Ackley
f3 =�20 exp (� 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i = 1

xi
2=n

s
)

� exp (
Xn

i = 1

cos (2pxi)=n) + 20 + e

[232,32] 0

Rastrigin f4 = 20 + x2
1 + x2

2 � 10( cos 2px1 + cos 2px2) [25.12,5,12] 0
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Figure 9. The comparison diagram of three algorithms optimization: (a) convergence curve of Shubert function, (b) convergence
curve of Schaffer function, (c) convergence curve of Ackley function, and (d) convergence curve of Rastrigin function.
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results are superimposed and merged to achieve the
final prediction results, which are displayed in Figure
10(a–d). Obviously, the overall fitting degree of
NIMF1 is not satisfied because of the largest prediction
error among all modal components. Relatively, the
result of NIMF2 has been improved to a certain extent.
However, there are still some problems happened to
the positions of wave crest, wave trough, and the tran-
sition. The overall prediction result of NIMF3 is better
than NIMF1 and NIMF2. However, a slight deviation
happened in the prediction of wind speed in the last
hour. By overall comparison, the fitting effect of
NIMF4 is the best one with rare deviation from the
actual wind speed.

By superimposing the above prediction results, the
final prediction results can be obtained, which are dis-
played in CEEMDAN-SE-Improved PIO-GRNN
curve of Figure 12.

For verifying the superiority of the proposed model,
five diverse models are separately established to operate
the prediction for the 30-days data derived from a wind
farm in north China. The models are GRNN,

Table 3. The comparison of three algorithms.

Function Algorithm Optimum solution The worst solution Mean value Variance

f1 PSO 2186.7306 2161.3036 2184.5127 17.5470
Standard PIO 2186.7221 2167.8430 2185.2026 9.3567
Improved PIO 2186.7309 2185.3219 2186.6646 0.0467

f2 PSO 21 20.9628 20.9903 9.02 3 1026

Standard PIO 20.9903 20.9824 20.9893 3.04 3 1026

Improved PIO 21 20.9903 20.9944 2.17 3 1026

f3 PSO 1.18 3 1022 0.8098 0.1629 2.74 3 1022

Standard PIO 4.78 3 1023 0.3121 0.1151 6.83 3 1023

Improved PIO 1.89 3 1023 0.1557 0.0294 1.23 3 1023

f4 PSO 0 4.9748 1.3737 2.4774
Standard PIO 0 1.2314 0.2454 0.1358
Improved PIO 0 0.9952 0.0421 0.0217

Figure 10. The prediction results for four new sequences: (a) prediction result of NIMF1, (b) prediction result of NIMF2, (c)
prediction result of NIMF3, and (d) prediction result of NIMF4.

Figure 11. Prediction results diagram.

Ding et al. 83



CEEMDAN-GRNN, CEEMDAN-SE-GRNN,
Improved PIO-GRNN, and CEEMDAN- SE-
Improved PIO-GRNN, respectively. For the sake of
more intuitionistic comparison, the fitting degree of the
predicted value and the actual value for each model are
displayed in Figures 11 and 12.

As can be seen from Figure 11, the fitting effect of
CEEMDAN-GRNN prediction curve is better than the
one of GRNN, and the fitting degree of CEEMDAN-
SE-GRNN model is close to that of CEEMDAN-
GRNN model. It can be seen from Figure 12 that
Improved PIO-GRNN model has better prediction
effect than GRNN. The CEEMDAN- SE-Improved
PIO-GRNN has the best prediction curve fitting effect,
and can be well predicted at both peak and trough.

If solely depending on the fitting degree of wind
speed curve, it will be difficult to know by which
method the best prediction effect can be obtained.
Hence, it is necessary to judge the merits and demerits
for each method according to several error evaluation
criteria. Mean squared error (MSE),31 mean absolute
error (MAE)32 and weighted mean absolute percentage
error (WMAPE)33 are three different indicators, which

can be applied to estimate the prediction outcomes.
The tinier the values of the three indicators are, the
more precise the prediction accuracy of the model will
be. The following expressions are the three error
indicators.

MSE=
1

N

XN
t=1

(Dt � dt)
2 ð24Þ

MAE=
1

N

XN
t=1

Dt � dtj j ð25Þ

WMAPE=
1

N

PN
t=1

Dt � dtj j

PN
t=1

Dt

3100% ð26Þ

where N is the predicted quantity; Dt presents the mea-
sured wind speed’s value at time t; dt is the predicted
wind speed’s value at time t.

It can be seen from Table 4 that MSE, MAE and
WMAPE have consistent evaluation on the predictive
ability of the five prediction models. The descending
order of predictive power is as follows: CEEMDAN-
SE-Improved PIO-GRNN . Improved PIO-GRNN
. CEEMDAN-SE-GRNN . CEEMDAN-GRNN
. GRNN.

The larger the value of the commonly used predic-
tion evaluation indicator, the easier it is to see the dif-
ference in the predictive power of each model.
However, what extent can be decided to judge it needs
to be verified by DM test. To avoid the length of paper
too long, specific theory will not be elaborated in detail
in this paper. Please refer to the literature.34–36 By
means of DM test, quantitative test can be carried out,
so that it is easier to see the difference of prediction
ability for each model. Only when the numerical differ-
ence of the above indicators for the models is signifi-
cantly greater than 0, the predictive ability of one
certain model is sufficient to be considered superior to
other models.

Compared with models GRNN, CEEMDAN-
GRNN, CEEMDAN-SE GRNN, Improved PIO-
GRNN, CEEMDAN-SE-GRNN, and CEEMDAN-
SE-Improved PIO-GRNN, the DM test results based
on MSE, MAE and WMAPE are calculated. The
details are shown in Tables 5–7.

Table 4. The comparison of prediction error.

Algorithm MSE MAE WMAPE (%)

GRNN 0.9154 0.7116 18.3082
CEEMDAN-GRNN 0.5545 0.5604 14.4181
CEEMDAN-SE-GRNN 0.4959 0.5484 14.1097
Improved PIO-GRNN 0.4059 0.5110 13.1491
CEEMDAN-SE-improved
PIO-GRNN

0.2932 0.3782 9.7316
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Figure 12. Prediction results diagram.

Table 5. DM test results of each model (MSE).

CEEMDAN-
GRNN

CEEMD-
SE-GRNN

Improved PIO-GRNN CEEMDAN-SE-improved PIO-GRNN

GRNN 0.009 0.022 0.034 0.001
CEEMDAN-GRNN 0.195 0.224 0.001
CEEMDAN-SE-GRNN 0.326 0.009
Improved PIO-GRNN 0.259
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As can be seen from Table 5, the DM test results in
the MSE sense are as follows:

(1) The model GRNN has the significant differences
in predictive ability from CEEMDAN-GRNN,
CEEMDAN-SE-GRNN, Improved PIO-GRNN,
and CEEMDAN-SE- Improved PIO-GRNN,
which indicates that the prediction ability of the
latter four models is better than that of the
GRNN model. Likewise, it can confidently indi-
cate the prediction ability of CEEMDAN-SE-
Improved PIO-GRNN is better than that of
CEEMDAN-GRNN and CEEMDAN-SE-
GRNN.

(2) Correspondingly, the DM test value of
CEEMDAN- GRNN and CEEMDAN-SE-
GRNN in the model is 0.195, revealing that the
prediction ability of CEEMDAN- SE-GRNN in
the model is stronger than that of CEEMDAN-
GRNN at the 20% significance level. Meanwhile,
we can obtain the result that the difference in test
result between the models CEEMDAN-GRNN
and Improved PIO-GRNN is tiny. This result
indicates that the original hypothesis with similar
predictive ability cannot be obviously rejected,
this may be due to some random factors.
Likewise, for the model group CEEDMAN-SE-
GRNN and Improved PIO-GRNN, and the
model group Improved PIO-GRNN and
CEEMDAN-SE-Improved PIO-GRNN, the same
conclusion can be obtained.

It can be seen from Tables 6 and 7 that the DM test
results in the meaning of MAE and WMAPE are as
follows:

(1) The predictive ability of the model GRNN is sig-
nificantly different from that of the other four

models, so it can be believed that the predictive
ability of the other four models is indeed superior
to GRNN. The significantly difference in predic-
tive ability between CEEMDAN-GRNN and
CEEMDAN-SE-Improved PIO-GRNN indicates
the prediction ability of the latter is better than
that of the former. Likewise, it also can confi-
dently indicate the prediction ability of
CEEMDAN-SE-Improved PIO-GRNN is better
than that of CEEMD-SE-GRNN and Improved
PIO-GRNN.

(2) The difference in predictive ability between the
models CEEMDAN-GRNN and CEEMDAN-
SE-GRNN is tiny. This may be caused by random
factors. Likewise, for the model group
CEEMDAN-GRNN and Improved PIO-GRNN,
and the model group CEEMDAN-SE-GRNN
and Improved PIO-GRNN, the same conclusion
can be obtained.

Combining Figures 11 and 12, Table 4 and DM test
results, the fitting effect of CEEMDAN-GRNN predic-
tion curve is better than that of GRNN. The MSE,
MAE and WMAPE of CEEMDAN-GRNN are
respectively 0.3609, 0.1512, and 3.8901% lower than
that of GRNN, and the prediction ability difference is
significant, which indicates that CEEMDAN decompo-
sition can effectively reduce the interaction effect
between various frequency components, thereby effec-
tively improving the prediction accuracy. Hence, the
variation trend of wind speed time sequences can be
more well traced by this model.

The fitting degree and accuracy of prediction curve
for CEEMDAN-SE-GRNN model are close to that of
CEEMDAN-GRNN model. As revealed in the Table 4,
MSE, MAE, and WMAPE of CEEMDAN-SE-GRNN
model are separately decreased by 0.0586, 0.012, and
0.3084% compared with CEEMDAN-GRNN model.

Table 6. DM test results of each model (MAE).

CEEMDAN-GRNN CEEMD-SE-GRNN Improved
PIO-GRNN

CEEMDAN-SE-improved
PIO-GRNN

GRNN 0.005 0.03 0.016 1.73 3 10210

CEEMDAN-GRNN 0.648 0.347 4.245 3 1025

CEEMDAN-SE-GRNN 0.451 0.002
Improved PIO-GRNN 0.024

Table 7. DM test results of each model (WMAPE).

CEEMDAN-GRNN CEEMD-SE-GRNN Improved
PIO-GRNN

CEEMDAN-SE-improved
PIO-GRNN

GRNN 0.008 0.037 0.012 3.598 3 1028

CEEMDAN-GRNN 0.602 0.328 0.0001
CEEMDAN-SE-GRNN 0.492 0.002
Improved PIO-GRNN 0.007
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Results in the MSE meaning, it indicates that the pre-
diction ability of CEEMDAN-SE-GRNN is stronger
than that of CEEMDAN-GRNN at the 20% signifi-
cant level. The reason is that the superposition of
the error values for a single IMF is decreased within
prediction procedure of CEEMDAN-SE-GRNN
model. Therefore, the accuracy for the prediction is
improved.

However, it is prone to be trapped in local optimum
at several extremum points. Hence, the smoothing fac-
tor of GRNN is strengthened by applying the improved
PIO. As displayed in Figure 12, Improved PIO-GRNN
model has better effect of curve fitting than that of
GRNN. Specifically, MSE, MAE, WMAPE are respec-
tively decreased by 0.5095, 0.2006, and 5.1591%. And
the DM test results show that there is a significant dif-
ference in their predictive ability. Therefore, the predic-
tion effect of PIO-GRNN model is better than that of
GRNN model.

The fitting effect of prediction curve for
CEEMDAN-SE Improved PIO-GRNN is the best,
and it can well forecast at wave crest and wave trough.
Moreover, compared with the single prediction model,
the prediction errors of MSE, MAE and WMAPE
decreased by 0.6222, 0.3334, and 8.5766%, respectively.
And the DM test results show that there is a significant
difference in their predictive ability. It well illustrates
that the prediction effect of the model proposed in this
paper is better.

Conclusion

For the issue of intense fluctuation for wind speed time
sequences, a short-term wind speed forecast method on
account of CEEMDAN-SE-Improved PIO-GRNN
model is proposed in this paper. The following are the
conclusions.

1) Firstly, reducing the complexity of the wind speed
sequences through decomposing these into a series
of modes with different frequency bands by
CEEMDAN. Then, merging the sequences with
similar complexity into new sequences with the
method SE. Moreover, separately establishing the
new models for new sequences to implement the
prediction. Consequently, both of prediction accu-
racy and arithmetic speed are effectively optimized.

2) To optimize the model’s forecast precision, the
parameters of the Improved PIO algorithm are
optimized by using improved the PIO. Firstly,
optimizing the PIO algorithm by orthogonally
designing the initial population so that the pigeons
are distributed as evenly as possible in the whole
space and the searching results are more accurate;
Then, a dynamic adaptive geomagnetic operator is
applied to keep the algorithm away from the local
optimum.

3) The results of simulation experiments indicate that
the forecast effect of the proposed model in this
paper is relatively great.
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Appendix

Notation

Full name Abbreviation

General regression neural network GRNN
Empirical mode decomposition EMD
Ensemble empirical mode decomposition EEMD
Complete ensemble empirical
mode decomposition with adaptive noise

CEEMDAN

Sample entropy SE
Pigeon inspired optimization PIO
Mean squared error MSE
Mean absolute error MAE
Weighted mean absolute percentage error WMAPE
Wavelet decomposition WD
Least square support vector machine LSSVM
Approximate entropy ApEn
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